Difference between revisions of "Rostami2013heart"
From ACES
(Import from BibTeX) |
m (Default pdf) |
||
(One intermediate revision by the same user not shown) | |||
Line 6: | Line 6: | ||
<p>H2H makes use of ECG (heartbeat data) as an authentication mechanism, ensuring access only by a medical instrument in physical contact with an IMD-bearing patient. Based on statistical analysis of real-world data, we propose and analyze new techniques for extracting time-varying randomness from ECG signals for use in H2H. We introduce a novel cryptographic device pairing protocol that uses this randomness to protect against attacks by active adversaries, while meeting the practical challenges of lightweight implementation and noise tolerance in ECG readings. Finally, we describe an end-to-end implementation in an ARM-Cortex M-3 microcontroller that demonstrates the practicality of H2H in current IMD hardware.</p> | <p>H2H makes use of ECG (heartbeat data) as an authentication mechanism, ensuring access only by a medical instrument in physical contact with an IMD-bearing patient. Based on statistical analysis of real-world data, we propose and analyze new techniques for extracting time-varying randomness from ECG signals for use in H2H. We introduce a novel cryptographic device pairing protocol that uses this randomness to protect against attacks by active adversaries, while meeting the practical challenges of lightweight implementation and noise tolerance in ECG readings. Finally, we describe an end-to-end implementation in an ARM-Cortex M-3 microcontroller that demonstrates the practicality of H2H in current IMD hardware.</p> | ||
<p>Previous schemes have had goals much like those of H2H, but with serious limitations making them unfit for deployment---such as naively designed cryptographic pairing protocols (some of them recently broken). In addition to its novel analysis and use of ECG entropy, H2H is the first physiologically-based IMD device pairing protocol with a rigorous adversarial model and protocol analysis.</p> | <p>Previous schemes have had goals much like those of H2H, but with serious limitations making them unfit for deployment---such as naively designed cryptographic pairing protocols (some of them recently broken). In addition to its novel analysis and use of ECG entropy, H2H is the first physiologically-based IMD device pairing protocol with a rigorous adversarial model and protocol analysis.</p> | ||
|month=11 | |||
|year=2013 | |||
|journal=ACM Conference on Computer and Communications Security | |journal=ACM Conference on Computer and Communications Security | ||
|title=Heart-to-Heart (H2H): Authentication for Implanted Medical Devices [updated; see the erratum] | |title=Heart-to-Heart (H2H): Authentication for Implanted Medical Devices [updated; see the erratum] | ||
|entry=conference | |entry=conference | ||
| | |pdf=Rostami2013heart.pdf | ||
}} | }} |
Latest revision as of 17:39, 9 November 2021
Rostami2013heart | |
---|---|
entry | conference |
address | |
annote | |
author | Masoud Rostami and Ari Juels and Farinaz Koushanfar |
booktitle | |
chapter | |
edition | |
editor | |
howpublished | |
institution | |
journal | ACM Conference on Computer and Communications Security |
month | 11 |
note | |
number | |
organization | |
pages | |
publisher | |
school | |
series | |
title | Heart-to-Heart (H2H): Authentication for Implanted Medical Devices [updated; see the erratum] |
type | |
volume | |
year | 2013 |
doi | 10.1145/2508859.2516658 |
issn | |
isbn | |
url | http://dl.acm.org/citation.cfm?id=2516658 |
Rostami2013heart.pdf |