
TinyGarble2: Smart, Efficient, and Scalable Yao’s Garble Circuit
Siam Hussain, Baiyu Li, Farinaz Koushanfar

University of California San Diego
{siamumar,baiyu,farinaz}@ucsd.edu

Rosario Cammarota
Intel Labs

rosario.cammarota@intel.com

ABSTRACT
We present TinyGarble2 – a C++ framework for privacy-preserving
computation through the Yao’s Garbled Circuit (GC) protocol in
both the honest-but-curious and the malicious security models.
TinyGarble2 provides a rich library with arithmetic and logic build-
ing blocks for developing GC-based secure applications. The frame-
work offers abstractions among three layers: the C++ program, the
GC back-end and the Boolean logic representation of the function
being computed. TinyGarble2 thus allows the most optimized ver-
sions of all pertinent components. These abstractions, coupled with
secure share transfer among the functions make TinyGarble2 the
fastest and most memory-efficient GC framework. In addition, the
framework provides a library for Convolutional Neural Networks
(CNN). Our evaluations show that TinyGarble2 is the fastest among
the current end-to-end GC frameworks while also being scalable
in terms of memory footprint. Moreover, it performs 18× faster on
the CNN LeNet-5 compared to the existing scalable frameworks.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

1 INTRODUCTION
Multi-Party Computation (MPC) protocols allow two or more par-
ties to jointly compute a function without revealing one party’s
input to others. In the two-party setting, the most efficient protocol
is Yao’s Garbled Circuit (GC) [1] executed between a garbler and
an evaluator. In GC, the function to be computed is represented as
a netlist of logic gates. The truth tables of the gates are garbled –
encrypted and permuted – to ensure privacy. The Boolean value of
each wire in the netlist is split into a pair of shares with each party
holding one share. The two parties combine their shares to obtain
the final output of the computation.

The practicality of a GC frameworks primarily depends on the
following properties: (𝑖) fast protocol execution, (𝑖𝑖) automatic gen-
eration of optimized netlists, (𝑖𝑖𝑖) scalability in terms of memory
footprint, (𝑖𝑣) reliability, and (𝑣) a rich programming paradigm.
The first two properties received a lot of research effort over the
years. Optimizations both to the protocol [2–4] and the netlists
generation [5–8] have resulted in orders of magnitude reduction in
the run-time. With the recent surge in the development of practical
privacy-preserving systems, scalability, reliability, and a rich pro-
gramming paradigm are becoming increasingly important. While

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPMLP’20, November 9, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8088-1/20/11.
https://doi.org/10.1145/3411501.3419433

existing frameworks focus on one or two of the properties, none of
them demonstrate the best possible performance on all of them. Our
earlier work, TinyGarble [5] demonstrated the best performances in
the first four properties. In this work, we present an enhanced ver-
sion with a rich programming interface as well as state-of-the-art
implementations of the underlying security primitives.

1.1 Related Work
A number of the existing GC frameworks [6–10] support C or C++ or
their subsets. Among them, Frigate [6], CBMC-GC [7], and ABY [9]
generate the entire netlist before protocol execution. This execution
style is not scalable in terms of the memory footprint which is one
of the primary limiting factors in applying GC to practical size
problems such as Convolutional Neural Network (CNN). Modern
CNNs require billions of Multiply-Accumulate (MAC) operations
per inference. As a result, the secure execution of an entire CNN as
a single netlist results in an unmanageably large memory footprint.

The PCF [8] and TinyGarble [5] frameworks partially solve the
scalability issue. Through run-time loop unrolling and sequential
GC, respectively, they ensure that all the garbled gates do not reside
in the memory at the same instance. However, the unrolling process
slows down the execution by PCF. Moreover, its netlists are 50-80%
less optimized compared to the recent frameworks. In the sequential
GC by TinyGarble, the same netlist is executed through the protocol
for multiple cycles. However, it only supports homogeneous loops,
while most practical problems require heterogeneous loops, i.e.,
loops where possibly different netlists are executed at every cycle.
Moreover, this framework only accepts the function in a Hardware
Description Language (HDL) which limits flexibility.

To the best of our knowledge, the only existing framework that
is scalable while also provides rich programming support is Obliv-
C [10] Being an extension of the gcc compiler, Obliv-C inherits
its memory management procedures. However, this inheritance
comes with limitations. First, Obliv-C does not support abstraction
between netlist generation and protocol execution, therefore cannot
use the best netlist generation tools. Run-time netlist generation
results in an additional slowdown. Second, it supports only a subset
of native C data types – 16/32/64-bit integers. Finally, a custom
compiler may result in unreliable binaries as exposed by Frigate [6]
in Obliv-C as well as other GC frameworks.

The EMP-toolkit [11] also presents a similar framework. While
its execution engine is faster than both Obliv-C and ABY, the pro-
gramming features are not as rich (e.g., lack of support for con-
ditional operation on private variables). An important feature of
this framework is the support for the malicious security model
while other frameworks target only the honest-but-curious model.
However, their maliciously secure framework does not have a pro-
gramming interface. A user can generate a netlist using the inter-
face from the honest-but-curious framework and use it with the
malicious one but will suffer from scalability issues similar to ABY.

https://doi.org/10.1145/3411501.3419433

PPMLP’20, November 9, 2020, Virtual Event, USA Siam Hussain, Baiyu Li, Farinaz Koushanfar and Rosario Cammarota

1.2 Our Contributions
In this work, we present TinyGarble2, an end-to-end GC framework
that ensures fast and scalable execution while providing a rich C++
library. The framework is developed in two layers. The first layer
is the protocol execution back-end that takes a pre-compiled GC-
optimized netlist as input and executes the protocol. The second
layer, which is a program interface to the GC back-end, supports
using common arithmetic and logical building blocks to develop
applications. The GC back-end internally manages the secure trans-
fer of shares among consecutive operations (netlists) according to
user-defined flags. This ensures that at any instance, only a limited
number of garbled gates resides on the memory thus enabling scal-
able execution. In addition, the abstraction of netlist generation,
protocol execution, and program interface allow users to benefit
from the enhanced netlists generated with logic synthesis tools, as
introduced by our earlier work TinyGarble, without having to use
HDLs. Furthermore, the GC back-end has two versions for the two
security models: honest-but-curious and malicious. The interfaces
to these two versions are identical allowing the same program to
be executed in a security model of choice by the user.

To demonstrate the efficiency and practicality of TinyGarble2,
we designed a C++ library for privacy-preserving CNN inference.
We built LeNet-5 [12] to run inference on the MNIST dataset with
the library. Privacy-preserving inference with TinyGarble2 on one
image requires 91s with a peak memory usage of 46MB. The same
operationwith Obliv-C requires 3.01E3s and 127MB, respectively. On
evaluation on micro-benchmarks, Obliv-C shows the same level of
scalability as TinyGarble2 while being at least 2.5× slower, whereas
ABY demonstrates a lack of both speed and scalability.

2 DESCRIPTION OF THE FRAMEWORK
The TinyGarble2 framework is developed in two layers. The first
layer is the back-end that executes the GC protocol on any given
set of netlists. The second layer provides an interface between
the back-end and arithmetic/logical function building blocks. The
developers can directly access the back-end from the command line
or using a configuration file. However, it is more convenient to use
the functionalities from the second layer to develop applications.

2.1 GC Back-end
The GC back-end allows compositions of the functions with the
three formats in Eqs 1 - 3 as well as any hybrid combinations. The
first format with homogeneous loops represents the sequential GC
introduced by TinyGarble. In this version, TinyGarble2, we provide
more freedom with support for heterogeneous loops.
𝐹 ≡ 𝑓 (𝑓 (...𝑓 ()...)) (1)
𝐹 ≡ 𝑓0 (𝑓1 (...𝑓𝑄−1 ()...)) (2)
𝐹 ≡ 𝑓𝑃 (𝑓0 (), 𝑓1 (), ..., 𝑓𝑄−1 ())) (3)

If the number of input wires and gates in the netlist of 𝐹 is |𝐼 | and
|𝐺 |, respectively, the memory footprint in traditional GC execution
(i.e., all existing frameworks except [5, 8, 10]) is O

(
|𝐼 | + |𝐺 |

)
. In

contrast, the memory footprint in TinyGarble2 in the honest-but-
curious model is O

(
|𝐼 | + |𝑔 |𝑀 + |𝑖 |𝑀

)
, where, |𝑔|𝑀 is the number of

gates in the largest among the netlists that constitute the system
and |𝑖 |𝑀 is the largest among the numbers of inputs to the netlists.

It shows that TinyGarble2 is more effective when the number of
input/output wires in the netlist of the function is negligible com-
pared to the number of gates, which applies to the majority of the
practical functions. For instance, the peak memory footprint for 𝐿
convolutional layers with𝑀 × 𝑁 input and 𝐶 channels of 𝐹 × 𝐹 fil-
ters followed by maxpool with𝑊 ×𝑊 windows is O

(
𝐿𝑏2𝑀𝑁𝐹 2𝐶

)
in Traditional GC and O

(
𝑏𝑀𝑁 (1 + 𝐹 2𝐶/𝑊 2)

)
in TinyGarble2.

In the honest-but-curious model, the reduction at memory foot-
print comes at no additional cost, However, in the malicious model,
there is a trade-off. In the malicious model, one Oblivious Trans-
fer (OT) is performed per gate, as opposed to per input bit in the
honest-but-curious model. To benefit from the run-time improve-
ment provided by OT extension, keys of all the gates are generated
and transferred together. If 𝐹 is decomposed into𝑄 parts,𝑄 invoca-
tion of OT extension is required which increases the total run-time.
However, the support for increasing the number of invocations of
OT extension to reduce the memory usage provides flexibility in
case the problem at hand is too large to fit into the platform.

2.2 Programming Interface
The second layer of TinyGarble2 architecture – the programming
interface provides convenient access to the GC back-end for the
developers. It provides functions of common arithmetic and logical
building blocks (e.g., =, +, -, ×, / (division), if-else, <, >, &, |, ∧
etc.) along with necessary GC primitives. Currently, it supports
integers with any bit-width from 1 to 64. Note that the GC back-end
supports any arbitrary length variables. To use variables with more
than 64 bits from the programming interface, the developers need
to merge multiple integers. In the following, we describe different
components of the programming interface.

Protocol Instantiation. The program starts with the instantiation
of the desired GC back-end of either of the two security models:
honest-but-curious and malicious. The rest of the interface is iden-
tical for both models. Therefore, this is the only place where the
developers need to specify the security model.

Input Variables. Every input from the parties requires three oper-
ations. First, each party registers his/her respective inputs to the
GC back-end. Second, they perform the key generation and trans-
fer for the inputs. Third, each party retrieves the keys for all the
inputs (from both parties) and associate them with the respective
input variables. All the input keys for the evaluator are transferred
through OT extension where the total time remains almost constant
with an increasing number of input bits beyond a certain threshold.
The three-step approach of TinyGarble2 allows the developers to
register all the input variables from the evaluator before performing
the key generation with only one invocation of OT extension.

Functional Building Blocks. These building blocks are wrappers
around the online computation (garbling and evaluation) of the GC
protocol for the common arithmetic and logical operations. They
take pre-generated shares (from either OT or a previous functional
block) as inputs and outputs the shares associated with the output
of the function. The parties may choose together to reveal the actual
value of any variable to either or both parties.

The wrappers select the netlists according to the operation and
the bit-widths of the input. The compiled binary includes pointers

TinyGarble2: Smart, Efficient, and Scalable Yao’s Garble Circuit PPMLP’20, November 9, 2020, Virtual Event, USA

to the pre-compiled netlist files in the installation directory. This
abstraction allows the use of the most optimized netlist for a par-
ticular operation. According to the study [6] by Mood et. al., the
netlists generated by TinyGarble, our earlier work, holds less than
or equal non-XOR gates compared to other frameworks. However,
its enhanced efficiency comes from using standard logic synthesis
tools and therefore needs the function to be written in an HDL as
opposed to a programming language like C/C++. In TinyGarble2,
netlists of the necessary operations are pre-compiled with Tiny-
Garble and provided with the software distribution. As a result,
developers have the convenience of programming in C++ while
benefiting from the efficiency of the HDL synthesis tools.

Neural Network Building Blocks. As an optional third layer to
the TinyGarble2 framework, we provide the common components
for inference with Convolutional Neural Networks (CNN) - Convo-
lution layer, Fully Connected (FC) layer, ReLU, Maxpool, and more.
It also includes functionalities to reshape tensors containing secret
variables. These building-blocks can be plugged into any CNN de-
veloped with C/C++. Even though in general CNNs are designed
with Python, automated tools are available to convert any trained
Python model to C/C++ [13, 14]. The CNN building blocks in the
third layer of TinyGarble2 are mostly based on the functions from
its second layer. However, for two of the blocks, namely Convolu-
tion and FC, we provide a custom implementation of the matrix
multiplication operation which directly access the GC back-end.

3 EVALUATION
We evaluate the run-time and memory usage of TinyGarble2 and
compare them with Obliv-C and ABY – two current frameworks
with rich program interface. Both ABY and TinyGarble2 (as well as
recent GC frameworks [4, 5]) sets the security parameter ^ to 128.
However, Obliv-C sets it to 80. We show both experimental values
and values adjusted for ^ for Obliv-C. Evaluation is performed on
an Intel Xeon CPU E5-2650 v4 @ 2.20GHz with 128GB memory.

Matrix-multiplication. In this experiment, we compute the prod-
uct of two 𝐷 × 𝐷 matrices of 64-bit numbers through GC. The
run-time and memory usage for different values of 𝐷 are reported
in Table 1. ABY requires both more time and memory compared to
TinyGarble2 and Obliv-C. More importantly, its memory usage is
O
(
𝐷3) as opposed to O

(
𝐷2) for TinyGarble2 and Obliv-C. Beyond

a certain value of 𝐷 , it exhausts the entire available memory of the
system and is terminated by the OS. TinyGarble2 uses more mem-
ory compared to Obliv-C due to the more advanced OT extension
protocol which adds a constant overhead to the total memory usage.
However, it also makes TinyGarble2 faster than Obliv-C. The higher
run-time in Obliv-C is also an effect of run-time netlist generation
as opposed to compile-time netlist generation of TinyGarble2. In
practical applications involving more computation, the constant
overhead of OT extension becomes negligible, and TinyGarble2
becomes more memory-efficient compared to Obliv-C. An example
of such applications is presented next.

CNN Inference with LeNet-5. We implemented LeNet-5 [12] us-
ing the CNN library of TinyGarble2 to run inference on the MNIST
dataset with a pre-trained quantized model. We compare the per-
formance with only Obliv-C since ABY cannot handle such large

Table 1: Matrix multiplication through GC

Dim. 10×10 20×20 30×30 40×40
Time Mem. Time Mem. Time Mem. Time Mem.
sec MB sec MB sec MB sec MB

ABY 11.69 1.03E3 85.59 8.14E3 276.68 2.74E4 – –
Obliv-C 2.31 3.44 22.75 4.63 67.84 6.23 164.21 8.49
Obliv-C† 3.69 5.51 36.41 7.41 108.55 9.97 262.73 13.58
TinyGarble2 1.26 8.1 12.83 12.23 41.85 14.00 103.11 18.69
†adjustment of security parameter ^
The value used in Obliv-C (̂ = 80) is smaller than the current standard (̂ = 128)

Table 2: Inference on one image with LeNet through GC

Run-time in sec Peak-memory in MB

Obliv-C 1.88E+03 79.83
Obliv-C adjusted† 3.01E+03 127.73
TinyGarble2: 64-bits 6.55E+02 110.96
TinyGarble2: 32-bits 2.91E+02 72.75
TinyGarble2: variable 9.11E+01 45.83
†adjustment of security parameter ^ from 80 to 128

operations with GC. The required bit-widths of different layers of
the model vary from 16 to 24 for accuracy of 96%. Moreover, the
intermediate variables for computation of MACs require 64 bits.
Obliv-C supports 16, 32, and 64-bit integers. However, it does not
support operations involving different bit-widths. Therefore, while
implementing the CNN with Obliv-C we used 64-bit integers. With
TinyGarble2 we implemented three versions of the CNN: (i) all
variables are 64-bits, (ii) all variables are 32-bits except for the MAC
outputs which are 64-bits. (ii) the bit-widths of the input variables
of different layers set to the minimum requirements and that of
the MAC outputs set to 64 bits. Run-times and memory usages for
inference on one image are presented in Table 2. The table shows
that the three versions are respectively 4.6×, 10.3×, 33.1× faster
and 14%, 29%, 64% memory efficient compared to Obliv-C.

REFERENCES
[1] A. Yao, “How to generate and exchange secrets,” in Foundations of Computer

Science, 1986., 27th Annual Symposium on, 1986.
[2] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR gates and

applications,” in International Colloquium on Automata, Languages, and Program-
ming. Springer, 2008.

[3] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in Theory and
Applications of Cryptographic Techniques. Springer, 2015, pp. 220–250.

[4] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling from
a fixed-key blockcipher,” in S&P. IEEE, 2013.

[5] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar,
“TinyGarble: Highly compressed and scalable sequential garbled circuits,” in IEEE
S&P, 2015.

[6] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor, “Frigate: A validated,
extensible, and efficient compiler and interpreter for secure computation,” in
EuroS&P). IEEE, 2016, pp. 112–127.

[7] N. Büscher, M. Franz, A. Holzer, H. Veith, and S. Katzenbeisser, “On compiling
boolean circuits optimized for secure multi-party computation,” Formal Methods
in System Design, vol. 51, no. 2, pp. 308–331, 2017.

[8] B. Kreuter, A. Shelat, B. Mood, and K. Butler, “PCF: A portable circuit format for
scalable two-party secure computation.” in USENIX Security, 2013.

[9] D. Demmler, T. Schneider, and M. Zohner, “ABY-a framework for efficient mixed-
protocol secure two-party computation.” in NDSS. The Internet Society, 2015.

[10] S. Zahur and D. Evans, “Obliv-C: A language for extensible data-oblivious com-
putation.” IACR Cryptology ePrint Archive, vol. 2015, p. 1153, 2015.

[11] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient MultiParty com-
putation toolkit,” https://github.com/emp-toolkit, 2016.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, 1998.

[13] P. Plonski, “keras2cpp,” https://github.com/pplonski/keras2cpp, 2020.
[14] N. Mariella, “From keras to c,” https://github.com/aljabr0/from-keras-to-c, 2019.

https://github.com/emp-toolkit
https://github.com/pplonski/keras2cpp
https://github.com/aljabr0/from-keras-to-c

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Description of the Framework
	2.1 GC Back-end
	2.2 Programming Interface

	3 Evaluation
	References

