Chapter 1
FPGA-oriented Security

Mehrdad Majzoobif, Farinaz Koushanfarf, Miodrag Potkonjak?

Abstract Reconfigurable hardware is by far the most dominant implemen-
tation platform in terms of the number of designs per year. During the past
decade, security has emerged as a premier design metrics with an ever increas-
ing scope. Our objective is to identify and survey the most important issues
related to FPGA security. Instead of insisting on comprehensiveness, we fo-
cus on a number of techniques that have the highest potential for conceptual
breakthroughs or for the practical widespread adoption. Our emphasis is on
security primitives (PUFs and TRNGs), analysis of potential vulnerabilities
of FPGA synthesis flow, digital rights management, and FPGA-based applied
algorithmic cryptography. We also discuss the most popular and a selection of
recent research directions related to FPGA-based security platforms. Specif-
ically, we identify and discuss a number of classical and emerging exciting
FPGA-based security research and development directions.

1.1 Introduction

The last decade and in the particular the last year were important for FPGAs
and even more for FPGA security. For example, for the first time after a
decade of no increase, the FPGA revenues grew by more than one third to
surpass the $4 B level. Maybe even more importantly, the number of new
designs based on FPGA was 110,000. The colossal size of this number can be
best seen from the fact that only 2,500 ASIC designs were initiated. At the
same time, FPGA has been recognized as an exceptionally efficient platform
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due to its flexibility compared to ASICs , and due to its efficiency compared
to implementations based on the general purpose microprocessors.

The FPGA security scope is very broad and ranges from technological and
architectural issues to applications, from FPGA vulnerability to new types
of security primitives and protocols, from relative limitations of FPGA-based
systems in terms of security to their strategic and quantitative advantages,
and from digital right management (DRM) issues to trusted remote execu-
tion. Our objective is to cover various key aspects of this broad space.

Recently several relevant FPGA security surveys have been published,
including [1]. We believe that our survey is complementary to the available
summaries in the field while it is unique both in terms of the scope as well as
the depth of coverage of key issues. In addition, we have a strong emphasis
on hardware-based security.

The remainder of the chapter is organized as follows. The next section
outlines the steps of the reconfigurable platform’s synthesis flow and its vul-
nerabilities. Section 1.3 discusses the implementation of hardware crypto-
graphic modules on FPGAs and addresses the relevant attacks. The security
primitives that can be used as universal mechanisms for many different pro-
tection protocols are discussed in Section 1.4. Important primitives such as
physical unclonable functions and true random number generation (for the
reconfigurable platform) are presented in this section. In Section 1.5 we out-
line the most challenging directions in the field and early results along those
directions. The chapter is concluded in Section 1.6.

1.2 FPGA Synthesis Flow and Its Vulnerabilities

Efficient design and field usage of FPGAs is enabled by sophisticated
computer-aided design (CAD) tools that have matured over the years. To
make their devices accessible and easy to use, the FPGA vendors and third
party providers contribute a full set of programs and tools that allow au-
tomatic synthesis and compilation from a high level hardware description
language such as Verilog or VHDL to a string of bits, commonly termed a
bitstream.

The FPGA Synthesis flow is shown in Figure 1.1. The input to the syn-
thesis flow is the hardware specification, design constraints, and sometimes
some FPGA-specific commands. The set of inputs is symbolically denoted
by HDL (hardware Description Language) on the flow figure but it contains
the aforementioned knowledge of design constraints and specifications. The
design constraints include the timing bounds between the input and output
pads, between the inputs and the registers, and between the registers and
the outputs. The designer may also specify additional details such as mutli-
cycle paths. Another set of possible constraints are location-dependent where
a designer may limit the implementation of a specific part of the design to
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Fig. 1.1 The FPGA synthesis flow.

a target part of the device to achieve a certain design objective or for an
optimization reason. The FPGA specific commands specify the selection of
the underlying FPGA device that also impacts the design metrics including
the timing, power, and cost. Even the same manufacturer often offers a range
of devices with differing characteristics that has to be carefully selected for
the application at hand.

Although there has been a trend toward using higher level abstraction
models such as SystemC and behavioral synthesis tools, they are yet to be
widely adopted. The legacy IPs and contemporary designs that are used
across a spectrum of applications in industrial, commercial, and defense sec-
tors are predominantly designed at the RTL level. A relatively small number
of designs are developed using higher level behavioral languages including but
not limited to general purpose languages such as C or SystemC, or domain-
specific languages such as Matlab or Simulink. The behavioral-level specifi-
cations are not cycle accurate and generally a high level synthesis tool is used
for converting the description to HDL level.

Consider the steps of the design flow as shown in Figure 1.1 after the
HDL input, design constraints, and the specifications are provided. First, a
set of analysis at the register-transfer level (RTL) takes place where the con-
trol, memory, and the data path elements are considered. Second, a set of
pre-synthesis optimization separately treats each of the identified elements.
For example, the datapath optimizations, the control path optimizations in-
cluding the FSM optimization and retiming, and combinational logic opti-
mizations. Third, the design passes through technology mapping and more
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detailed optimizations. The control logic is mapped to the basic logic ele-
ments. The datapath logic is mapped mostly to dedicated on-chip modules
including the multipliers, adders with dedicated carry chains, and embedded
memory.

Forth, the location of each element in the floorplan of the mapped netlist
is determined. The basic logic elements maybe clustered into logic blocks be-
fore the floorplanning. Fifth, the placement is originally done according to
the floorplan which is subject to a number of optimization steps. The opti-
mizations are incrementally done post interconnect placement where a bet-
ter timing profile becomes available. The optimizations at this stage include
rewiring, restructuring, and duplication after which typically another round
of incremental placement takes place. Sixth, the routing is performed where
the signal paths are connected using the available on-chip programmable
routing structure. Lastly, the results of mapping, placements, and routing
are encoded into a bitstream that can be used to configure the logic and
wires to implement the target design. A comprehensive review of the FPGA
design automation can be found in [2].

1.2.1 Vulnerabilities

There is a number of possible attacks that can be envisioned on the design
flow and the design artifact described earlier in the section. We now briefly
mention the plausible adversarial acts and the common generic countermea-
sures taken against the vulnerabilities. Note that the emphasis of this section
is on the attacks that are specific to FPGAs; there is a number of vulnera-
bilities that apply to most implementations of cryptographic functions, such
as system-level attacks on the protocols. In the interest of brevity and con-
ciseness, we focus our discussions to the FPGA domain. Before we delve into
discussion, we make a distinction between three types of IPs: soft, firm, and
hard IPs. According to the standard definitions since an IP in a hardware
description language is still in a program format, is considered to be a “soft
IP”. The phrase “firm IP ” is used to refer to an IP that is still pre-synthesis
but has a fixed RTL level description. A “Hard IP” refers to the IP that is
in form of a full layout post synthesis, placement, and routing, that is ready
to be implemented (a bitstream in case of an FPGA) [3].

1.2.1.1 HDL-Level IP Theft and Tampering

Attacks at the HDL level include stealing the 1P, inserting malware in an IP
to disrupt its operation, or inserting malware/spyware to extract information
and data out of the IP.
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The common methods for addressing the attacks against stealing of the
soft IP cores include watermarking of the soft IP, license agreement, and en-
cryption of the cores that are transferred between parties. Since the soft IP by
itself is just a datafile, any other method that is applied to transferring and
storage of data files can be used for protecting the transfer and safeguard-
ing of this kind of information. The Trojans/spyware inserted at the HDL
level code are either trivial or very hard to detect, based on the availability
of designer’s information and trust in the designer. It is worth noting that
the designer inserted Trojans are very hard to detect in very complex codes,
and even the best verification tools may not be able to detect the additional
states and functions added by a designer [4, 5]. Often times, the designer
does not provide the full specification of the IPs, and therefore, there may
not be a basis for comparing the soft IP at hand to a Trojan-free (golden)
model. If the designer is trusted, standard cryptographic protocols for in-
tegrity checking (e.g., digital signatures) can be applied for ensuring that the
original designer’s code is not modified. In the final section, we discuss the
recent efforts for creation of provably trusted IP.

If the user of an HDL code acquires the program from a certified vendor
that has the certificates and can show integrity proofs, there is no need to
worry about the HDL-level Trojans. Unfortunately, such proofs and certifi-
cates are not always available for third-party IP and reuse scenarios. There-
fore, the soft IP trust is a standing complex problem that is not necessarily
specific to FPGA; it is a universal problem that threatens almost all soft IP
cores that are not from trusted sources or certified vendors.

Aside from classic encryption [6, 7], another set of methods for thwarting
the soft IP theft and piracy attacks is based on watermarking [3]. Water-
marking hides a hard to forge or remove digital signature in the IP, such that
the owner of the datafile can be later recognized based on his/her signature
[8]. Methods applied to watermarking during pre- or during synthesis can be
directly integrated within the FPGA synthesis tools. Generally speaking, a
watermark may be applied at the HDL level, at the netlist level, or at the
bitstream level. Depending on the insertion point of the watermark, it can
provide a proof of ownership for the legitimate author. For example, an HDL
level watermark may be inserted by the core designer, while a bitstream level
watermark is likely to be embedded by the tool vendor who is able to easily
integrate the watermark within the synthesis flow.

The work in [9] provided the first known methods for FPGA bitstream
watermarking and fingerprinting. Fingerprint is a mark that not only identi-
fies the design owner, but also is able to identify the instance of the design.
In the FPGA case it can identify the specific device where the design is em-
bedded. Note that the watermark and fingerprint have to satisfy a number of
properties including difficulty of forging, difficulty of tampering or removal,
uniqueness of the signature sequence and ease of evaluation. A detailed dis-
cussion of hardware IP and FPGA core watermarking and fingerprinting is
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outside the scope of this chapter. We refer the interested readers to excellent
comprehensive sources on the topic [10, 3, 1] and Chapter 9 of this book.

1.2.1.2 Synthesis-Level IP Theft and Tampering

By synthesis level IP theft we mean all the stages between the RTL level
descriptions to routing (Steps 1-7 in Figure 1.1). Both firm and hard IPs
may also be a subject of piracy and malware insertion attacks. A suit of
methods based on watermarking can provide ownership proof, but would not
be enough to actively deter from piracy. A class of methods that is intended
to functionally deter firm IP theft is called active hardware metering [11,
12, 13]. Active hardware metering integrated the behavioral description of
a design with the unclonable device-specific signatures such that the IP is
only tied to one IC. Transferring the IP to another IC would render the
device nonfunctional. For a comprehensive discussion on metering, we refer
the interested readers to Chapter 8 of this book.

Another set of IP protection methods based on the use of PUFs attempt
at using the inherent and unclonable physical disorders of the device for gen-
erating a secret key based on the unclonable device variations. Thorough dis-
cussion of IP control based on the PUF signatures is provided in Chapter 7 of
this book. A number of defense studies and industrial reports have expressed
concerns about the possibility of insertion of hardware malware during the
design. Following the suggestion by a Defense Science Board Report [14]
and the followup proposal solicitations by DARPA [15], the common trust
model in the field became trusted designer (system integrator), untrusted
optimization and synthesis tools, untrusted third party cores, and untrusted
components-off-the-shelf. The common assumption is that the devices can be
trustfully tested for functionality and to ensure they carry on the intended
computations, and it can be tested for Trojan detection. A full discussion of
Trojan models, detection, and isolation is provided in Chapters 15, 16, and
17 of this book.

1.2.1.3 Bitstream-Level Theft and Tampering

The circuit configuration data is encoded into the bitstream. In the widely
used SRAM FPGA technology, because of the underlying volatile memory, at
each power up incident the device should read and load the bitstream from
an external non-volatile source, typically a Flash device or an EEPROM [6].
The uploaded bitstream typically goes under the functional and parametric
tests before being shipped to the users. From this point on, the only active
interaction between the provider and the user is via occasional updates by
field reconfiguration that can be remotely performed [16]. The common threat
model in this area is to assume that the user maybe untrusted [15].
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The conventional bitstream uploading methods are independent of the
FPGA device, as long as the device is from a certain family and of the same
size. Therefore, an adversary could launch an attack targeted at tapping the
bitstream during the upload phase and later cloning the stream on other
FPGAs. Cloning has been shown to be practically feasible and inexpensive
to do for skillful engineers with conventional devices such as probes and logic
analyzers. Not only cloning and overbuilding harms the revenue of the original
design company, but also the counterfeit devices are often of lower quality
and could cause system reliability problems.

Device counterfeiting may also be done at the hardware level, by misla-
beling the devices. A common attack is to mislabel a lower quality or an
earlier generation device to the current generation. The two generations can
be distinguished by structural tests, but such tests are difficult to conduct
infield and most customers cannot afford the time and expenses of the test-
ing equipment. The chips are likely indistinguishable based on the functional
tests since the input/output specifications (and not performance) of the two
chips would be similar. The exact statistics for the percentage of counterfeit
components is not exactly known; a few years ago, the Alliance for Gray Mar-
ket and Counterfeit Abatement (AGMA) estimated that about 10% of the
electronic products on the market are counterfeit [17]. It was also reported
that the percentage of counterfeit components are growing, emerging as a
serious threat to the Integrated Circuits and electronics market.

Another potential form of tampering with the bitstream is reverse-
engineering. The detailed format of the bitstream for a specific FPGA family
is typically considered proprietary to the vendor. Even though the bitstream
generation or device configuration details are not commonly published and
the complexity of the designs often deters a full reversal of the bitstream, the
bitstream alone does not provide any provable security. In some sense, vendor
specific bitstream generation only provides a level of obscurity, that is not
sufficient for providing protection against reverse-engineering. Given enough
time and learning algorithms, bitstream reverse engineering is computation-
ally feasible. Therefore, hiding data and information in the bitstream (i.e.,
security by obscurity) does not yield a strong protection guarantee.

Full bitstream reversal would expose the IP to unintended parities. Even
though the authors are not aware of any tool or method that would offer a full
reversal of FPGA bitstream at the time of writing this article, partial reversals
of FPGA bitstream were reported earlier. As an example, about 20 years ago,
a startup Clear Logic used Altera’s bitstreams to produce smaller and cheaper
laser programmed devices; however, they had to halt their operations because
of a successful lawsuit by Altera [1, 18, 19].

Partial decoding of the bitstream data is also possible by studying the
RAM and LUT content [20, 21, 22]. An example of how this can be done is
reported by Ulogic project that attempted an iterative process that manip-
ulates the available files in the Xilinx Design Language (XDL) format and
partial conversion to bitstream. It is also possible to perform a read-back func-
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tion, which is the process of retrieving a snapshot of an operating FPGA’s
present state. Note that this snapshot just gives the information about config-
uration and states in one moment and is different from the original bitstream.
However, this mechanism, if repeatedly applied, provides an effective char-
acterization tool for testing, verification, and also partial reverse-engineering

[1].

1.3 FPGA-based Applied Cryptography

With the proliferation of personal computing, mobile devices, and Internet,
and with the booming of the global information and knowledge, storing and
processing of digital functions and data increasingly demands new comput-
ing devices. Since many of these devices and services are integrated within
our daily lives and our personal data, it is not surprising that protection and
security are needed in several key applications, including Internet, secure
email, secure wireless access, data centers, electronic financial transactions,
and grid computing. As a result, several National and International orga-
nizations have been working on developing standards for protecting these
applications, such as Advances Encryption Standard (AES), Elliptic Curve
Cryptography (ECC) and the recent NIST efforts for standardizing the next
generation hash functions [23].

Processing of cryptographic algorithms often takes a large amount of sys-
tem processing time and resources especially for cases where a large amount of
data and information is involved, or where the platform is power constrained
to satisfy portability and mobility [23]. Furthermore, many applications re-
quire real-time secure processing of data which places additional constraints
on the system and processor timing. As a result, in many real world scenar-
ios, the hardware implementation is preferred over software. The comparable
high throughput and power efficiency of hardcoded modules compared to
their programmable counterparts makes the hardware the natural choice in
such scenarios.

It is worth noting that while a software implementation is not the most per-
formance efficient option, it is inexpensive, easy to debug, and induces a short
time to market. VLSI hardware solutions provide the high throughput and
power efficiency, but they are expensive, they have a long development cycle,
and they do not provide much flexibility for design alterations. the reconfig-
urable hardware has become the platform of choice for many cryptographic
modules and security processing tasks. This is because of FPGA robustness,
comparative low-cost, and shorter time-to-market compared with the ASICs
solutions, simultaneously combined with reconfigurable device throughput
and power advantages compared with the software and general purpose com-
puting solutions.
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There are a number of other reasons for selecting reconfigurable solutions
for cryptography and security applications, including: (i) the effectiveness
of the FPGA’s cell structure for implementing bit-wise logical operations
that are needed in many cryptographic algorithms; (ii) the large amount
of memory blocks built-in the state-of-the-art FPGA devices that ease the
implementation of memory intensive substitution operation required by the
standard encryption algorithms; (iii) the reconfigurable platforms that not
only eases interfacing of the security cores to other cores on the same device
by allowing reprogrammability, but also provides a flexible solution that can
be integrated into a larger platform with other components.

1.3.1 Vulnerabilities

The standard cryptographic algorithms are designed to be secure against al-
gorithmic attacks that target the steps and flows of the security procedure.
Unfortunately, while conventional cryptography methods have been resilient
to attacks on the security algorithm, they have been demonstrated to be
vulnerable to attacks that target some aspects of their implementation, in-
cluding the side-channels, fault injection, and physical attacks. The security
cores programmed as softcore, reconfigured on FPGA, or realized in ASIC
have all been target of implementation-level attacks. In the remainder of this
subsection, we briefly mention the attacks and provide references for further
reading on the subject.

1.3.1.1 Side-Channel Attacks

Once a reconfigurable device is programmed to function as a certain circuit,
it is possible to extract external measurable manifestations of the incident
computations performed in the circuit. The term side-channel is used to re-
fer to quantities that can be measured from the circuit in operation; those
measured external quantities are correlated with the circuit computations,
and therefore, could provide additional (side-channel) information about the
internal circuit values. Examples of common side-channels used for attacking
the secure hardware cores include power analysis, timing analysis, and elec-
tromagnetic emanation analysis. In all cases, multiple measurements of the
side-channel for different inputs and in different conditions are needed. An
important performance measure for the side-channel attacks is the amount
of useful information one can get from each round of attack, and the number
of required inputs/outputs to successfully accomplish the attack’s objectives.
Power analysis The CMOS gates consume two types of power: static and
dynamic. The static (leakage) is the power leaked away because of the de-
vice imperfections. For each gate, the leakage power is a function of the
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gate-type and its incident input vector. The dynamic (switching) power is
incurred when the state of one gate transitions from one value to the next.
The dynamic power for each gate is also a function of the gate type and the
transition input incident to the gate. Both the static and dynamic power can
be externally measured by monitoring the current drawn from the circuit’s
supply pins.

Generic dynamic power measurement results on the widely used SRAM-
based FPGAs had demonstrated that a significant portion of the transitional
power on those devices is due to the interconnect routing, while the logic
switching and clock transitions composed the remaining parts of dynamic
power consumed. The leakage power for the logic was not a significant portion
in earlier technologies, but the aggressive miniaturization of transistors is
drastically increasing the static power significance in newer technologies [24].
The early work in [25] demonstrated that both simple power analysis (SPA)
and differential power analysis (DPA) could reveal information about the
secret values and operations performed during the execution of cryptographic
operations on FPGA. In SPA, the patterns in the power traces incident to
individual inputs are processed. In DPA, the differences between the power
trace patterns of two or more input sets are processed. A large body of
work on attacking the chips based on SPA and DPA has followed, including
[26, 27, 28, 29, 30, 31].

Simultaneously, many researchers are working on developing countermea-
sures against the power analysis attacks [32, 33]. It was shown that if the
core is not run in isolation and if there are other sources or cores in the cir-
cuit contributing to the power, or even when the core is run in parallel, it
is harder to distinguish the contributions of each component. In general, the
power analysis attack can be thwarted if the functions that depend on the
secret values and information have the same power signature as other op-
erations. Following this principle, two effective countermeasures against the
power analysis attacks are: (i) randomization so that the impact of one com-
putation cannot be easily distinguished among the many operations, and (ii)
equalization such that all computations consume the same amount of power.
For each implementation, both methods incur undesirable power and timing
overheads which needs to be mitigated while there is also a need to provide
proofs for efficiently obfuscating the secret values. Both overhead mitigation
and proof of hiding (randomness) are active research topics.

Timing analysis The gate timing is also a function of its type and internal
values. It was shown that by careful path timing signature measurements,
one could be able to reveal the secret values that are processed by the gates
[34, 35]. The countermeasures for this type of attack are similar in nature to
power analysis, and consist of timing equalization and timing randomization.
Both methods may incur additional overhead and should be carefully studied
and analyzed.

Electromagnetic emanation analysis The movement of electrons dur-
ing the execution of computations would generate electromagnetic field that
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can be externally measured by placing antennas outside the chip. Electro-
magnetic emanation analysis (EMA) was shown to be able to successfully
predict the secret values and computations done while executing the security
functions [36, 37, 38, 39, 40, 41]. Such attacks were also reported for FP-
GAs. Most countermeasures against this attack are based on disturbing the
EM field by changing the device properties or by adding layers. These meth-
ods cannot be directly applied to conventional reconfigurable hardware. The
proposed methods for thwarting this attack on FPGA rely on distributing
the computations across the FPGA area to avoid localizing the events. Last
but not least, we note that it was demonstrated that by combining multiple
side-channels, one may be able to launch a much stronger attack [42, 43].

1.3.1.2 Fault Injection Attacks

Several forms of operational faults can be induced in circuits performing the
secure processing. A fault maybe generated by a number of methods, includ-
ing controlling of the voltage, inducing an electromagnetic field close to the
device, or exposing the device to radiations. If carefully injected, such faults
can reveal aspects of the secret. We briefly mention some of the important
ongoing work in this area that are also applicable to FPGAs.

Glitch analysis The objective of such analysis is to force a device to execute
faulty operation(s), or to leave the device in a state that can lead to leaking
of secret information. The common techniques for induction of glitch include
changing the external clock, and altering the supply voltage. Such attacks
were shown to be successful on microcontrollers [44], and if not carefully
considered, they can be adopted for FPGA and ASIC implementations. An
effective countermeasure against this attack is to ensure that all the states
are properly defined in models and in implementation, and to verify that
the glitches cannot alter the execution order of the events. Another class of
countermeasures is to avoid fault injection by implementing tamper detection
mechanisms that would report (or prevent, or even correct) altering of clock
pulses or voltage levels.

Ionizing radiation analysis Radiation-induced faults have shown to cause
single-event upsets in the CMOS circuits [45, 46, 47]. Such single (or multiple)
event upsets may cause transient delay faults, or may cause the memory
bits to flip (known as soft errors). Since the FPGAs are SRAM-based, such
memory flips would alter the device’s functionality. Ionizing radiation is a
way to induce the faults and hence, change the memory content. If targeted
accurately, it could be used for changing the secret, or to trace back a secret.
The complexity of the integrated circuits and small size of the individual
components renders this attack very difficult. Many methods for detection
and removal of soft-errors are in development which could additionally deter
this type of attacks.
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1.3.1.3 Physical Attacks

For an attacker with access to costly and high precision measurement and
testing equipment, it is possible to physically probe or alter the device so
that the secret information can be extracted [48]. There are at least two ma-
jor hurdles in performing such an invasive probing. First, very costly higher
precision Focused Ion Beam (FIB) measurement equipments are needed to
precisely target the specific parts of the chip [49]. Second, the device has to
be depackaged and the passivation layers that protect the metal intercon-
nects from oxidation needs to be removed. Depackaging and delayering is
challenging for certain class of package technology and interconnect deposi-
tion methods. Miniaturization of CMOS to nanometer scales and the added
layers of interconnect are rendering this attack extremely difficult for newer
technology nodes.

There is also a possibility of performing a semi-invasive physical attack.
These attacks also need the device packaging to be removed, but then they
adopt techniques from thermal analysis, imaging, and other side-channel
studies to conclude the properties of the chip [48]. Unlike the invasive at-
tacks that need very costly equipments mainly owned by governments or
mega-companies, the semi-invasive attacks are much less costly and more
accessible to general public. It is worth noting that both invasive and semi-
invasive attacks pose real threats to electronics and new methods for thwart-
ing and circumventing these attacks are under research and development.

1.4 FPGA Hardware Security Primitives

Security on reconfigurable platforms has emerged as a challenging security
paradigm in system design. Systems implemented on FPGAs like any other
systems could require secure operations and communications. However, as
we discussed in the previous section, on reconfigurable systems in addition
to concerns regarding the compromise of data confidentiality and integrity,
the system itself can be subject to malicious architectural alterations to the
hardware and to design theft during the operation or even before the design is
loaded. As a result, it is critical to establish security of configuration data and
maintain design integrity against malicious changes. Several existing solutions
govern different trade-offs between security and the market requirements on
cost and performance. In this section, we discuss a number of mechanisms
and protocols that can be used as the underlying primitives for many FPGA
security protocols and modules.

Every FPGA relies on certain programming technology that enables the
control and configuration of programmable switches inside the FPGA which
in turn program the functionality of the underlying logic. Historically used
programming technologies include EPROM [50], EEPROM [51, 52|, flash [53],
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static memory (SRAM) [54], anti-fuse [55, 56]. Among these technologies,
mainly the flash memory, the static memory, and the anti-fuse are used in
modern FPGA devices.

The dominant family of FPGAs is realized using volatile SRAM-based
memories. Upon power-up, the FPGA is configured by loading and storing
the desired functionality inside the SRAM memory cells. The SRAM cell
values define the logic functions by means of initializing a set of truth tables
or lookup tables (LUT) and by enabling/disabling connections through switch
matrices. Once the FPGA is powered off, the content of the SRAM cells is
lost. In other words, the SRAM-based FPGAs must be constantly powered to
retain the configured functionality and they need to be reprogrammed every
time the power is lost.

The lack of non-volatile embedded storage mechanisms on SRAM-based
FPGAs thwarts permanent storage of secret keys which is required to es-
tablish a secure channel for sending the configuration data. Without the use
of encryption, the configuration bitstream has to be communicated to the
FPGA at start-up through a non-secure channel. This is specially important
in applications in which systems and IPs must be protected against piracy
or unauthorized read-out as well as against malicious changes to tweak the
system functionality.

Integration of non-volatile memory on SRAM-based FPGAs is costly be-
cause integration of state-of-the-art non-volatile technologies on standard
CMOS process requires more complicated fabrication steps and wafer pro-
cessing. As a result, non-volatile storage is often not available on lower-end
devices [6]. In order to store keys on SRAM-based FPGA, an external battery
is typically attached to the device to constantly provide energy to the SRAM
cells containing the secret key (s). The concept is shown in Figure 1.2.

SRAM FPGA

Encrypted -
Config. DeEcryptlon
Data ngine

Boot
PROM/Flash

Secret Key
L

External
Battery

Fig. 1.2 Embedded key storage on SRAM-based FPGAs.

Antifuse technology uses a layer of amorphous silicon in the via, which
causes an isolation between the metal layers [57]. In the un-programmed state,
the amorphous silicon has very high resistance, thus isolating the metal lay-
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ers. After programming voltage is applied, the amorphous silicon resistance
drops significantly, creating a metal to metal interconnect. Compared to other
technologies and even ASICs, the antifuse FPGAs enjoys the highest level of
security, because of the following reasons: (i) Since the FPGA can be config-
ured once and shipped by the system designer to the end-user, there’s no need
to transfer the configuration over an insecure channel. (ii) The fabric of the
FPGA (i.e., the interconnection, routing and placement of the programmable
elements) reveals no information about the design (in contrast with ASICs).
This is due to the fact that all the design data is internal to the device and it
is stored at programmable links. Invasive reverse engineering methods such
as etching that take away the surface will only reveal the top of the vias
and not the state of the amorphous antifuse silicon; thus, such techniques do
not expose much information on the chip functionality. Non-invasive attacks
that use advanced imaging and probing techniques such as SEM theoretically
might have a chance to monitor the device. The imaging technique attempt
to determined the state of antifuse links by looking for any deformations in
the amorphous silicon vias. With millions of links on each device, it is still
not an easy task to scan every single link of the FPGA. For example, Actel’s
AX2000 antifuse FPGA contains approximately 53 million antifuse elements.

Since anti-fuse FPGAs can only be programmed once, it takes away a great
advantage of in-field FPGA reconfigurability feature. Table 1.1 summarizes
the properties of different programming technologies.

SRAM Flash Anti-fuse
Volatile? Yes Yes No
Reprogrammable? Yes Yes No
Area High Moderate Low
Power High Low Low
Manufacturing Process|Standard CMOS|Flash Process|Special development
Programming yield? 100% 100% > 90%
Security Low Moderate High

Table 1.1 Comparison of current programmable technologies.

In the rest of this section, we focus our attention on SRAM FPGAs since
they currently have the largest market share in the reconfigurable hardware
domain.

1.4.1 Physical Unclonable Function (PUF)

Physical Unclonable Functions (PUFs) provide an alternative mechanism for
key storage on SRAM-based FPGAs. PUFs overcome the inherent vulner-
ability of key storage on non-volatile memories against various attacks as
well as the extra technology cost overhead of nonvolatile memory integra-
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tion onto SRAM-based devices. PUFs use the inherent and embedded nano-
and micro-scale randomness in silicon device physics to establish and de-
fine a secret which is physically tied to the hardware. The randomness is
introduced by the existing uncertainty and lack of precise control during the
fabrication process that lead to variations in device dimensions, doping, and
material quality. The variation in device physics transfers itself into variations
in electrical properties, such as transistor drive current, threshold voltages,
capacitance and inductance parasitics. Such variations are unique for each
IC and device on each IC. PUFs typically accepts a set of input challenges
and map them to a set of output responses. The mapping is a function of the
unique device-dependent characteristics. Therefore, the responses two PUFs
on two different chips produce to the same set of inputs are different. A com-
prehensive review of PUF concept and literature is provided in Chapter 7 of
this book. In the remainder of this chapter, we focus on the work covering the
FPGA PUFs. Our discussions are complementary to the material presented
in the earlier chapter.

A common way to build a PUF in both ASICs and FPGAs is by measuring,
comparing, and quantifying the propagation delays across the logic elements
and interconnects. The variations in delays appears in forms of clock skews on
clock network, jitter noise on the clock, variations in setup and hold times of
flipflops, and the propagation path delays through the combinational logics.

Path-swapping Arbiter
switch J—_’ (D-flipflop)

1, s T D QE

| | |

Co=0/1 C=0/1 C,=0/1

Fig. 1.3 Arbiter-based PUF introduced in [58].

The work in [58] was the first to exploit the unique and unclonable delay
variations of silicon devices for PUF formation. The PUF, known as arbiter
PUF or delay-based PUF, is shown in Figure 1.3. The PUF uses the analog
differences between the delays of two parallel paths that are identical in
design and prior to fabrication, but the physical device imperfections make
the delays different. Beginning the operations, a rising transition is exert at
the PUF input producing a racing condition on the parallel paths. An arbiter
at the end of the paths generates binary responses based on the signal arrival
times. To enable multiple path combinations and generate an exponential
number of challenge/response pairs, the paths are divided into multiple sub-
paths interleaved by a set of path swapping switches. The challenges to the
PUF control the switches and, therefore, how the varying paths are formed.
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select select
(a) Asymmetric (b) Symmetric non
path-swapping  path-swapping switch

switch

Fig. 1.4 Two implementation of path selecting switches.

A successful implementation of this type of PUF was demonstrated on
ASICs platforms [59]. It is critical to note that the differences in delays should
be solely coming from manufacturing variation and not from design-induced
biases. To obtain exact symmetry on the signal paths and to equalize the
nominal delays, careful and precise custom layout with manual placement and
routing is required for implementation on ASICs. The lack of a fine control
over arbitrary placement and routing on FPGA has resulted in difficulty in
balancing the nominal delays on the racing paths within the arbiter-based
PUF. Implementation on FPGA was troubled because of the constraints in
routing and placement imposed by the rigid fabric of the FPGA as studied
in [60, 61].

However, the recent work in [62] has addressed this problem by demon-
strating a working implementation of the arbiter-based PUF on FPGA that
utilizes a non-swapping symmetric switch structure as well as a precise pro-
grammable delay line (PDL) component to cancel out the systematic delay
biases. The path-swapping switch previously used in the arbiter-based PUF
of Figure 1.3 can be implemented by two multiplexers (MUX) and one in-
verter as depicted in Figure 1.4 (b). However, due to cross wiring from the
lower half to the upper half (diagonal routing), maintaining symmetry in
path lengths for this type of switches is extremely difficult. To avoid diagonal
routings, a non-path swapping switch with a similar structure was introduced
in [62] which uses two MUXes as shown in Figure 1.4 (a). As it can be seen on
the figure, after applying the method the resulting routings and path lengths
are symmetric and identical across the symmetry axis (drawn by the dashed
line).

Despite using a symmetric switch structure, systematic biases in delay
would still exist due to the asymmetries in routing from the last switch to
the arbiter flipflop and/or before the first switch. To eliminate such delay
skews, a highly accurate programmable delay line (PDL) was introduced in
[62]. The PDL was implemented by a single LUT and can achieve a reso-
lution of better than 1 picosecond. The PDL works by slightly increment-
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Fig. 1.5 (a) LUT-based programmable delay line (b) symmetric switch structure

ing/decrementing the signal propagation path length inside the LUT. Figure
1.5 shows an example PDL implemented by a three-input LUT. The LUT
implements an inverter logic where the output of the LUT reflects negation
of A;. However, the inputs As and Aj functionally serve as don’t-cares while
they can change the signal prorogation path inside the LUT and cause slight
in the propagation delay.

In contrast to the arbiter-based PUF where racing condition is formed
by signal propagation through two independent paths, the FPGA PUF in-
troduced in [63, 64] which referred to as time-bounded PUF, compares the
signal propagation speed through a combinational logic against the system
clock speed. The time-bounded PUF uses the standard at-speed delay test
circuit (delay characterization circuit) shown in Figure 1.6 (a). The at-speed
delay test circuit consists of one launch, sample, and capture flipflop. At the
rising edge of the clock, the launch flipflop sends a low-to-high signal through
the circuit under test (CUT). At the falling edge of the clock the output of
the CUT is sampled by the sample flipflop. The steady state output of the
CUT is then compared with the sampled value by an XOR logic. If discrep-
ancies exist, it means that the output was sampled before the signal had
arrived at the output of CUT. This condition is referred to as timing error.
By sweeping the clock frequency in a linear fashion, one can locate the transi-
tion point from error free zone to full error zone. The center of the transition
corresponds to the delay of CUT.

If the time difference between the sampling time and the signal arrival
time is smaller than the setup and hold time of the sample flipflop, then
sample flipflop produces non-deterministic outputs. It was shown in [63, 65]
the probability of sampling the correct value in this case is a monotonically
increasing function of the time difference between the signal arrival time and
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the sample time. This is depicted in Figure 1.6 (b,c). To estimate the center
of this smooth transition curve, statistics on the observed error need to be
gathered.

A careful investigation of the characterization circuit reveals that the ob-
servability of timing errors go through periodic phases. The measured prob-
ability of timing error as a function of half clock period (T/2) on Virtex 5
FPGA is illustrated in Figure 1.7. The two consecutive transitions from 0 to
50% and 50% to 0 (and vise versa) are formed by the differences in propaga-
tion delays in rising edge and falling edge signals. The measured probability
is the net effect of both transitions. The center and slope of each transition
point are unique to each circuit on different FPGAs.

Launch Sample Capture
Flip Flop Flip Flop Flip Flop
Circuit- ‘
Clock under-
test
«—T—> ts@’
|l

Fig. 1.6 (a) Delay characterization circuit based on at-speed delay testing mechanism (b)
sampling signals with different arrival times (c) probability of the flipflop output=1.
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Fig. 1.7 (a) Probability of observing timing error for rising/falling edge transition and
both transitions as a function of half clock period (b) Measured probability of transition
as a function of half clock period on Virtex 5 FPGAs.

The extracted absolute delay parameters are sensitive to changes in envi-
ronmental variations. In order to obtain more resilient responses and better
signatures against such fluctuations, a method to perform linear calibration
of the clock frequency according to the current temperature is introduced in
[64]. The operating temperature and voltage are obtained by querying the
built-in FPGA sensors, and calibration is performed accordingly on the clock
frequency. In addition to frequency calibration, a differential structure is fur-
ther proposed that cancels out the common effect of environmental variations
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on delays as shown in Figure 1.8 (a). The differential circuit consists of two
at-speed delay test circuit (Figure 1.6) whose outputs are tied to an XOR
logic. Since the absolute delays increase/decrease, extracting shift invariant
parameters such as the distance between the centers of transition regions
(width), or the area under the curve would result in more robust signatures.
The circuit in Figure 1.8 (a) measures the area under the XOR probability
curve using Riemann sum approximation. As it can be observed on the fig-
ure, the area under the measured curves stays the same for low and normal
operating temperatures.

Normal Condition
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Fig. 1.8 Extracting shift invariant signatures.

Another family of PUFs amenable to implementation on digital platforms
and in particular FPGAs, is based on ring oscillators (RO-PUF). A ring
oscillator is composed of an odd number of inverters forming a chain. Due to
variations in delays of comprising logic components and interconnects, each
ring oscillates at a slightly different frequency. The RO-PUF measures and
compares the unique frequency of oscillation within a set of ring oscillators.
A typical structure of RO-PUF is shown in Figure 1.4.1 (a). Most of the
work around RO-PUFs is focused on post processing techniques, selection,
quantization and comparison mechanisms to extract digital responses while
achieving robustness of responses and high response entropy.

One of the early papers to consider and study ring oscillators for digi-
tal secret generation is [66]. The work proposes a l-out-of-k mask selection
scheme to enhance the reliability of generated response bits. For each k ring
oscillator pairs, the pair that has the maximum frequency distance is chosen.
It is argued that if the frequency difference between two ring oscillators is big
enough, then it is less likely that their difference changes sign in presence of
fluctuations in operating temperature or supply voltage.

In order to achieve higher stability and robustness of responses, extra
information can be collected by measuring the oscillation frequency under
different operating conditions. Methods presented in references [67, 68] use
this information to efficiently pair or group the ring oscillators to obtain
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maximum response entropy. Specifically, frequency measurement is performed
at two extreme (low and high) temperatures and a linear model is built to
predict the frequency at middle temperature points.

Systematic process variation can adversely affect the ability of RO-PUF
for generation of unique responses. A method to improve uniqueness of ring
oscillator PUF responses is discussed in [69]. A compensation method is used
to mitigate the effect of systematic variation by (i) placing the group of ROs
as close as possible (ii) picking the physically adjacent pair of ROs while
evaluating a response bit. Large scale characterization of an array of ROs on
125 FPGAs (Spartan3E) is performed in [70]

The existing inherent race conditions in combinatorial logics with feedback
loop are also used in development of other types of PUFs. For instance, a loop
made of two inverter gates can have two possible states. At the power-up, the
system enters into a metastable state that settles onto one of two possible
states. In fact, the faster gate will dominate the slower gate and determine
the output. The idea of back-to-back inverter loops is used in SRAM memory
cells. SRAM-based PUFs based on the inherent race condition and variations
in component delays produce unique outputs at startup. Unfortunately, in
SRAM-based FPGAs, an automatic internal reset mechanism prevents using
the unique startup value. A more practical implementation that is based
on the same concept but uses the logic components on FPGA rather than
the configuration SRAM cells, is referred to as a butterfly PUF. The basic
structure of a butterfly PUF is shown in Figure 1.4.1 (b). Butterfly PUF
is made of two D-flipflops with asynchronous preset and reset inputs. The
flipflops are treated as combinational logics. The work in [71] presents a
comparative analysis of delay based PUF implantations on FPGA. The work
particularly focuses on the requirements of maintaining symmetry in routing
inside the building blocks of Arbiter-based PUF, Butterfly PUF, and RO-
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1.4.2 True-Random Number Generator (TRNG)

FPGASs are also suitable platforms for implementing True-Random Number
Generators (TRNG). TRNGs are important security primitives that can be
used to generate random numbers for tasks such as (i) secret or public keys
generation, (ii) initialization vectors and seeds for cryptographic primitives
and psuedo-random number generators, (iii) padding bits, and (iv) nonces
(number used once). Since modern cryptographic algorithms often require
large key sizes, generating the key from a smaller sized seed will significantly
reduce the effectiveness of the long keys. In other words, by performing a
brute-force attack only on the seed that generated the key, one can break
the crypto system. Therefore, it is essential to generate the keys from a high
entropy source.

Numerous TRNG designs have been proposed and implemented. Each de-
sign uses a difference mechanism to extract randomness from some underlying
physical phenomena that exhibit uncertainty or unpredictability (or probably
a behavior not well-understood). Examples of sources of randomness include
thermal shot noise in circuits, secondary effects such as jitter and metastabil-
ity in circuits, Brownian motion, atmospheric noise, nuclear decay, random
photon behavior. In this chapter, we only focus on TRNGs that are imple-
mentable on digital platforms and FPGAs.

In general, TRNGs are evaluated using the following typical parameters
and measures: (i) entropy source (source of randomness), (ii) design footprint
(area and energy per bit), (iii) predictability of the generated bitstream and
its statistical properties, (iv) security and robustness of the generated bits
against attacks, and (v) ease of implementation.

As discussed in the previous section, one measurable analog quantity on
digital platforms is the signal propagation delay. The circuit noise (thermal,
shot, and flicker noise) can exhibit their effect on propagation delays. The
noise manifest itself as the jitter and phase noise on the systems clock by
causing temporal variations in the oscillator frequency.

The approach in [72] uses sampling of phase jitter in oscillator rings to
generate a sequence of random bits. The output of a group of identical ring
oscillators are fed to a parity generator function (i.e., multi-input XOR). The
parity generator output is then constantly sampled by a D-flipflop driven
using the system clock. In absence of noise and identical phases, XOR output
would be constant (and deterministic). However, in presence of jitter in phase,
glitches with varying non-deterministic lengths appear at the XOR output.

Another type of TRNG is introduced in [73] that is based on the basic
arbiter-based PUF structure. Unlike PUFs where reliable response generation
is desired, the PUF-based TRNG goal is to generate unstable responses.
This is achieved by driving the arbiter into the metastable state essentially
through violating the setup/hold time requirement of the arbiter. The PUF-
based random number generation method searches for challenges that result
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Fig. 1.10 TRNG based on sampling the ring oscillator phase jitter.

in small delay differences at the input of the arbiter which in turn cause
highly unreliable response bits.

In order to improve the quality of the output bitsteam and increase the
randomness, various post-processing techniques are often performed. [72] in-
troduces resilient functions to filter out deterministic bits. The resilient func-
tion is implemented by a linear transformation through a generator matrix
commonly used in linear codes. The hardware implementation of resilient
function is demonstrated in [74] on Xilinx Virtex II FPGAs. The TRNG af-
ter post processing achieves a throughput of 2Mbps using 110 ring oscillators
with 3 inverters in each. A post-processing may be as simple as von Neumann
corrector [75] or may be more complicated such as extractor function [76] or
even a one-way hash function such SHA-1 [77]. Von Neumann method is a
well-known post-processing technique to removed localized biases in the gen-
erated bit sequence. It looks at pairs of bits in the bitstream. If both bits in
the pair are identical, the corrector removes both of them from the sequence.
If the bits are different, then it uses only one of them (e.g. the second bit).
The bit rate as a result will be reduced to about 1/4 of the input bit rate on
average (this is for the optimistic case where 0s and 1s are equally likely).

Besides improving the statistical properties of the output bit sequence
and removing biases in probabilities, post-processing techniques increase the
TRNG resilience against adversarial manipulation and variations in environ-
mental conditions. An active adversary attacker may attempt to bias the
probability of the output bits in order to reduce the entropy of the gener-
ated keys. Post-processing techniques typically govern a trade-off between the
quality of the generated bit versus the throughput. Other online monitoring
techniques may be used to ensure higher quality of the generated random
bits. For instance, in [73], the probability of the generated bits are constant
monitored and as soon as a bias is observed in the bit sequence, the search
for a new challenge vector that produces unreliable response bits is initiated.

Although it is almost impossible to analytically and mathematically prove
the unpredictability of the generated bit stream, a simple system design, in-
sight on underlying physical randomness, as well as a thorough examination
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of the bitstream statistical properties and randomness are fundamental to
justify the security of the TRNGs. In other words, it is necessary, although
not sufficient, to perform a comprehensive set of statistical tests on the gen-
erated bit sequence. A well-known and common suites of randomness tests

are outlined in DIEHARD [78] and NIST Test Suites [79].

1.5 Top FPGA Security Challenges

In this section we identify and analyze dominant FPGA research and devel-
opment challenges and opportunities. The challenges are dictated by techno-
logical, application, business models, and tools development trends. We start
by discussing our top 15 challenges and finish by analyzing uniqueness of
FPGA security requirements and degrees of freedom with respect to ASIC
and general purpose and application specific programmable processors. As
we already stated, it is obvious that that each platforms has certain advan-
tages or limitation depending on the security threats and goals as well as a
set of overall security desiderata. However, it is important to emphasize that
flexibility and configuration capabilities of FPGAs may be instrumental for
creation of unique classes of security primitive and protocols.

1.5.1 Algorithmic Cryptographic Security

Algorithmic (mathematical) cryptography is one of the most elegant and
effective computer science fields. Numerous ingenious and surprising prim-
itives and protocols have proposed, analyzed, and are in practical use
[80, 81, 82, 83, 84]. The algorithmic (mathematical) foundations for some
protocols such as public-key communication and storage are solid although
rarely actual consistent proofs are available. Nevertheless, the chances of
breaking modern protocols such as Advanced Encryption Standard (AES)
using algorithmic attacks are relatively very small.

However, it is well known that the computer engineering basis of algorith-
mic security is far less reliable. It has been reported that a variety of physical
and side channel attacks easily using inexpensive equipment easily break es-
sentially all algorithmic cryptography protocols. Development of engineering
techniques for protection of information leakage is a popular research direc-
tion. These techniques are often much less effective for FPGA platforms due
to factors such requirements for highly regular routing, relatively sparse and
publicly available IC structure, and higher difficulty and cost of TRNG. How-
ever, the greatest impediment to any masking technique in particular at the
gate level is process variation that prevents matching of gates. In principle,
FPGA platforms have here advantage due to their reconfigurability.
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Once when the physical security of an FPGA platform is ensured, it would
have a high potential for significant energy efficiency, protocols flexibility, and
even speed advantages over programmable platforms. In addition, FPGA’s
ability to facilitate reuse can greatly improve actual security. There is little
doubt that at least in short time periods, cost, energy, low latency, and high
throughput of algorithmic cryptographical protocols will be of the primary
importance.

1.5.2 Hardware-based Cryptography: Primitives and
Protocols

Hardware-based security techniques have been going through several partly
overlapping phases. Initially, the emphasis was on creation of unique ID. In
the next phase, IDs were used for protection of the platform and applications
related to the hardware or software running on the platform including -=
hardware metering, remote enabling and disabling, and similar tasks. Silicon
PUFs initiated a revolution in hardware security [58, 73]. However traditional
PUF technique utilize only secret key-based cryptography. More recently sev-
eral schemes redefined ways how PUFs are constructed and used to enable a
variety of public key security protocols. They have been developed under the
names of PPUF [13], SIMPL [85, 86|, and timed authentication [13, 87, 63].
While the public key PUF approaches have been proposed several years ago,
now more and more realistic schemes are analyzed. For example, PPUF-based
scheme include not just authentication and public-key private key communi-
cation, but also time stamping, place stamping, device stamping, and more
demanding protocols such as coin flipping and oblivious transfer. The crucial
observation is that FPGAs are ideal platform for many type of primitives
and security protocols due to their reconfiguration capabilities.

In addition to hardware primitives, device-level characterization and condi-
tioning play important enabling roles. For example, it has been demonstrated
that leakage energy measurement can be used for fast and very accurate gate-
level characterization and for provably comprehensive hardware trojans de-
tection [88, 89, 90, 91, 92, 93]. Furthermore, it has been demonstrated that
in addition to side channels ways for collecting information, there are device
conditioning techniques that can be used to organize accurate and diverse
measurements. For example, localized heating can be used for breaking cor-
relation in linear systems of equations in such a way that all gates can be
characterized [91]. As another example, very accurate detection bounds based
on the submodularity of the objective function can be achieved [90]. These
techniques are universal, but the presence on unused hardware on FPGA
ICs can additionally facilitate their effectiveness [63, 64]. Finally, hardware
primitives can be used for creation of a great variety of security protocols.
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It is important to note that they have sharply different principles than the
identical algorithm-based security protocols.

1.5.3 Digital Right Management (DRM) of ICs and
Tools

There are dominant approaches for protecting hardware IPs. The first is
watermarking [94, 95, 96, 97, 98, 99, 100, 8, 101]. Numerous hardware wa-
termarking techniques have been proposed at essentially all levels of design
abstraction. The current emphasis in on using of side channels for efficient
watermark detection [102]. Tt is important to emphasize that several of early
hardware watermarking techniques enable easy watermark detection through
minimal modification of outputs or through augmentation of finite state ma-
chines [8, 101]. It is easy to see that IP watermarking is often much more
difficult task for FPGAs than for ASICs. This is in particular true for tech-
niques that embed watermarks by superimposing additional constraints on
design specification. The main reason is that watermarks on higher levels
of ASIC synthesis are naturally protected by the non-recurring engineering
(NRE) cost and time-to-market delay. Hardware watermarking is covered in
Chapter 9 of this book.

The second task is hardware metering where the goal is to ensure that
foundry does not sell unauthorized ICs [103, 104]. There are two broad classes
of hardware metering. The first is passive hardware metering where already
sold ICs are examined in order to detect illegally produced ICs. Passive me-
tering has techniques are equally difficult for both FPGA and ASIC designs.
Active metering techniques do not just detect illegal ICs, but directly enforce
DRM rights by requiring specific authentication steps that can be provided
only by the designer. While obviously active metering techniques are more
effective, they also induce higher operational and design overheads in metrics
such as energy or delay. Metering is covered in Chapter 8 of this book.

Finally, the most ambitious DRM step is remote control where the designer
or an authorized entity can remotely control which action can or can not
be conducted by the user [105, 106, 107, 108]. The stated three types of
techniques and many other DRM tasks (e.g. auditing) can be performed
on all three implementation platforms (FPGA, ASIC, and programmable
processor). One advantage of programmable and configurable platforms is
that a more refined control can be conducted on them.
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1.5.4 Trusted Tools

In modern and pending synthesis flows, usage of design tools is unavoidable.
It is easy to embed a variety of malicious circuitry, malicious functionality,
and security vulnerabilities using the CAD tools. A key security task is to
derive a trusted set of synthesis and analysis tools. There are two types of
trusted tools required for FPGA synthesis. The first type are tools used for
realization of FPGA structures themselves. The second are tools that are
used for implementation of a specified functionality on FPGA chips. In the
case when programmable processors are used on FPGA ICs, we need to also
secure the compiler(s) and the operating system(s).

Although at the first look the problem may seem intractable, recently it
was addressed in a surprisingly simple way using notions of fully specified
design (FSD). FSD is a design where user-specified functionality utilizes all
the resources at all times. Therefore, a potential attacker does not have means
(hardware and clock cycles) to initiate attacks. FSD can be easily realized
using regular synthesis tools. The key idea is that the designer develops simple
tools for checking the solutions produced by the complex synthesis tools. For
example, the designer can keep updating her specified functionality until all
functional units are not used in all clock cycles [109].

Additional efforts are needed to ensure that the produced designs are en-
ergy efficient and to provide runtime checking. Of course, this first approach
will hopefully provide impetus for other conceptually different techniques for
trusted synthesis. The final remark is that one can create numerous abstrac-
tion of trusted synthesis and that is an interesting and important problem
itself.

1.5.5 Trusted IP

In addition to trusted tools, modern design flows require trusted hardware
and software IP. Deriving techniques that provide proofs that a particular
IP is trustworthy is essential due to the ever increasing silicon-productivity
gap. There are two practical options. One is to require that each IP is fully
checkable. For example, one can insist that each IP is created using trusted
tools; the test vectors could be included for verification. Another maybe even
more realistic, but less secure option is to develop security wrappers in form
of additional circuit logic that control all inputs and outputs from each IP.
In that case, the IP user can export to the otherwise untrusted IP or import
from it only the data that is functionally specified. Therefore, IP would not
get in possession of the privileged information from other parts of the overall
design. It still can produce intentionally incorrect results, but these data
would not help the attacker to take a control over the overall design. The
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FPGA flexibility makes this platform better suited for inclusion of trusted
IP.

1.5.6 Prevention of Reverse Engineering

One of the often promoted FPGA advantages over other implementation
and architectural options is its resiliency against reverse engineering [110,
111]. Today, IC reverse engineering is widely used for tasks such as patents
enforcement, technological espionage, and market trend tracing. In particular,
antifuse FPGA (such as the ones designed by Actel) are identified as reverse
engineering resilient devices and are widely used by several US government
agencies. The key argument is that antifuse devices have very small feature
sizes and it is very difficult to figure out if a particular devices fused and not.
Since the number of fuses is large (several hundred thousands) their accurate
classification is at least very demanding. In addition, it is often argued that
usually only a small percentage of them is actually fused and that, therefore,
this makes them even more difficult for reverse engineering. However, this
argument is questionable since the entropy of the scenario is much higher
than one where a half of fuses is actually burned.

We anticipate that reverse engineering research will pursue two lines of
attacks. The first is indeed technological where the goal is to develop tech-
nologies that are difficult (ideally impossible) for reverse engineering. The
second line will explore diversity in functionality specification and realization
that will make each IC unique. Hence, merging imperfect technological infor-
mation from multiple ICs will not bring results. A prime candidate for this
purpose are N-version synthesis techniques [112, 113, 114].

1.5.7 Trojan Detection and Diagnosis

Recently hardware Trojan detection and diagnosis attracted a great deal of
attention. Currently a major emphasis is on added ghost circuitry that is
used in a variety of detrimental ways to alter the functionality of the initial
design. In addition, more subtle attacks that employ device aging or resizing
and crosstalk have been proposed and analyzed. The detection techniques
can classified in two broad classes: (i) side channel-based; and (ii) ones that
use functional or delay testing as their starting points. Silicon foundries are
often cited as a major potential security attacker. It was argued that FPGA
automatically provide protections against hardware trojans since the designer
consequently configures FPGA in such a way that this information is not
available to potential attackers. In addition, the regular FPGA structures
makes embedding of hardware trojans difficult. However, that is only to a



28 Mehrdad Majzoobif, Farinaz Koushanfar’, Miodrag Potkonjak?

certain extent true because the attacker can also alter non-functional crucial
components of designs such as power supply network.

It is important to note that hardware Trojans detection is much more dif-
ficult than functional or manufacturing testing because malicious alterations
are intentionally conducted such that their analysis is difficult or maybe even
infeasible. There are two main conceptual and technical difficulties. The first
is that the ratio of the number of gates vs. input/output pins keeps increasing
and as a result, the controllability and observability is consistently reduced.
The second is that many discrepancies between the measurements and sim-
ulations can be easily explained as the impact of process variations.

Nevertheless, one can comfortably state that many types of structural
hardware Trojans can be already detected and even diagnosed [4]. We expect
that the next generation of functional Trojan horses where malicious circuitry
is partly or fully merged with circuitry that is actually used for targeted
functionality will create much more severe security requirements. The Trojan
related topics are comprehensively addressed in Chapters 15, 16, and 17 of
this book.

1.5.8 Zero Knowledge and Oblivious Transfer

There is an interesting and important class of cryptographical protocols that
are unfortunately too complex for widespread use in their software implemen-
tation. This class includes zero knowledge and oblivious transfer. Hardware-
based security primitives such as PPUFs when realized on FPGA have the
potential to create ultra efficient realization of these protocols [13, 64]. We
expect that a variety of these and similar protocols will not just be proposed
but also realized and demonstrated. Interestingly, in many of these appli-
cations, protocols and security primitives the role of flexibility is essential.
Therefore, FPGAs will be often the preferred implementation platform for
those types of protocols.

1.5.9 Self-Trusted Synthesis

A variety of trusted modules and platforms have been developed. In some
situations there is not even a specific itemization and quantification of what
and who is trusted.

It has been demonstrated recently that one can easily create PUF struc-
tures in such a way that all decisions about its parameters and, therefore,
the relationship between challenges and responses is completely controlled by
the user. The procedure is surprisingly simple. It is sufficient to allow a user
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to age each PUF delay segment either randomly or to its own specifications
[115, 116, 92, 117).

While, of course, the path from the devising and implementing a PUF to
designing and implementing an arbitrary design may be complex and com-
plicated, we believe that soon such solutions will be created. The FPGA
flexibility is essential for such tasks although one could also create flexible
ASIC solutions.

1.5.10 New FPGA Architectures and Technologies

There is a large number of different FPGA architectures in terms of combi-
natorial logic blocks, interconnects, and embedded memories. There are also
several technologies that are used for configuration (e.g. SRAM and fuses).
FPGA can be used to implement a great variety of applications. However, it
appears that no consideration for security primitives and protocols has been
used as the design objectives and/or constraints. After several decades of sta-
ble silicon CMOS technology, it seems that we are on the brink of revolution-
ary changes. For example, technologies such as graphene, II1I-V and graphene
nanotubes, memristors, phase change materials, photonics, and plasmonics
may fundamentally alter the design objectives and design process. We al-
ready see that the process variation greatly complicates detection of hardware
Trojans and enables PUF existence and optimization. These technological
changes will greatly impact FPGA trade-offs and architectures. In addition,
3D technologies might qualitatively alter the FPGA architectures and could
have influential security ramifications.

1.5.11 FPGA Tools for Hardware-based Security

Development and rigorous analysis of FPGA security tools is a difficult and
complex task. For example, process variation (PV) often plays a crucial role.
PV impacts all the design metrics and has a complicated nature that keeps
changing with each new technological node. For example, the effective channel
length depends on several highly correlated factors. On the other hand, the
threshold voltage consistently follows an uncorrelated Gaussian distribution.
Other models such as device aging are also of high importance. In addition,
tools for reverse engineering may have a crucial importance.

In general, one has two options: implementation and/or simulation. As
FPGA implementation platform is greatly preferred due to its sharply lower
cost and flexibility. There is, at least among one class of researchers, the
philosophy that implementation is ultimate proof of any concept and the
value of simulation is minimal. There is, obviously, some advantages in the
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implementation. If nothing else, it implies that the technique works at least
on one platform. At the same time, any statistical proof based on one or
very few points is at best of questionable value. Also, very little insight and
knowledge is obtained from so limited experiments.

Simulation models are widely used in industry and have convincingly
demonstrated their practical values. They can be used not only for well es-
tablished technologies but also for the pending ones. Therefore, simulations
are of great theoretical, conceptual, and practical values. Still, in order to
obtain maximal benefit, comprehensive and up-to-date modeling and simu-
lation tools are needed. We believe that it is crucial to have sound and fast
FPGA security models that are shared among various groups of researchers.
There are already activities along these lines, including Trust-Hub' that aims
to provide both FPGA platforms that are remotely accessible as well as simu-
lation and benchmark capabilities. For example, a collection of most effective
attacks may greatly improve the development of security techniques. Finally,
it is important to emphasize that these tools must find ways to transparent
synthesis and analysis of FPGA-based systems.

1.5.12 Side Channels

Side channels are effective mediums and mechanisms that drastically increase
the observability of the inside of the pertinent IC [118]. There is a large and
ever increasing number of side channels modalities including delay, power,
electromagnetic emanation, substrate noise, and temperature. Side channels
greatly facilitate the detection and analysis of malicious circuitry. They also
impose an even stronger threat to cryptographical protocols and hardware-
based security techniques.

Side channels are in particular effective against FPGA implementations
because the structure of the circuitry is known. The density is relatively
lower than ASICs, and one can embed additional circuitry to augment the
side channels.

1.5.13 Theoretical Foundations

Numerous interesting and sometimes surprisingly elegant hardware security
techniques have been proposed. In addition, several classifications for hard-
ware Trojan attacks and defense mechanisms, TRNGs, PUFs, and other hard-
ware security primitives and protocols have been published. Nevertheless, we

L http://trust-hub.org/
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are still far from establishing sound foundations and identifying the univer-
sally beneficial paradigms.

Currently, innovative but ad-hoc techniques dominate the development
of hardware-based security techniques for both ASIC and FPGA platforms.
More complex structure of FPGA synthesis flow and much higher number
of heterogeneous design results in more pressing need for development of
sound foundations and standardized ways for analysis of synthesis and anal-
ysis flows.

1.5.14 Physical and Social Security Applications

The strong emphasis of both classical algorithmic security and emerging
hardware-based security techniques is on data and electronic system pro-
tection. These goals are, of course, tremendously important. However, two
types of new application classes are of even higher importance. The first type
consist of securing physical, chemical, and biological entities [119]. The sec-
ond is related to personal and social security. Interestingly, hardware based
security has the potential to play an essential role in many such application.
For example, it has been demonstrated that many objects such as paper,
DVD, optical fiber, and wireless radios can be used as PUFs. An important
alternative is to integrate silicon (in particular FPGA) PUFs for protection
of physical or biological systems. Even parts (e.g. blood vessels) of individual
human bodies can be used as PUFs. FPGA-based platforms would be most
often used as a staring point due to their low NRE cost.

1.5.15 Recovery and Long-life Enabling Techniques

Faults masking techniques such as built-in-self-repair (BISR) play an impor-
tant role in enhancing the yield or lifetime of integrated circuits. For example,
BISR mechanisms and circuitry are widely used in dynamic random access
memory (DRAM) ICs. We anticipate that analogous techniques may be sim-
ilarly relevant in protection against the Trojan horses. FPGA are ideally
suited for BISR Trojan masking due to their reconfiguration capabilities. If
there is a Trojan in FPGA hardware, one could place and configure the hard-
ware in such a way that its impact is eliminated. If there is a Trojan in the
bitstream, after its detection, characterization, and removal, one can quickly
create a new Trojan-free system.

Recently, several powerful aging techniques were proposed for creation of
PUFs. Aging techniques provide numerous advantages over process variation-
based PUFs including enabling that user herself creates her own PUF's, much
higher entropy, prevention of precomputation, and much longer lifetimes in
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presence of intentional and non-intentional device aging. Currently, only tran-
sistor aging is considered, but we can expect that other types of aging in-
cluding electromigration will be soon pursued.

1.5.16 Ezecutive Summary

It is difficult to consistently and in a uniform way analyze the advantages and
limitations of the three principal implementation platforms (ASIC, FPGA,
and programmable processors). The various security features have drastically
differing requirements. Still, there is a reasonable arguments that FPGAs
may emerge as a security platform of choice due to their desirable features
including flexibility and post-silicon realization of functionality. While the
development of new and practical hardware-based security techniques is still
in very early phases, it may result in new and revolutionary ways for both
system and data security. In the meantime, support for realization of classical
algorithmic protocols and DRM issues will be of primary importance.

1.6 Conclusions

We have surveyed a selection of the most important important issues related
to FPGA security. Specifically, we placed emphasize on security primitively
(PUFs and TRNGs), analysis of potential vulnerabilities of FPGA synthesis
flow, digital rights management, and FPGA-based applied algorithmic cryp-
tography. We also analyzed the most challenging and beneficial research and
development techniques related to FPGA and FPGA-based security plat-
forms. While, of course, it is very risky to publicly state firm predictions,
we expect that the system and hardware-based security of and by FPGAs is
bound to emerge as a premier research and development direction.

References

1. S. Drimer, “Volatile FPGA design security — a survey (v0.96),” April 2008. [Online].
Available: http://www.cl.cam.ac.uk/~sd410/papers/fpga_security.pdf

2. D. Chen, J. Cong, and P. Pan, “FPGA design automation: A survey,” Foundations
and Trends in Electronics Design Automation, vol. 1, pp. 139-169, January 2006.

3. G. Quand M. Potkonjak, Intellectual Property Protection in VLSI Design. Springer,
2003.

4. M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 10-25, 2010.




1 FPGA-oriented Security 33

5.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware:
Identifying and classifying hardware trojans,” IEEE Computer, vol. 43, no. 10, pp.
3946, 2010.

S. Trimberger, “Trusted design in FPGAs,” in Design Automation Conference (DAC),
2007, pp- 5-8.

Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream encryption and authentica-
tion with AES-GCM in dynamically reconfigurable systems,” in Field Programmable
Logic and Applications (FPL), September 2008, pp. 23-28.

A. Oliveira, “Techniques for the creation of digital watermarks in sequential circuit
designs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, no. 9, pp. 1101 —1117, 2001.

. J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Fingerprinting digital circuits

on programmable hardware,” in Information Hiding (IH), 1998, pp. 16-31.

J. Lach, W. H. M. Smith, and M. Potkonjak, “Fingerprinting techniques for field-
programmable gate array intellectual property protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 10, pp. 1253—
1261, 2001.

F. Koushanfar, G. Qu, and M. Potkonjak, “Intellectual property metering,” in
Information Hiding (IH), 2001, pp. 81-95.

F. Dabiri and M. Potkonjak, “Hardware aging-based software metering,” in Design,
Automation and Test in Europe (DATE), 2009, pp. 460-465.

N. Beckmann and M. Potkonjak, “Hardware-based public-key cryptography with
public physically unclonable functions,” in Information Hiding. Springer, 2009, pp.
206—-220.

“Defense science board (DSB) study on high performance microchip supply.
http://www.acq.osd.mil/dsb/reports/2005-02-hpms_report_final. pdf.”

D. A.R.P. A.D. M. T. O. (MTO), “TRUST in ICs,” 2007.

S. M. Trimberger and R. O. Conn, Remote field upgrading of programmable
logic device configuration data via adapter connected to target memory
socket, United States Patent Office, September 2007. [Online]. Available:
http://patftl.uspto.gov/netacgi/nph-Parser?patentnumber=7269724

“Managing the risks of counterfeiting in the information technology industry. a white
paper by kpmg and the alliance for gray market and counterfeit abatement (agma).”
Altera Corporation vs. Clear Logic Incorporated (D.C. No. CV-99-21134),  United
States Court of Appeals for the Ninth Circuit, April 2005. [Online]. Avail-
able: http://www.svmedialaw.com/altera%20v%20clear %20logic.pdf

Court issues preliminary injunction against CLEAR LOGIC in ALTERA litigation,
Altera Corp., July 2002. [Online]. Available: http://www.altera.com/corporate/
news_room/releases/releases_archive/2002/corporate/nr-clearlogic.html

P. Gutmann, “Secure deletion of data from magnetic and solid-state memory,” in
USENIX Workshop on Smartcard Technology, July 1996, pp. 77-89.

——, “Data remanence in semiconductor devices,” USENIX Security Symposium,
pp- 39-54, August 2001.

S. P. Skorobogatov, “Low temperature data remanence in static RAM,” University
of Cambridge, Computer Laboratory, Tech. Rep. 536, June 2002.

F. Rodriquez-Henriquez, N. Saqib, A. Diaz-Perez, and C. Koc, Cryptographic
algorithms on reconfigurable hardware. Springer, 2007.

N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,”
IEEE Computer, vol. 36, no. 12, pp. 68—75, 2003.

F.-X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and J.-J. Quisquater,
“Differential power analysis of FPGAs : How practical is the attack?” in Field
Programmable Logic and Applications (FPL). Springer-Verlag, September 2003,
pp- 701-709.




34

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Mehrdad Majzoobif, Farinaz Koushanfar’, Miodrag Potkonjak?

L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power consumption in Virtex-II
FPGA family,” in Field Programmable Gate Arrays Symposium (FPGA), 2002, pp.
157-164.

S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing the secrets
of smart cards. Secaucus, NJ, USA: Springer-Verlag, 2007. [Online]. Available:
http://www.dpabook.org/

F.-X. Standaert, S. B. Ors, and B. Preneel, “Power analysis of an FPGA implemen-
tation of textscRijndael: is pipelining a DPA countermeasure?” in Cryptographic
Hardware and Embedded Systems Workshop, ser. LNCS, vol. 3156. Springer, Au-
gust 2004, pp. 30-44.

F.-X. Standaert, S. B. Ors, J.-J. Quisquater, and B. Preneel, “Power analysis at-
tacks against FPGA implementations of the DES,” in Field Programmable Logic
and Applications (FPL). Springer-Verlag, August 2004, pp. 84-94.

F.-X. Standaert, F. Mace, E. Peeters, and J.-J. Quisquater, “Updates on the se-
curity of FPGAs against power analysis attacks,” in Reconfigurable Computing:
Architectures and Applications, ser. LNCS, vol. 3985, 2006, pp. 335-346.

F.-X. Standaert, E. Peeters, G. Rouvroy, and J.-J. Quisquater, “An overview of power
analysis attacks against field programmable gate arrays,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 383-394, Febuary 2006.

T. S. Messerges, “Power analysis attack countermeasures and their weaknesses,” in

Communications, Electromagnetics, Propagation and Signal Processing Workshop,
2000.

S. Mangard, “Hardware countermeasures against DPA — a statistical analysis of their
effectiveness,” in RSA Conference, ser. LNCS, T. Okamoto, Ed., vol. 2964. Springer,
February 2004, pp. 222-235.

P. C. Kocher, “Timing attacks on implementations of DIFFIE-HELLMAN, RSA, DSS,
and other systems,” in Cryptology Conference on Advances in Cryptology, ser. LNCS,
vol. 1109. Springer-Verlag, 1996, pp. 104-113.

J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L. Willems,
“A practical implementation of the timing attack,” in International Conference on
Smart Card Research and Applications (CARDIS), 1998, pp. 167-182.

J.-J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA): Measures and
counter-measures for smart cards,” in International Conference on Research in Smart
Cards (E-SMART). Springer-Verlag, 2001, pp. 200-210.

D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM side-channel(s),”
in Cryptographic Hardware and Embedded Systems Workshop (CHES), ser. LNCS,
vol. 2523. Springer-Verlag, August 2002, pp. 29-45.

K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete results,”
in Cryptographic Hardware and Embedded Systems Workshop (CHES), ser. LNCS,
vol. 2162. Springer-Verlag, May 2001, pp. 251-261.

V. Carlier, H. Chabanne, E. Dottax, and H. Pelletier, “Electromagnetic side channels
of an FPGA implementation of AES,” Cryptology ePrint Archive, no. 145, 2004.

E. De Mulder, P. Buysschaert, S. B. Ors, P. Delmotte, B. Preneel, G. Vandenbosch,
and I. Verbauwhede, “Electromagnetic analysis attack on an FPGA implementation
of an elliptic curve cryptosystem,” in International Conference on “Computer as a
tool” (EUROCON), November 2005, pp. 1879-1882.

E. Peeters, F.-X. Standaert, and J.-J. Quisquater, “Power and electromagnetic anal-
ysis: improved model, consequences and comparisons,” VLSI Journal of Integration,
vol. 40, pp. 52-60, January 2007.

D. Agrawal, B. Archambeault, S. Chari, J. R. Rao, and P. Rohatgi, “Advances in
side-channel cryptanalysis, electromagnetic analysis and template attacks,” vol. 6,
no. 1, Spring 2003.

D. Agrawal, J. R. Rao, and P. Rohatgi, “Multi-channel attacks,” in Cryptographic
Hardware and Embedded Systems Workshop, ser. LNCS, vol. 2779, September 2003,
pp. 2-16.




1 FPGA-oriented Security 35

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

R. J. Anderson and M. G. Kuhn, “Low cost attacks on tamper resistant devices,” in
International Workshop on Security Protocols. Springer-Verlag, 1998, pp. 125-136.
T. Karnik, P. Hazucha, and J. Patel, “Characterization of soft errors caused by single
event upsets in CMOS processes,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 2, pp. 128-143, 2004.

A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke, “The ROSETTA ex-
periment: atmospheric soft error rate testing in differing technology FPGAs,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp. 317-328, Septem-
ber 2005.

J. Fabula, J. Moore, and A. Ware, “Understanding neutron single-event phenomena
in FPGAs,” Military Embedded Systems, March 2007.

S. P. Skorobogatov, “Semi-invasive attacks — a new approach to hardware security
analysis,” University of Cambridge, Computer Laboratory, Tech. Rep. 630, April
2005.

J. M. Soden, R. E. Anderson, and C. L. Henderson, “IC failure analysis: Magic,
mystery, and science,” IEEE Design & Test of Computers, vol. 14, no. 3, pp. 59-69,
July 1997.

D. Frohman-Bentchkowsky, “A fully-decoded 2048-bit electrically-programmable
MOS ROM,” in IEEE International Solid-State Circuits Conference (ISSCC), vol.
XIV, 1971, pp. 80-81.

R. Cuppens, C. Hartgring, J. Verwey, H. Peek, F. Vollebragt, E. Devens, and I. Sens,
“An EEPROM for microprocessors and custom logic,” IEEE Journal of Solid-State
Circuits, vol. 20, no. 2, pp. 603-608, 1985.

A. Scheibe and W. Krauss, “A two-transistor SIMOS EAROM cell,” IEEE Journal
of Solid-State Circuits, vol. 15, no. 3, pp. 353-357, 1980.

D. Guterman, I. Rimawi, T. Chiu, R. Halvorson, and D. McElroy, “An electrically
alterable nonvolatile memory cell using a floating-gate structure,” IEEE Transactions
on Electronic Devices, vol. 26, no. 4, pp. 576-586, 1979.

W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney, L. T. Ngo,
and S. L. Sze, “A user programmable reconfiguration gate array,” in IEEE Custom
Integrated Circuits Conference (CICC), May 1986, pp. 233-235.

J. Birkner, A. Chan, H. Chua, A. Chao, K. Gordon, B. Kleinman, P. Kolze, and
R. Wong, “A very-high-speed field-programmable gate array using metal-to-metal
antifuse programmable elements,” Microelectronics Journal, vol. 23, no. 7, pp.
561-568, Nov. 1992. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V44-4829XPB-7F /2/3e9f92c100b2ab2{2527¢5{039547578

E. Hamdy, J. McCollum, S. Chen, S. Chiang, S. Eltoukhy, J. Chang, T. Speers, and
A. Mohsen, “Dielectric based antifuse for logic and memory ICs,” in International
Electron Devices Meeting (IEDM), 1988, pp. 786-789.

“Design security in nonvolatile flash and antifuse FPGAs,” Actel FPGAs, Tech. Rep.
B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random func-

9

tions,” in ACM Conference on Computer and Communications Security (CCS), 2002,
pp. 148-160.

J. Lee, D. Lim, B. Gassend, G. Suh, M. van Dijk, and S. Devadas, “A technique to
build a secret key in integrated circuits for identification and authentication applica-
tions,” in Symposium on VLSI Circuits, 2004, pp. 176 — 179.

S. Morozov, A. Maiti, and P. Schaumont, “An analysis of delay based PUF imple-
mentations on FPGA.” Springer, 2010, p. 382387.

M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design and im-
plementation of secure reconfigurable PUFs,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 2, pp. 5:1-5:33, March 2009.

M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using programmable
delay lines,” in IEEE Workshop on Information Forensics and Security (WIFS), 2010,
p. in press.




36

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

Mehrdad Majzoobif, Farinaz Koushanfar’, Miodrag Potkonjak?

M. Majzoobi, A. Elnably, and F. Koushanfar, “FPGA time-bounded unclonable au-
thentication,” in Information Hiding (IH), 2010, pp. 1-16.

M. Majzoobi and F. Koushanfar, “FPGA time-bounded authentication,” IEEE
Transactions on Information Forensics and Security, p. in press, 2011.

M. Majzoobi, E. Dyer, A. Elnably, and F. Koushanfar, “Rapid FPGA characterization
using clock synthesis and signal sparsity,” in International Test Conference (ITC),
2010.

G. Suh and S. Devadas, “Physical unclonable functions for device authentication and
secret key generation,” in Design Automation Conference (DAC), 2007, p. 914.
C.-E. Yin and G. Qu, “LISA: Maximizing RO PUF’s secret extraction,” in
Hardware-Oriented Security and Trust (HOST), 2010, pp. 100 —105.

G. Qu and C.-E. Yin, “Temperature-aware cooperative ring oscillator PUF,” in
Hardware-Oriented Security and Trust (HOST), 2009, pp. 36-42.

A. Maiti and P. Schaumont, “Improved ring oscillator PUF: An FPGA-friendly secure
primitive,” Journal of Cryptology, pp. 1-23, 2010.

A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large scale characterization
of RO-PUF,” in Hardware-Oriented Security and Trust (HOST), june 2010, pp. 94
—99.

S. Morozov, A. Maiti, and P. Schaumont, “An analysis of delay based PUF im-
plementations on FPGA,” in Reconfigurable Computing: Architectures, Tools and
Applications, ser. Lecture Notes in Computer Science, P. Sirisuk, F. Morgan, T. El-
Ghazawi, and H. Amano, Eds. Springer Berlin / Heidelberg, 2010, vol. 5992, pp.
382-387.

B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true random num-
ber generator with built-in tolerance to active attacks,” IEEE Transactions on
Computers, vol. 58, pp. 109-119, 2007.

C. W. Odonnell, G. E. Suh, and S. Devadas, “PUF-based random
number generation,” in In MIT CSAIL CSG Technical Memo 481
(http://csg.csail.mit.edu/pubs/memos/Memo-481 /Memo-481.pdf, 2004, p. 2004.

D. Schellekens, B. Preneel, and I. Verbauwhede, “FPGA vendor agnostic true random
number generator,” in Field Programmable Logic and Applications (FPL), 2006, pp.
1 -6.

J. von Neumann, “Various techniques used in connection with random digits,” von
Neumann Collected Works, vol. 5, pp. 768-770, 1963.

B. Barak, R. Shaltiel, and E. Tromer, “True random number generators secure
in a changing environment,” in Cryptographic Hardware and Embedded Systems
workshop (CHES). Springer-Verlag, 2003, pp. 166-180.

B. Jun and P. Kocher, “The Intel random number generator,” in CRYPTOGRAPHY
RESEARCH, INC., 1999.

G. Marsaglia, “DIEHARD: A battery of tests for randomness,” in
http://stat.fsu.edu/ geo, 1996.

NIST, “A statistical test suite for random and pseudorandom numbers,’
Publication, 2000.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography.
CRC Press, 1996.

O. Goldreich, Foundations of Cryptography, Volume 1: Basic Tools. Cambridge
University Press, 2001.

B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley, 1996.

W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. IT-22, pp. 644-654, 1976.

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21 (2), pp. 120—
126, 1978.

’ in Special




1 FPGA-oriented Security 37

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

U. Rihrmair, Q. Chen, M. Stutzmann, P. Lugli, U. Schlichtmann, and G. Csaba,
“Towards electrical, integrated implementations of SIMPL systems,” in Workshop in
Information Security Theory and Practice (WISTP), 2010, pp. 277—-292.

U. Rithrmair, “SIMPL systems, or: Can we design cryptographic hardware without
secret key information?” in SOFSEM, 2011, pp. 26-45.

Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, M. Stutzmann, and U. Riithrmair,
“Circuit-based approaches to SIMPL systems,” Journal of Circuits, Systems, and
Computers, vol. 20, pp. 107-123, 2011.

Y. Alkabani and F. Koushanfar, “Consistency-based characterization for IC trojan
detection,” in International Conference on Computer-Aided Design (ICCAD), 2009,
pp. 123-127.

F. Koushanfar, A. Mirhoseini, and Y. Alkabani, “A unified submodular framework
for multimodal IC trojan detection,” in Information Hiding (IH), 2010.

F. Koushanfar and A. Mirhoseini, “A unified framework for multimodal submodu-
lar integrated circuits trojan detection,” IEEE Trans. on Information Forensic and
Security, 2011.

S. Wei, S. Meguerdichian, and M. Potkonjak, “Gate-level characterization: foun-
dations and hardware security applications,” in ACM/IEEE Design Automation
Conference (DAC), 2010, pp. 222-227.

S. Wei and M. Potkonjak, “Scalable segmentation-based malicious circuitry detection
and diagnosis,” in International Conference on Computer Aided Design (ICCAD),
2010, pp. 483—486.

——, “Integrated circuit security techniques using variable supply voltage,” in
ACM/IEEE Design Automation Conference (DAC), to appear, 2011.

A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. Markov, M. Potkonjak,
P. Tucker, H. Wang, and G. Wolfe, “Watermarking techniques for intellectual prop-
erty protection,” in ACM/IEEE Design Automation Conference (DAC), 1998, pp.
776-781.

A. B. Kahng, S. Mantik, I. Markov, M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe,
“Robust IP watermarking methodologies for physical design,” in ACM/IEEE Design
Automation Conference (DAC), 1998, pp. 782-787.

I. Hong and M. Potkonjak, “Technique for intellectual property protection of DSP
designs,” in International Conference on Acoustic, Speech, and Signal Processing
(ICASSP), 1998, pp. 3133-3136.

F. Koushanfar, I. Hong, and M. Potkonjak, “Behavioral synthesis techniques for intel-
lectual property protection,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 10 (3), pp. 523-545, 2005.

J. Lach, W. Mangione-Smith, and M. Potkonjak, “Enhanced FPGA reliability
through efficient runtime fault recovery,” IEEE Transactions on Reliability, vol. 49
(49), pp. 296-304, 2000.

A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, H. Wang, and
G. Wolfe, “Constraint-based watermarking techniques for design IP protection,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 20 (10), pp. 12361252, 2001.

D. Kirovski and M. Potkonjak, “Local watermarks: Methodology and application to
behavioral synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22 (9), pp. 1277-1284, 2003.

F. Koushanfar and Y. Alkabani, “Provably secure obfuscation of diverse watermarks
for sequential circuits,” in International Symposium on Hardware-Oriented Security
and Trust (HOST), 2010, pp. 42-47.

D. Ziener, S. Assmus, and J. Teich, “Identifying FPGA IP-cores based on lookup
table content analysis,” in International Conference on Field Programmable Logic
and Applications (FPL), 2006, pp. 1-6.




38

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

Mehrdad Majzoobif, Farinaz Koushanfar’, Miodrag Potkonjak?

Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of ICs for piracy
prevention and digital right management,” in International Conference on Computer
Aided Design (ICCAD), 2007, pp. 674-677.

Y. Alkabani, F. Koushanfar, N. Kiyavash, and M. Potkonjak, “Trusted integrated
circuits: A nondestructive hidden characteristics extraction approach,” in Information
Hiding (IH), 2008, pp. 102-117.

F. Koushanfar, G. Qu, and M. Potkonjak, “Intellectual property metering,” in
International Workshop on Information Hiding (IHW). Springer, 2001, pp. 81-95.

F. Koushanfar and G. Qu, “Hardware metering,” in Design Automation Conference
(DAC), 2001, pp. 490-493.

Y. Alkabani and F. Koushanfar, “Active hardware metering for intellectual property
protection and security,” in USENIX Security Symposium, 2007, pp. 291-306.

F. Koushanfar, “Active integrated circuits metering techniques for piracy avoidance
and digital rights management,” ECE Dept., Rice University, Tech. Rep. TREE1101,
2011.

M. Potkonjak, “Synthesis of trustable ICs using untrusted CAD tools,” in ACM/IEEE
Design Automation Conference (DAC), 2010, pp. 633-634.

J. Wong, D. Kirovski, and M. Potkonjak, “Computational forensic techniques for
intellectual property protection,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 23 (6), pp. 987-994, 2004.

D. Kirovski, D. Liu, J. Wong, and M. Potkonjak, “Forensic engineering techniques
for VLSI CAD tools,” in IEEE/ACM Design Automation Conference (DAC), 2000,
pp. 580-586.

Y. Alkabani and F. Koushanfar, “N-variant IC design: methodology and applica-
tions,” in Design Automation Conference (DAC), 2008, pp. 546-551.

Y. Alkabani, F. Koushanfar, and M. Potkonjak, “N-version temperature-aware
scheduling and binding,” in International Symposium on Low Power Electronics and
Design (ISLPED), 2009, pp. 331-334.

M. Majzoobi and F. Koushanfar, “Post-silicon resource binding customization for low
power,” ACM Transactions on Design Automation of Electronic Systems (TODAES),
to appear, 2011.

M. Nelson, A. Nahapetian, F. Koushanfar, and M. Potkonjak, “SVD-based ghost
circuitry detection,” in Information Hiding (IH), 2009, pp. 221-234.

M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, “Hardware trojan horse
detection using gate-level characterization,” in ACM/IEEE Design Automation
Conference (DAC), 2009, pp. 688-693.

M. Potkonjak, S. Meguerdichian, A. Nahapetian, and S. Wei, “Differential pub-
lic physically unclonable functions: Architecture and applications,” in ACM/IEEE
Design Automation Conference (DAC), to appear, 2011.

A. Vahdatpour, M. Potkonjak, and S. Meguerdichian, “A gate level sensor network
for integrated circuits temperature monitoring,” in IEEE Sensors, 2010, pp. 1-4.

M. Potkonjak, S. Meguerdichian, and J. Wong, “Trusted sensors and remote sensing,”
in IEEE Sensors, 2010, pp. 1-4.




