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ABSTRACT

Missing data is unavoidable in sensor networks due to sen-
sor faults, communication malfunctioning and malicious at-
tacks. There is a very little insight in missing data causes and
statistical and pattern properties of missing data in collected
data streams. To address this problem, we utilize interacting-
particle model that takes into account both patterns of missing
data at individual sensor data streams as well as the correla-
tion between occurrence of missing data at other sensor data
streams. The model can be used in algorithms and protocols
for energy efficient data collection and other tasks in presence
of missing data.

We use statistical intersensor models for predicting the
readings of different sensors. As a driver application, we ad-
dress the problem of energy efficient sensing by adaptively
coordinating the sleep schedules of sensor nodes while we
guarantee that values of nodes in the sleep mode can be re-
covered from the awake nodes within a user’s specified er-
ror bound and probability of missing data at awake nodes is
less than a given threshold. The sleeping coordination is ad-
dressed by creating the maximal number of subgroups of dis-
joint nodes, each of whose data is sufficient to recover the data
of the entire network in presence of missing data. On simu-
lated and actually collected data for temperature and humidity
sensors in Intel Berkeley Lab, we show that by using sleeping
coordination that considers missing data, we reduce the typ-
ical 40% missing data rate of traditional sleeping techniques
to less than 7%.

1. INTRODUCTION

Missing data is unavoidable in sensor data collection. Re-
covery of missing data is a canonical task in sensor networks
and can be used for a variety of applications, including com-
pression, fault and attack detection and calibration. In order
to characterize properties of missing data, we analyzed data
streams collected at Intel Berkeley Lab where 54 MICA-2
motes sampled light, temperature, and humidity sensors, each
30 seconds. The radios on the MICA-2 motes have an out-
door transmission range of around 300m. Even though the
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radio range decreases in the indoor environment, the trans-
mission range of the radios are still more than the distances
of the nodes deployed and their distances to the server. For
the purposes in this paper we assume that all sensor nodes
can directly communicate to the server.

Our starting point for addressing properties of missing
data is statistical and simulation model of missing data. The
model takes into account not only patterns and frequencies
of missing data in each stream, but also the mutual cross-
correlations between the different node streams. Neverthe-
less, the model is conceptually simple and computationally
fast. We believe that there are three main causes for missing
data: lossy links [1], collision of data at the MAC layer dur-
ing collection of data in direct one hop communication from
each node to the gateway [2], and transient malfunctioning of
the data collection and communication software due to nested
interrupts [3].
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Fig. 1. Global flow of the approach.

We also use intersensor models that quantify the relation-
ship between the sensor measured value at different sensors.
We have developed intersensor models for all pairs of nodes
such that one node can be used to predict readings of an an-
other. Given a time series of data measurements from two
sensors, it is natural to ask whether the values sensed by one
sensor can be predicted the other, i.e., can sensor Y can be
predicted via some function of sensor X’s data, Y = f(X).
Regression analysis uses data samples from both X and Y to
find the function f. For this task we use new combinatorial
isotonic regression technique, that outperforms the standard
parametric and nonparametric regressions [4].

Using the intersensor prediction models, we build a graph,
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called a prediction graph, in which a directed edge from sen-
sor node 7 to node j exists only if sensor node ¢ can predict the
value that node j senses to within a target error rate. Using
the interacting particle models for missing data, we find two
types of node groups in the networks. The first type of node
group is denoted as reliable clique and has the property that at
least one node from the clique is present at each measurement
epoch with a probability of more than p%. The second type of
node group is denoted as substitute clique, where each clique
is substituting a particular node. It has the property that when
its corresponding node is not present, the nodes in the clique
could recover the missing data from that node with more than
p% probability.

We seek to find subgroups (or partitions) of nodes such
that each subgroup can accurately predict the sensed values
for the entire network while the percentage of missing data
in the subgroup is less than 1 — p%. We propose the idea of
choosing these groups to be disjoint dominating sets that are
extracted from the prediction graph using an ILP-based pro-
cedure. Each dominating set has the property that at least
one reliable clique associated with each node in the set is
included. Also, for each node outside the set, at least one
substitute clique should be included. The ILP-based proce-
dure yields mutually disjoint groups of nodes called domatic
partitions. The energy saving is achieved by having only the
nodes in one domatic set be awake at any moment in time.
The different partitions can be scheduled in a simple round
robin fashion. If the partitions are mutually disjoint and we
find K of them, then the network lifetime can be extended by
a factor of K. The global flow of the approach we have just
described is depicted in Figure 1.

2. INTERACTING PARTICLE MODEL FOR
MISSING DATA IN MULTIPLE SENSOR STREAMS

Our first step is development of models that capture statistics
and time-dependent dynamic patterns of missing data. Figure
2(a) shows a histogram of the number of nodes for a specified
level of missing data shown on the x-axis. We see that the
majority of nodes have around 50% of data missing. Figure
2(b) show the histogram of probability of missing data in all
epochs (time intervals within each nodes is sampled). We see
that there is a significant variation in the percentage of the
available data at different nodes and epochs.

Figure 3 present boxplots of number of node pairs (n;, n;)
for different conditional probability of missing data (x) at one
node n; when data at node n; is available (0) and missing (x)
respectively. The boxplots are shown for all node pairs. The
key observation is that the conditional probabilities have sig-
nificantly higher ranges than probabilities of individual miss-
ing data. The missing data for a pair of nodes can be both
positively and negatively correlated. Figure 4 shows the dis-
tribution of intervals where for one epoch, the consecutive
data collection was always successful or unsuccessful (miss-
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ing) for the node n;. therefore, to capture properties of miss-
ing data in sensor streams, one has to simultaneously consider
both time dependencies of missing data within each stream as
well the dependencies of missing data among the different
streams.

To address these simultaneous requirements, we have de-
veloped an interacting particle model [5, 6] for missing data.
The conceptual novelty that enabled high statistical accuracy
of the model is the application of non-parametric kernel smooth-
ing techniques for modeling [7]. In the interactive particle
model, each sensor is represented as a node with two states:
available and missing. At each time moment the availability
of data at one sensor is being modeled using the previous state
of availability of data at that sensor and the previous state of
availability of data at the other sensors.

Each node makes the decision weather to alter its current
state using a voting mechanism. Each node in the network
casts its vote using a probabilistic mechanism and the perti-
nent node changes its state only if majority of the votes are for
the change. Each node n; decides probabilistically its vote for
node n; by considering statistically derived conditional prob-
ability that node n; has missing data in the next epoch if node
nj is in the pertinent missing or available data state in the
current epoch. Specifically, we generate a random number in
interval [0,1] with uniform probability and the node votes for
change if the number is larger than the pertinent conditional
probability. Because of space limitations, we will not discuss
the details of interactive particle models that is used for gener-
ation of large instances and for long simulation of protocols.

Using the missing data models, we form groups of nodes,
such that at each point of time, at least one measurement from
the group is present with more than 1 — p% probability. We
call such groups of nodes reliable cliques and denote them by
A.,v =1,...,R. Each A, is a vector with elements a,;,
i = 1,..., N where a,; = 1 if node v; is in the clique A,
and is O otherwise. We also form another set of node groups
substituting each specific node. The substituting nodes have
the property that at least one measurement from the group
is present with more than 1 — p% probability. We call such
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Fig. 2. Histograms of: (a) number of nodes for different miss-
ing probabilities, and (b) probability of data missing for dif-
ferent epochs in a 2 day period.
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Fig. 3. Boxplots of: (a) conditional probabilities P(n; =
missing|n; = available), and (b) conditional probabilities
P(n; = missing|n; = missing) for all node pairs (n;, n;).

groups of nodes substitute cliques and denote them by By,
s =1,...,5. Each B, is a vector with elements bg;, where
bs; = 1 if node v; is not in the substitute clique and bg; = 0
clique. We also have a set of auxiliary variables d,; where
ds; = 1 if the clique B, substitutes node v; and is O other-
wise.

3. SLEEPING COORDINATION IN PRESENCE OF
MISSING DATA

Placing the nodes in a network to sleep has been demonstrated
to be an exceptionally effective strategy for prolonging the
network’s lifetime [8]. Maintaining sensing quality is ensured
by strategically placing a subset of nodes in sleep mode in
such a way that, from the remaining small set of awakened
nodes, one can recover the data at the sleeping nodes to within
a user specified target error rate while on the missing data rate
at the awake nodes is less than a given probability 1 — p%.
We call this problem the sleeping coordination problem. The
problem can be formulated as follows.

Problem: Missing Data Recovery-based Domatic Partitions.

Instance: a directed graph G = (V, E), where we denote the
vertices asv; € V, i =1,..., N and the edges by F.

Question: Is there a partition of vertices in the graph to K
disjoint sets, Sy, So, ..., Sk, such that for each set Sy, the
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Fig. 4. The density of the number of consecutive correct mea-
surements (middle), and of the number of consecutive missing
measurements (right) for one node.
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subset Sy, C S is such that all nodes in each graph G that
are not in Sy, have at least one incoming edge from a node in
Sk and, for each vertex v; € Sy, there is at least one reliable
clique including v; and, for each vj ¢ Sy, there is at least one
substitute clique for v;?

Complexity: The decision problem can be mapped to a max-
imization problem using a binary search. A special case of
the above problem is when each reliable clique and each sub-
stitute clique include only a single vertex. This instance of
the problem corresponds to the domatic number problem and
is one of the classical NP-complete problems [9].

We formulate the sleeping coordination problem as an
instance of integer linear program (ILP). Even though the
problem is NP-complete, for many practical instances, we are
able to find the solutions in very short run time (less than 1
minute). For ILP formulation, we first introduce the constants
and variables. After that, we formulate the objective function
and constraints.

Given: A number K < (6 + 1), R reliable cliques A,,
r = 1,..., R, S substitute cliques Bg, s = 1,...,5, and
a prediction matrix P{N x N} with elements Dij» S.L.

1,
Dij = 0

Where |e(v; = f(v;))] is the error in predicting the value at
sensor v; given the data at v;, and € is the user’s specified error
tolerance and ¢ is the degree of the vertex with the minimum
degree in the graph [10].

If [e(v; = f(vi))| < |e]
otherwise

1

Variables: matrix X (KxXN } with elements z;x, and a vector
Uk with elements ug s.t. u, = 11is set Sy, was selected, and
0 otherwise, and:

| 1, Ifnode wv; is in set S,
Tik = { 0, Otherwise )

Objective Function: The objective function is to maximize
the number of disjoint dominating sets, i.e., max Zk Uk

Constraints: The problem has five set of constraints. The
first set of constraints (C7) ensures that if a set Sy exist (i.e.
up = 1), all nodes in G that are not in Sy have an incoming
edge from a node in S;. For: = 1,...,. N, k = 1,.... K:
Tik + Zj Pz > uy.

The second set of constraints (C5) is that if a node is se-
lected in one group, it cannot be selected for any other group.
Fori=1,.,N,andk =1,..,K: ) xy > 1

The third set of constraints (C3) ensures that for each ver-
tex v; is a domatic partition, there is less than p%. This
constraint corresponds to having at least one of the reliable
cliques containing v; within the domatic partition. To write
this constraint, we define two auxiliary functions Fpr and
F4np on L variables as follows: Fog (D1,..., D) = Dy V
Do---V Dy and Fanp (Dl,...,DL) =Dy ANDy---NDy,.
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The functions Fpg translates to the following linear con-
straints: (i) For(D1,...,Dr) > Dy, forl = 1,..., L, (ii)
For (D1,...,D1) < D1+ Ds---+ Dy, and (iii) 0 < Fopr
(D1,...,Dr) < 1. The function Fsnp translates to the fol-
lowing linear constraints: (i) Fanp(D, ..., Dr) < Dy, for
l=1,...,L, i) L—1+ FAND(DL ooy DL) > Di1+Dg-- -+
DL, and (111) 0 S FAND (Dl, ceey DL) S 1.

Constraint C'3 states that if a node v; is in the group Sk,
then there is at least one reliable clique A, with a,; = 1,
such that A, C S;. If A, C Sy, then the expression C3,.:
Zfil arixir = |A,| would hold. Since at least one reliable
clique should hold for each node in a set, we have the follow-
ing constraints for each S, k =1,... K.

Tig = (a11 /\C31)V"'V(QR1/\03R)

TNk = (alN /\031) V-'-V((IRN /\033)

The fourth set of constraints (Cy4) ensures that for each v;
not in a domatic partition, there is a substitute group such that
the combination of substitute nodes has less than p%. This
constraint corresponds to having at least one of the substitute
cliques corresponding to v; ¢ Sj, within each domatic parti-
tion Si. Constraint C4 states that if a node v; is not in the
group Sy, then there is at least one substitute clique B with
ds; = 0, such that B; C Si. If Bs C Sk, then the expression
Cdy: SN bysaip = |Bs| would hold. Fork =1,..., K:

g = (di1 ANC4y) V.-V (ds1 A Cdg)

znk = (dinAC4p) V-V (dsy A Cds)

The last set of constraints (C'5) ensures that the variables
uy and xz;, are within the [0,1] range. Fori = 1,..., N, k =
1,..,K,0 <z <1,and 0 < ug < 1. Note that, we extract
the P matrices and i = (§ + 1) from our modeling studies.

To evaluate the effectiveness of the new approach we com-
pared the new sleeping coordination technique with the base
case of sleeping strategy that uses the same intersensor mod-
els, but does not consider missing data models. The compar-
ison was done by enforcing that the lifetimes of the networks
for both the base case and new approach are identical. For
each case, we calculate the percentage of missing data. Table
1 shows the results. The first two columns show the number
of nodes in the experiment and the maximal allowed error.
The next two columns show the percentage of missing data
for temperature sensors when base case and new approach are
used respectively. The last two columns show the same data
for percentage of humidity missing. All experiments with 54
or less nodes are conducted on actual data traces. The large
instances use the interacting particle model. While the base
case coordination was never able to recover more than two
third of data, the new approach consistently recovered more
than 92%.
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#ofnodes | errrate | TempB | TempN | HumB | Hum N
(%) Rec(%) | Rec(%) | Rec(%) | Rec(%)
27 2 40.6 7.1 35.6 49
3 413 7.7 353 49
40 2 39.8 6.8 35.0 5.1
3 39.5 6.6 327 6.7
54 2 413 6.6 352 4.9
3 434 6.1 335 5.8
100 2 40.1 8.0 359 6.3
3 39.7 6.9 36.4 6.5
200 2 41.0 59 40.8 3.1
3 413 55 439 7.3

Table 1. Percentage of missing data for the sleeping coordi-
nation approach without the missing data recovery (B) and for
the sleeping coordination with the missing data recovery (N).
The results are shown for temperature (Temp) and humidity
sensors (Hum).

4. CONCLUSION

We have developed an approach for energy efficient energy
management using sleeping in sensor networks in presence of
missing data. We introduced interacting particle-based model
and a simulator for missing data. Using combination of non-
parametric statistical modeling and ILP formulation, we op-
timally addressed the problem and demonstrated significant
improvements in ensuring completeness of collected data.
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