
Chameleon: A Hybrid Secure Computation Framework
for Machine Learning Applications

M. Sadegh Riazi

UC San Diego

mriazi@eng.ucsd.edu

Christian Weinert

TU Darmstadt, Germany

christian.weinert@crisp-da.de

Oleksandr Tkachenko

TU Darmstadt, Germany

oleksandr.tkachenko@crisp-da.de

Ebrahim M. Songhori

UC San Diego

e.songhori@gmail.com

Thomas Schneider

TU Darmstadt, Germany

thomas.schneider@crisp-da.de

Farinaz Koushanfar

UC San Diego

fkoushanfar@eng.ucsd.edu

ABSTRACT
We present Chameleon, a novel hybrid (mixed-protocol) framework

for secure function evaluation (SFE) which enables two parties to

jointly compute a function without disclosing their private inputs.

Chameleon combines the best aspects of generic SFE protocols with

the ones that are based upon additive secret sharing. In particular,

the framework performs linear operations in the ring Z
2
l using

additively secret shared values and nonlinear operations using

Yao’s Garbled Circuits or the Goldreich-Micali-Wigderson protocol.

Chameleon departs from the common assumption of additive or

linear secret sharing models where three or more parties need to

communicate in the online phase: the framework allows two parties

with private inputs to communicate in the online phase under the

assumption of a third node generating correlated randomness in an

offline phase. Almost all of the heavy cryptographic operations are

precomputed in an offline phase which substantially reduces the

communication overhead. Chameleon is both scalable and signifi-

cantly more efficient than the ABY framework (NDSS’15) it is based

on. Our framework supports signed fixed-point numbers. In partic-

ular, Chameleon’s vector dot product of signed fixed-point numbers

improves the efficiency of mining and classification of encrypted

data for algorithms based upon heavy matrix multiplications. Our

evaluation of Chameleon on a 5 layer convolutional deep neural

network shows 133x and 4.2x faster executions than Microsoft

CryptoNets (ICML’16) and MiniONN (CCS’17), respectively.

KEYWORDS
Secure Computation; Garbled Circuits; Secret Sharing; Deep Neural

Networks; Machine Learning

ACM Reference Format:
M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.

Songhori, Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A

Hybrid Secure Computation Framework for Machine Learning Applications.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00

https://doi.org/10.1145/3196494.3196522

In ASIA CCS ’18: 2018 ACM Asia Conference on Computer and Communica-
tions Security, June 4–8, 2018, Incheon, Republic of Korea. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3196494.3196522

1 INTRODUCTION
Secure Function Evaluation (SFE) is one of the great achievements

of modern cryptography. It allows two or more parties to eval-

uate a function on their inputs without disclosing the inputs to

each other; that is, all inputs are kept private by the respective

owners. In fact, SFE emulates a trusted third party which collects

inputs from different parties and returns the result of the function

to all (or a specific set of) parties. SFE has many applications in

privacy-preserving biometric authentication [17, 78], secure auc-

tions [38], secure search [76], privacy-preserving machine learn-

ing [36], and data mining [60, 70]. The two most prominent SFE

protocols are Yao’s Garbled Circuits (GC) [85] and the Goldreich-

Micali-Wigderson (GMW) protocol [41].

In theory, any function that can be represented as a Boolean

circuit can be evaluated securely using the GC or GMW protocol.

However, GC and GMW can often be too slow and hence are of

limited practical value because they require several symmetric key

operations for each gate in the circuit. During the past three decades,

the great effort of the secure computation community has decreased

the overhead of SFE protocols by several orders of magnitude. The

innovations and optimizations span the full range from protocol-

level to algorithm-level to engineering-level. As a result, several

frameworks have been designedwith the goal of efficiently realizing

one (or multiple) SFE protocols. They vary by the offline/online run-

time, the number of computing nodes (two-party or multi-party),

offline/online communication, the set of supported instructions,

and the programming language which describes the functionality.

These frameworks accept the description of the function as either (i)

their own customized languages [65, 68], (ii) high-level languages

such as C/C++ [45] or Java [47, 61], or (iii) Hardware Description
Languages (HDLs) [33, 83].

A number of SFE compilers have been designed for trans-

lating a program written in a high level language to low-level

code [42, 65, 68]. The low-level code is supported by other SFE

frameworks which serve as a backbone for executing the crypto-

graphic protocols. In addition to generic SFE protocols, additive/lin-

ear secret sharing enables secure computation of linear operations

such as multiplication, addition, and subtraction. In general, each

framework introduces a set of trade-offs. The frameworks based

on secret-sharing require three (or more) computing nodes which

https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1145/3196494.3196522

operate on distributed shares of variables in parallel and require

multiple rounds of communication between nodes to compute an

operation on shares of two secret values.

One of the most efficient secure computation frameworks is

Sharemind [18] which is based on Additive Secret Sharing (A-SS)

over the specific ring Z
2
32 . All operations are performed by three

computing nodes. Sharemind is secure against honest-but-curious

(semi-honest) nodes which are assumed to follow the protocol but

they cannot infer any information about the input and intermediate

results as long as the majority of nodes are not corrupted. We con-

sider the same adversary model in this paper. Securely computing

each operation in Sharemind needs multiple communication rounds

between all three nodes which makes the framework relatively slow

in the Internet setting. Computation based on additive shares in

the ring Z
2
l enables very efficient and fast linear operations such

as Multiplication (MULT), Addition (ADD), and Subtraction (SUB).

However, operations such as Comparison (CMP) and Equality test

(EQ) are not as efficient and non-linear operations cannot easily be

realized in the ring Z
2
l .

We introduce Chameleon, a fast, modular, and hybrid (mixed-

protocol) secure two-party computation framework that utilizes GC,

GMW, and additive secret sharing protocols and achieves unprece-

dented performance both in terms of run-time and communication

between parties. The analogy comes from the fact that similar to a

chameleon that changes its color to match the color of the environ-

ment, our framework allows changing the executing SFE protocol

based on the run-time operation. The main design goal behind

Chameleon is to create a framework that combines the advantages

of the previous secure computation methodologies.

The idea of a mixed-protocol solution was first introduced in [21]

which combines GC with Homomorphic Encryption (HE). HE en-

ables to perform MULT and ADD operations on encrypted values

without actually knowing the unencrypted data. The TASTY frame-

work [42] enables automatic generation of protocols based on GC

and HE. However, due to the high computational cost of HE and

costly conversion betweenHE and GC, they achieve only amarginal

improvement compared to the single protocol execution model [51].

Our framework Chameleon is based on ABY [35] which im-

plements a hybrid of additive SS, GMW, and GC for efficient re-

alization of SFE. However, we overcome two major limitations,

thereby improving efficiency, scalability, and practicality: The ABY

model relies on oblivious transfers for precomputing arithmetic

triples which we replace by more efficient protocols using a Semi-

honest Third Party (STP). The STP can be a separate computing

node or it can be implemented based on a smartcard [34] or Intel

Software Guard Extensions (SGX) [7]. Therefore, the online phase

of Chameleon only involves two parties that have private inputs.

Additionally, we extend ABY to handle signed fixed-point num-

bers which is needed in many deep learning applications, but not

provided by ABY and other state-of-the-art secure computation

frameworks such as TASTY.

Chameleon supports 16, 32, and 64 bit signed fixed-point num-

bers. The number of bits assigned to the fraction and integral part

can also be tuned according to the application. The input programs

to Chameleon can be described in the high-level language C++. The
framework itself is also written in C++which delivers fast execution.
In addition to a rich library of pre-defined functions, the user can

simply add any function description as a Boolean circuit or a C/C++
program to our framework and use them seamlessly.

Machine Learning on Private Data Using Chameleon.
Chameleon’s efficiency helps us to address a major problem in

contemporary secure machine learning on private data. Matrix

multiplication (or equivalently, vector dot product computation) is

one of the most frequent and essential building blocks for many

machine learning algorithms and applications. Therefore, in ad-

dition to scalability and efficiency described earlier, we design an

efficient secure vector dot product protocol based on the Du-Atallah

multiplication protocol [37] that has very fast execution and low

communication between the two parties. We address secure Deep

Learning (DL) which is a sophisticated task with increasing attrac-

tion. We also provide privacy-preserving classification based on

Support Vector Machines (SVMs).

The fact that many pioneering technology companies have

started to provide Machine Learning as a Service (MLaaS
1,2,3

)

proves the importance of DL. Deep and Convolutional Neural Net-

works (DNNs/CNNs) have attracted many machine learning practi-

tioners due to their capabilities and high classification accuracy. In

MLaaS, clients provide their inputs to the cloud servers and receive

the corresponding results. However, the privacy of clients’ data is

an important driving factor. To that end, Microsoft Research has

announced CryptoNets [36]. CryptoNets is an HE-based methodol-

ogy that allows secure evaluation (inference) of encrypted queries

over already trained neural networks on cloud servers: queries from

the clients can be classified securely by the trained neural network

model on a cloud server without inferring any information about

the query or the result. In §6.1, we show how Chameleon improves

over CryptoNets as well as other previous works. In addition, we

evaluate Chameleon for privacy-preserving classification based on

Support Vector Machines in App. B.

Our Contributions. Our main contributions are as follows:

• We introduce Chameleon, a novel mixed SFE framework

based on ABY [35] which brings benefits in terms of ef-

ficiency, scalability, and practicality by integrating signed

fixed-point arithmetic, STP-based protocols for precomput-

ing OTs and generating arithmetic and Boolean multiplica-

tion triples, and an optimized STP-based vector dot product

protocol for vector/matrix multiplications.

• We provide detailed performance evaluation results of

Chameleon compared to state-of-the-art frameworks. Com-

pared to ABY, Chameleon requires up to 321× and 256×

less communication for generating arithmetic and Boolean

multiplication triples, respectively.

• We present a proof-of-concept implementation and experi-

mental results on deep and convolutional neural networks.

Comparing to the state-of-the-art Microsoft CryptoNets [36],

we achieve a 133x performance improvement. Comparing

to the recent work of [62], we achieve a 4.2x performance

improvement using a comparable configuration.

1
Amazon AWS AI (https://aws.amazon.com/amazon-ai/)

2
Google Cloud Machine Learning Engine (https://cloud.google.com/ml-engine/)

3
Microsoft Azure Machine Learning Services (https://azure.microsoft.com/

services/machine-learning-services/)

https://aws.amazon.com/amazon-ai/
https://cloud.google.com/ml-engine/
https://azure.microsoft.com/services/machine-learning-services/
https://azure.microsoft.com/services/machine-learning-services/

2 PRELIMINARIES
In the following, we provide a concise overview of the basic proto-

cols and concepts that are used in the paper. Intermediate values

are kept as secret shares of different types. We denote a share of

value x , in type T , and held by party i as ⟨x⟩Ti .

2.1 Oblivious Transfer Protocol
Oblivious Transfer (OT) is a building block for secure computation

protocols. The OT protocol allows a receiving partyR to obliviously

select and receive a message from a set of messages that belong

to a sending party S, i.e., without letting S know which message

was selected. In 1-out-of-2 OT, S has two l-bit messages x0,x1 and
R has a bit b indicating the index of the desired message. After

performing the protocol, R obtains xb without learning anything

about x
1−b and S learns no information about b. We denote n

parallel 1-out-of-2 OTs on l-bit messages as OTnl .
The OT protocol requires costly public-key cryptography that

significantly degrades the performance of secure computation. A

number of methods have been proposed to perform a large number

of OTs using only a few public-key encryptions together with less

costly symmetric key cryptography in a constant number of com-

munication rounds [6, 13, 48]. Although the OT extension methods

significantly reduce the cost compared to that of the original OT,

the cost is still prohibitively large for complex secure computation

that relies heavily on OT. However, with the presence of a semi-

trusted third party, the parties can perform OT protocols with very

low cryptographic computation cost as explained in §5.5.

2.2 Garbled Circuit Protocol
One of the most efficient solutions for generic secure two-party

computation is Yao’s Garbled Circuit (GC) protocol [85] that re-

quires only a constant number of communication rounds. In the GC

protocol, two parties, Alice and Bob, wish to compute a function

f (a,b) where a is Alice’s private input and b is Bob’s. The func-

tion f (., .) has to be represented as a Boolean circuit consisting

of two-input gates, e.g., AND and XOR. For each wire w in the

circuit, Alice generates and assigns two random k-bit strings, called
labels, X 0

w and X 1

w representing 0 and 1 Boolean values where k is

a security parameter, usually set to k = 128 [14]. Next, she encrypts

the output labels of a gate using the two corresponding input labels

as the encryption keys and creates a four-entry table called garbled
table for each gate. The garbled table’s rows are shuffled according

to the point-and-permute technique [69] where the four rows are

permuted by using the Least Significant Bit (LSB) of the input labels

as the permutation bits. Alice sends the garbled tables of all the

gates in the circuit to Bob along with the labels corresponding to

her input a. Bob also obliviously receives the labels for his inputs

from Alice through OT. He then decrypts the garbled tables one

by one to obtain the output labels of the circuit’s output wires.

Alice on the other hand has the mapping of the output labels to 0

and 1 Boolean values. They can learn the output of the function by

sharing this information.

2.3 GMW Protocol
The Goldreich-Micali-Wigderson (GMW) protocol is an interactive

secure multi-party computation protocol [40, 41]. In the two-party

GMW protocol, Alice and Bob compute f (a,b) using secret-shared

values, where a is Alice’s private input and b is Bob’s. Similar to

the GC protocol, the function f (., .) has to be represented as a

Boolean circuit. In GMW, the Boolean value of a wire in the circuit

is shared between the parties: Alice has ⟨v⟩B
0
, Bob has ⟨v⟩B

1
, and the

actual Boolean value is v = ⟨v⟩B
0
⊕ ⟨v⟩B

1
. Since the XOR operation

is associative, the XOR gates in the circuit can be evaluated locally

and without any communication between the parties. The secure

evaluation of AND gates requires interaction and communication

between the parties. The communication for the AND gates on the

same level of the circuit can be done in parallel. Suppose an AND

gate x ∧ y = z (where ∧ is the AND operation) where Alice has

shares ⟨x⟩B
0
and ⟨y⟩B

0
, Bob has shares ⟨x⟩B

1
and ⟨y⟩B

1
, and they wish

to obtain shares ⟨z⟩B
0
and ⟨z⟩B

1
, respectively.

As shown in [35], the most efficient method for evaluating AND

gates in the GMW protocol is based on Beaver’s multiplication

triples [11]: Multiplication triples are random shared-secrets a, b,
and c such that ⟨c⟩B

0
⊕ ⟨c⟩B

1
= (⟨a⟩B

0
⊕ ⟨a⟩B

1
) ∧ (⟨b⟩B

0
⊕ ⟨b⟩B

1
). The

triples can be generated offline using OTs (cf. [80]) or by a semi-

trusted third party (cf. §5.4). During the online phase, Alice and

Bob use the triples to mask and exchange their inputs of the AND

gate: ⟨d⟩Bi = ⟨x⟩
B
i ⊕ ⟨a⟩

B
i and ⟨e⟩Bi = ⟨y⟩

B
i ⊕ ⟨b⟩

B
i . After that, both

can reconstruct d = ⟨d⟩B
0
⊕ ⟨d⟩B

1
and e = ⟨e⟩B

0
⊕ ⟨e⟩B

1
. This way, the

output shares can be computed as ⟨z⟩B
0
= (d ∧ e) ⊕ (⟨b⟩B

0
∧ d) ⊕

(⟨a⟩B
0
∧ e) ⊕ ⟨c⟩B

0
and ⟨z⟩B

1
= (⟨b⟩B

1
∧ d) ⊕ (⟨a⟩B

1
∧ e) ⊕ ⟨c⟩B

1
.

2.4 Additive Secret Sharing
In this protocol, a value is shared between two parties such that

the addition of two secrets yields the true value. All operations are

performed in the ring Z
2
l (integers modulo 2

l
) where each number

is represented as an l-bit integer. A ring is a set of numbers which

is closed under addition and multiplication.

In order to additively share a secret x , a random number within

the ring is selected, r ∈R Z2l , and two shares are created as ⟨x⟩
A
0
= r

and ⟨x⟩A
1
= x − r mod 2

l
. A party that wants to share a secret sends

one of the shares to the other party. To reconstruct a secret, one

only needs to add the two shares x = ⟨x⟩A
0
+ ⟨x⟩A

1
mod 2

l
.

Addition, subtraction, and multiplication by a public constant

value η (z = x ◦ η) can be done locally by the two parties without

any communication: party i computes the share of the result as

⟨z⟩Ai = ⟨x⟩
A
i ◦η mod 2

l
, where ◦ denotes any of the aforementioned

three operations. Adding/subtracting two secrets (z = x +− y) also
does not require any communication and can be realized as ⟨z⟩Ai =

⟨x⟩Ai +− ⟨y⟩
A
i mod 2

l
. Multiplying two secrets, however, requires

one round of communication. Furthermore, the two parties need to

have shares of precomputed Multiplication Triples (MTs). MTs refer

to a set of three shared numbers such that c = a × b. In the offline

phase, party i receives ⟨a⟩Ai , ⟨b⟩
A
i , and ⟨c⟩

A
i (cf. §5.4). By having

shares of an MT, multiplication is performed as follows:

(1) Party i computes ⟨e⟩Ai = ⟨x⟩
A
i − ⟨a⟩

A
i and

⟨f ⟩Ai = ⟨y⟩
A
i − ⟨b⟩

A
i .

(2) Both parties communicate to reconstruct e and f .
(3) Party i computes its share of the multiplication as

⟨z⟩Ai = f × ⟨a⟩Ai + e × ⟨b⟩
A
i + ⟨c⟩

A
i + i × e × f

For more complex operations, the function can be described as

an Arithmetic circuit only consisting of addition and multiplication

gates where in each step a single gate is processed accordingly.

3 RELATEDWORK
Chameleon is essentially a two-party framework that uses a Semi-

honest Third Party (STP) to generate correlated randomness in the

offline phase. In the following, we review the use of third parties in

secure computation as well as other secure two-party and multi-

party computation frameworks.

Third Party-based Secure Computation. Regarding the in-

volvement of a third party in secure two-party computation, there

have been several works that consider an outsourcing or server-
aided scenario, where the resources of one ormore untrusted servers
are employed to achieve sub-linear work in the circuit size of a func-

tion, evenworkload distribution, and output fairness. Realizing such

a scenario can be done by either employing fully-homomorphic

encryption (e.g., [5]) or extending Yao’s garbled circuit protocol

(e.g., [50]). Another important motivation for server-aided SFE is

to address the issue of low-powered mobile devices, as done in

[23–26, 34, 66]. Furthermore, server-aided secure computation can

be used to achieve stronger security against active adversaries [43].

The secure computation framework of [46, Chapter 6] also uti-

lizes correlated randomness. Beyond passive security and one STP,

this framework also covers active security and multiple STPs.

GC-based Frameworks. The first implementation of the GC

protocol is Fairplay [65] that allows users to write the program in

a high-level language called Secure Function Definition Language

(SFDL) which is translated into a Boolean circuit. FairplayMP [15]

is the extension of Fairplay to the multiparty setting. FastGC [47]

reduces the running time and memory requirements of the GC

execution by using pipelining. TinyGarble [83] is one of the recent

GC frameworks that proposes to generate compact and efficient

Boolean circuits using industrial logic synthesis tools. TinyGarble

also supports sequential circuits (cyclic graph representation of cir-

cuits) in addition to traditional combinational circuits (acyclic graph

representation). ObliVM [61] provides a domain-specific program-

ming language and a secure computation framework that facilitates

the development process. Frigate [68] is a validated compiler and

circuit interpreter for secure computation. Also, the authors of [68]

test and validate several secure computation compilers and report

the corresponding limitations. PCF (Portable Circuit Format) [53]

has introduced a compact representation of Boolean circuits that

enables better scaling of secure computation programs. Authors

in [54] have shown the evaluation of a circuit with more than a

billion gates in the malicious model by parallelizing operations.

Secret Sharing-based Frameworks. The Sharemind frame-

work [18] is based on additive secret sharing over the ring Z
2
32 .

The computation is performed with three nodes and is secure in the

honest-but-curious adversary model where only one node can be

corrupted. SEPIA [22] is a library for privacy-preserving aggrega-

tion of data for network security and monitoring. SEPIA is based on

Shamir’s secret sharing scheme where computation is performed

by three (or more) privacy peers. VIFF (Virtual Ideal Functionality

Framework) [31] is a framework that implements asynchronous

secure computation protocols and is also based on Shamir’s secret

sharing. PICCO [87] is a source-to-source compiler that generates

secure multiparty computation protocols from functions written

in the C language. The output of the compiler is a C program that

runs the secure computation using linear secret sharing. SPDZ [32]

is a secure computation protocol based on additive secret sharing

that is secure against n − 1 corrupted computation nodes in the

malicious model. Recent work of [3, 4, 39] introduces an efficient

protocol for three-party secure computation. In general, for se-

cret sharing-based frameworks, three (or more) computation nodes

need to communicate in the online phase and in some cases, the

communication is quadratic in the number of computation nodes.

However, in Chameleon, the third node (STP) is not involved in the

online phase which reduces the communication and running time.

While Chameleon offers more flexibility compared to secret-

sharing based frameworks, it is also computationally more efficient

compared to Sharemind and SEPIA: To perform each multiplication,

Sharemind originally
4
needed 6 instances of the Du-Atallah proto-

col [18] while Chameleon needs 1 (when one operand is shared) or 2

(in the general case where both operands are shared). In SEPIA [22],

all operations are performed modulo a prime number which is

less efficient compared to modulo 2
l
and also requires multiple

multiplications for creating/reconstructing a share.

Mixed Protocol Frameworks. TASTY [42] is a compiler that

can generate mixed protocols based on GC and HE. Several ap-

plications have been built that use mixed protocols, e.g., privacy-

preserving ridge-regression [70], matrix factorization [70], iris and

finger-code authentication [17], and medical diagnostics [9].

Recently, a new framework for compiling two-party protocols

called EzPC [29] was presented. EzPC uses ABY as its cryptographic

back-end: a simple and easy-to-use imperative programming lan-

guage is compiled to ABY input. An interesting feature of EzPC

is its “cost awareness”, i.e. its ability to automatically insert type

conversion operations in order to minimize the total cost of the

resulting protocol. However, authors claim that ABY’s GC engine

always provides better performance for binary operations than

GMW and thus convert only between A-SS and GC.

Our framework extends the ABY framework [35]. Specifically,

we add support for signed fixed-point numbers which is essential

for almost all machine learning applications such as processing

deep neural networks. Our framework provides a faster online

phase and a more efficient offline phase in terms of computation

and communication due to the usage of an STP. Moreover, we

implement a highly efficient vector dot product protocol based on

correlated randomness generated by an STP.

Automatic Protocol Selection. The authors of [51] propose
two methods, one heuristic and one based on integer programming,

to find an optimal combination of two secure computation protocols,

GC and HE. This methodology has been applied to the ABY frame-

work in CheapSMC [73]. The current version of Chameleon does

not provide automatic protocol selection. However, the methods of

[29, 51, 73] can be applied in future work in order to automatically

partition Chameleon programs.

Generation of Multiplication Triplets. Very recently, Lu and
Sakuma [49] presented an efficient protocol for generating MTs that

4
Sharemind replaced the Du-Atallah protocol with a new three-party multiplica-

tion protocol [19]. Due to its symmetry, we cannot modify this protocol to work with

only two parties in the online phase as we do for the Du-Atallah protocol in §5.2.

are specially crafted for matrix multiplications by using additively

shared matrices. The protocol results in a significant performance

improvement in the offline phase compared to prior work, e.g., up to

110x faster run-time compared to SecureML [67] andMiniONN [62].

However, this protocol is limited to matrix multiplications, whereas

Chameleon is generic and thus efficient for any operation.

4 THE CHAMELEON FRAMEWORK
Chameleon comprises of an offline phase and an online phase. The
online phase is a two-party execution model that is run between

two parties who wish to perform secure computation on their

data. In the offline phase, a Semi-honest Third Party (STP) creates

correlated randomness together with random seeds and provides it

to the two parties as suggested in [46]. We describe how the STP

can be implemented in §4.3 and its role in §5.2.

The online phase itself consists of three execution environments:

GC, GMW, and Additive Secret Sharing (A-SS). We described the

functionality of the GC and GMW protocols in §2 and we detail

our implementations of these protocols in §5.1. We implement two

different protocols for the multiplication operation on additive

shares: a protocol based on Multiplication Triples (MTs) that we

described in §2.4 and an optimized version of the Du-Atallah (DA)

protocol [37] (cf. §5.2). In §4.1, we explain how the online phase

works. In order to support highly efficient secure computations, all

operations that do not depend on the run-time variables are shifted

to the offline phase. The only cryptographic operations in the online

phase are the Advanced Encryption Standard (AES) operations

that are used in GC for which dedicated hardware acceleration is

available in many processors via the AES-NI instruction set.

The offline phase includes four tasks: (i) precomputing all re-

quired OTs that are used in GC and type conversion protocols,

thereby providing a very fast encryption-free online phase for OT,
(ii) precomputing Arithmetic Multiplication Triples (A-MTs) used

in the multiplication of additive secret shares, (iii) precomputing

Boolean Multiplication Triples (B-MTs) used in the GMW protocol,

and lastly, (iv) precomputing vector dot product shares (VDPS) used

in the Du-Atallah protocol [37]. In order to reduce the communica-

tion in the offline phase from the STP to the two parties, we use the

seed expansion technique [34] for generating A-MTs and B-MTs

(cf. §5.4). We also introduce a novel technique that reduces the

communication for generating VDPS (cf. §5.2).

4.1 Chameleon Online Execution Flow
In this section, we provide a high-level description of the execution

flow of the online phase. As discussed earlier, linear operations such

as ADD, SUB, and MULT are executed in A-SS. The dot product of

two vectors of size n is also executed in A-SS which comprises n
MULTs and n − 1 ADDs. Non-linear operations such as CMP, EQ,

MUX and bitwise XOR, AND, OR operations are executed in the

GMW or GC protocol depending on which one is more efficient.

Recall that in order to execute a function using the GMW or GC

protocol, the function has to be described as a Boolean circuit.

However, the most efficient Boolean circuit description of a given

function is different for the GMW and the GC protocol: In the GC

protocol, the computation and communication costs only depend

on the total number of AND gates (NAND) in the circuit. Regardless

of the number of XOR gates, functionality, and depth of the circuit,

GC executes in a constant number of rounds. Communication is a

linear function of the number of AND gates (2× k ×NAND). Due to

the Half-Gates optimization (cf. §5.1), computation is bounded by

constructing the garbled tables (four fixed-key AES encryptions)

and evaluating them (two fixed-key AES encryptions). The GMW

protocol, on the other hand, has a different computation and com-

munication model. It needs only bit-level AND and XOR operations

for the computation, but one round of communication is needed per

layer of AND gates. Therefore, the most efficient representation of

a function in the GMW protocol is the one that has minimum circuit
depth, more precisely, the minimum number of sequentially depen-

dent layers of AND gates. As a result, when the network latency or

the depth of the circuit is high, we use GC to execute non-linear

functions, otherwise, GMW will be utilized. The computation and

communication costs for atomic operations are given in App. C.

The program execution in Chameleon is described as different

layers of operations where each layer is most efficiently realized in

one of the execution environments. The execution starts from the

first layer and the corresponding execution environment. Once all

operations in the first layer are finished, Chameleon switches the

underlying protocol and continues the process in the second execu-

tion environment. Changing the execution environment requires

that the type of the shared secrets should be changed in order to

enable the second protocol to continue the process. One necessary

condition is that the cost of the share type translation must not be

very high to avoid diminishing the efficiency achieved by the hybrid

execution. For converting between the different sharing types, we

use the methods from the ABY framework [35] which are based on

highly efficient OT extensions.

Communication Rounds. The number of rounds that both

parties need to communicate in Chameleon depends on the number

of switches between execution environments and the depth of the

circuits used in the GMW protocol. We want to emphasize that the

number of communication rounds does not depend on the size of

input data. Therefore, the network latency added to the execution

time is quickly amortized over a high volume of input data.

4.2 Security Model
Chameleon is secure against honest-but-curious (HbC), a.k.a. semi-

honest, adversaries. This is the standard security model in the

literature and considers adversaries that follow the protocol but

attempt to extract more information based on the data they receive

and process. Honest-but-curious is the security model for the great

majority of prior art, e.g., [18, 35, 83].

The Semi-honest Third Party (STP) can be either implemented

using a physical entity, in a distributed manner using MPC among

multiple non-colluding parties, using trusted hardware (hardware

security modules or smartcards [34]), or using trusted execution

environments such as Intel SGX [7]. In case the STP is implemented

as a separate physical computation node, our framework is secure

against semi-honest adversaries with an honest majority. The latter

is identical to the security model considered in Sharemind [18].

In §3, we list further works based on similar assumptions. Please

note that we introduce a new and more practical computational
model that is superior to Sharemind since only two primary parties

are involved in the online execution. This results in a significantly

faster run-time while better matching real-world requirements.

4.3 Semi-honest Third Party (STP)
In Chameleon, the STP is only involved in the offline phase in or-

der to generate correlated randomness [46]. It is not involved in

the online phase and thus does not receive any information about

the two parties’ inputs nor the program being executed. The only

exception is when computing VDPS for the Du-Atallah protocol:

the STP needs to know the size of the vectors in each dot prod-

uct beforehand. Since the security model in Chameleon is HbC

with honest majority, some information can be revealed if the STP

colludes with either party.

In order to prevent the STP from observing communication

between the two parties, authenticated encryption is added to the

communication channel. Also the communication between the STP

and the two parties is encrypted, so they cannot reconstruct the

other party’s private inputs from observed messages.

5 CHAMELEON DESIGN AND
IMPLEMENTATION

In this section, we provide a detailed description of the different

components of Chameleon. Chameleon is written in C++ and ac-

cepts the program written in C++. The implementation of the GC

and GMW engines is covered in §5.1 and the A-SS engine is de-

scribed in §5.2. §5.3 illustrates how Chameleon supports signed

fixed-point representation. The majority of cryptographic opera-

tions is shifted from the online to the offline phase. Thus, in §5.4,

we describe the process of generating Arithmetic/Boolean Mul-

tiplication Triples (A-MTs/B-MTs). §5.5 provides our STP-based

implementation for fast Oblivious Transfer and finally the security

justification of Chameleon is given in §5.6.

5.1 GC and GMW Engines
Chameleon’s implementation of the GC and GMWprotocol is based

on ABY [35]. Therefore, the input to the engines is the topologically

sorted list of Boolean gates in the circuit as an .aby file. The GC
engine includes themost recent optimizations: Free-XOR [52], fixed-

key AES garbling [14], and Half-Gates [86]. We synthesized GC-

optimized circuits for many primitive functions. Likewise, for the

GMW engine all circuits are depth-optimized as described in [33]

to incur the least latency during the protocol execution. A user can

simply use these circuits by calling regular functions in C++.

5.2 A-SS Engine
In Chameleon, linear operations, i.e., ADD, SUB, MULT, are per-

formed using additive secret sharing in the ring Z
2
l . We discussed

in §2.4 how to perform a single MULT using a multiplication triple.

However, there are other methods to perform a MULT: (i) The

protocol of [16] has very low communication in the online phase.

However, in contrast to our computation model, it requires STP

interaction with the other two parties in the online phase. (ii) The

Du-Atallah protocol [37] is another method to perform multiplica-

tion on additive shared values which we describe next.

The Du-Atallah Multiplication Protocol [37]. In this proto-

col, two parties P0 (holding x) and P1 (holding y) together with

a third party P2 can perform the multiplication z = x × y. At the
end of this protocol, z is additively shared between all three parties.
The protocol works as follows:

(1) P2 randomly generates a0,a1 ∈R Z2l and sends a0 to P0 and
a1 to P1.

(2) P0 computes (x + a0) and sends it to P1. Similarly, P1 com-

putes (y + a1) and sends it to P0.

(3) P0, P1, and P2 can compute their share as ⟨z⟩A
0
= −a0× (y+

a1), ⟨z⟩
A
1
= y × (x + a0), and ⟨z⟩

A
2
= a0 × a1, respectively.

It can be observed that the results are true additive shares of z:
⟨z⟩A

0
+ ⟨z⟩A

1
+ ⟨z⟩A

2
= z. Please note that this protocol computes

shares of a multiplication of two numbers held by two parties in

cleartext. In the general case, where both x and y are additively

shared between two parties (P0 holds ⟨x⟩A
0
, ⟨y⟩A

0
and P1 holds

⟨x⟩A
1
, ⟨y⟩A

1
), the multiplication can be computed as z = x × y =

(⟨x⟩A
0
+ ⟨x⟩A

1
) × (⟨y⟩A

0
+ ⟨y⟩A

1
). The two terms ⟨x⟩A

0
× ⟨y⟩A

0
and

⟨x⟩A
1
× ⟨y⟩A

1
can be computed locally by P0 and P1, respectively.

Two instances of the Du-Atallah protocol are needed to compute

shares of ⟨x⟩A
0
× ⟨y⟩A

1
and ⟨x⟩A

1
× ⟨y⟩A

0
. Please note that Pi should

not learn ⟨x⟩A
1−i and ⟨y⟩

A
1−i , otherwise, secret values x and/or y are

revealed to Pi . At the end, P0 has

⟨x⟩A
0
× ⟨y⟩A

0
,
〈
⟨x⟩A

0
× ⟨y⟩A

1

〉A
0

,
〈
⟨x⟩A

1
× ⟨y⟩A

0

〉A
0

and P1 has

⟨x⟩A
1
× ⟨y⟩A

1
,
〈
⟨x⟩A

0
× ⟨y⟩A

1

〉A
1

,
〈
⟨x⟩A

1
× ⟨y⟩A

0

〉A
1

,

where ⟨z⟩A
0
, ⟨z⟩A

1
are the summations of each party’s shares.

The Du-Atallah protocol was used in Sharemind [18] where there

are three active computing nodes that are involved in the online

phase, whereas, in Chameleon, the third party (STP) is only involved

in the offline phase. This problem can be solved since the role of P2

can be shifted to the offline phase as follows: (i) Step one of the Du-

Atallah protocol can be computed in the offline phase for as many

multiplications as needed. (ii) In addition, P2 randomly generates

another l-bit number a2 and computes a3 = (a0×a1)−a2. P2 sends
a2 to P0 and a3 to P1 in the offline phase. During the online phase,

both parties additionally add their new shares (a2 and a3) to their

shared results: ⟨z⟩A
0,new = ⟨z⟩

A
0
+ a2 and ⟨z⟩

A
1,new = ⟨z⟩

A
1
+ a3.

Security. This modification is perfectly secure since P0 has

received a true random number and P1 has received a3 which is an

additive share of (a0 × a1). Since a2 has uniform distribution, the

probability distribution of a3 is also uniform [18] and as a result,

P1 cannot infer additional information.

Du-Atallah Protocol with one cleartext operand. As we

will discuss in §6, in many cases, the computation model is such

that one operand x is held in cleartext by one party, e.g., P0, and

the other operand y is shared among two parties: P0 has ⟨y⟩
A
0
and

P1 has ⟨y⟩
A
1
. This situation repeatedly arises when the intermediate

result is multiplied by one of the party’s inputs which is not shared.

In this case, only one instance of the Du-Atallah protocol is needed

to compute x × ⟨y⟩A
1
. As analyzed in this section, employing this

variant of the Du-Atallah protocol is more efficient than the pro-

tocol based on MTs. Please note that in order to utilize MTs, both

operands need to be shared among the two parties first, which, as

we argue here, is inefficient and unnecessary. Tab. 1 summarizes

Table 1: Summary of properties of the Du-Atallah multipli-
cation protocol and the protocol based on Multiplication
Triples in §2.4. (i, j) means P0 and P1 have to perform i and j
multiplications in cleartext, respectively. Offline and online
communication costs are expressed in number of bits. On-
line communication costs correspond to data transmission
in each direction. ∗Initial sharing of x is also considered.

Protocol # MULT ops Online Comm. Offline Comm. Rounds
Multiplication Triple (3,4) 2 · l 3 · l 2

∗

Du-Atallah (1,2) l 2 · l 1

the computation and communication costs for the Du-Atallah pro-

tocol and the protocol based on MTs (§2.4). As can be seen, online

computation and communication is improved by factor 2x. Also,

the offline communication is improved by factor 3x. Unfortunately,

using the Du-Atallah protocol in this format will reduce the effi-

ciency of vector dot product computation in Chameleon. Please

note that it is no longer possible to perform a complete dot product

of two vectors by two parties only. The reason is that the third

share (⟨z⟩A
2
= a0 × a1) is shared between two parties (P0 and P1).

However, this problem can be solved by a modification which we

describe next.

Du-Atallah Protocol and Vector Dot Product. We further

modify the optimized Du-Atallah protocol such that the complete

vector dot product is efficiently processed. The idea is that instead

of the STP additively sharing its shares, it first sums its shares

and then sends the additively shared versions to the two parties.

Consider vectors of size n. The STP needs to generate n different

a0 and a1 as a list for a single vector multiplication. We denote the

jth member of the list as [a0]j and [a1]j . Our modification requires

that the STP generates a single l-bit value a2 and sends it to P0.

The STP also computes a3 =
∑n−1
i=0 [a0]j × [a1]j − a2 and sends

it to P1. We call a2 and a3 the Vector Dot Product Shares (VDPS).
This requires that the STP knows the size of the array in the offline

phase. Since the functionality of the computation is not secret, we

can calculate the size and number of all dot products in the offline

phase and ask for the corresponding random shares from the STP.

Reducing Communication. A straightforward implementa-

tion of the offline phase of the Du-Atallah protocol requires that the

STP sends ∼n random numbers of size l ([a0]j and [a1]j) to P0 and
P1 for a single dot product of vectors of size n. However, we suggest
reducing the communication using a Pseudo Random Generator

(PRG) for generating the random numbers as was proposed in [34].

Instead of sending the complete list of numbers to each party, the

STP can create and send random PRG seeds for each string to the

parties such that each party can create [a0]j and [a1]j locally using
the PRG. For this purpose, we implement the PRG using Advanced

Encryption Standard (AES), a low-cost block cipher, in counter

mode (AES CTR-DRBG). Our implementation follows the descrip-

tion of the NIST Recommendation for DRBGs [8]. From a 256-bit

seed, AES CTR-DRBG can generate 2
63

indistinguishable random

bits. If more than 2
63

bits are needed, the STP sends more seeds

to the parties. The STP uses the same seeds in order to generate

a2 and a3 for each dot product. Therefore, the communication is

reduced from n × l bits to sending a one-time 256-bit seed and an

l-bit number per single dot product.

Performance Evaluation. We give an empirical performance

evaluation of our optimized VDP protocol in App. B: the evaluated

SVM classification mainly consists of a VDP computation together

with a negligible subtraction and comparison operation.

5.3 Supporting Signed Fixed-point Numbers
Chameleon supports Signed Fixed-point Numbers (SFN) in addition

to integer operations. Supporting SFN requires not only that all

three secure computation protocols (GC, GMW, and Additive SS)

support SFN but also the secret translation protocols to be com-

patible. We note that the current version of the ABY framework

only supports unsigned integers and IEEE 754 floating point num-

bers [33]. We added an abstraction layer to the ABY framework

such that it supports SFN.

All additive secret sharing protocols only support unsigned inte-

ger values. However, in this section, we describe how such protocols

can be modified to support signed fixed-point numbers. Supporting

signed integers can be done by representing numbers in two’s com-

plement format. Consider the ring Z
2
l which consists of unsigned

integer numbers {0,1,2, ...,2l−1−1,2l−1, ...,2l −1}. We can perform

signed operations by simply interpreting these numbers as the two’s

complement format: {0,1,2, ...,2l−1 − 1,−2l−1, ...,−1}. By doing so,

signed operations work seamlessly.

In order to support fixed-point precision, one solution is to inter-

pret signed integers as signed fixed-point numbers. Each number is

represented in two’s complement format with the Most Significant

Bit (MSB) being the sign bit. There are α and β bits for integer and

fraction parts, respectively. Therefore, the total number of bits is

equal to γ = 1 + α + β . While this works perfectly for addition

and subtraction, it cannot be used for multiplication. The reason is

that when multiplying two numbers in a ring, the rightmost 2 × β
bits of the result correspond to the fraction part while β bits of the

MSBs are overflown and discarded. Our solution to this problem is

to perform all operations in the ring Z
2
l where l = γ +β . After each

multiplication, we shift the result β bits to the right while replicat-

ing the sign bit for β MSBs. While bitshifting by a constant and

sign bit replication is essentially free in GC/GMW, it is non-trivial

in additive sharing. Thus, a conversion from additive sharing to

GC/GMW and back is required between multiplications. Compared

to [67], where the authors apply a similar approach to fixed-point

arithmetic but simply truncate additive shares, this prevents intro-

ducing up to 1 bit inaccuracy per multiplication. The overhead for

the conversions is given in Tab. 9 in App. C. These additional costs

are certainly smaller than adapting the approach of [77], where

the authors naively apply the same method as used for floating-

point arithmetic in ABY [33], i.e., they use hardware compilers to

generate circuits which perform fixed-point arithmetic in GC. Fol-

lowing the observation that in GC the overhead for multiplication

even for integer numbers is large (cf. Tabs. 7 and 8), we expect

our mixed-protocol approach to greatly outperform their imple-

mentation. Please note that for the machine learning applications

discussed in §6 actually no preventable overhead for protocol con-

version occurs: between all multiplications a non-linear function is

computed, which requires conversion to GC/GMW anyhow.

This assumes that in addition to the support by the computa-

tion engines, share translation protocols actually work correctly.

Share translation from GC to GMW works fine as it operates on

bit-level and is transparent to the number representation format.

Share translation from GC/GMW to additive sharing either hap-

pens using a subtraction circuit or OT. In the first case, the result is

valid since the subtraction of two signed fixed-point numbers in

two’s complement format is identical to subtracting two unsigned

integers. In the second case, OT is on bit-level and again transparent

to the representation format. In Chameleon, as in ABY, we use the

OT method for share translation from GC/GMW to additive due to

reduced complexity. Finally, share translation from additive sharing

to GC/GMW is correct because it uses an addition circuit, which is

identical for unsigned integers and signed fixed-point numbers.

Floating Point Operations. Chameleon supports floating

point operations by performing all computations in the GC or GMW

protocol as described in [33] for ABY. A future direction of this

work can be to break down the primitive floating point operations,

e.g., ADD, MULT, SUB, etc. into smaller atomic operations based

on integer values. Consequently, one can perform the linear opera-

tions in the ring and non-linear operations in GC/GMW, providing

a faster execution for floating-point operations.

Most methods for secure computation on floating and fixed point

numbers proposed in the literature were realized in Shamir’s secret

sharing scheme, e.g. [2, 27, 55, 74, 87], but some of them also in

GC [74], GMW [33], and HE [63] based schemes. The quality of the

algorithms varies from self-made to properly implemented IEEE 754

algorithms, such as in [33, 74]. The corresponding software imple-

mentations were done either in the frameworks Sharemind [18]

and PICCO [87], or as standalone applications. For fixed-point arith-

metics, Aliasgari et al. [2] proposed algorithms that outperform

even integer arithmetic for certain operations. As a future direction

of this work, we plan to integrate their methodology in Chameleon.

5.4 Generating Multiplication Triples
As we discussed in §2.4, each multiplication on additive secret

shares requires an Arithmetic Multiplication Triple (A-MT) and one

round of communication. Similarly, evaluating eachANDgate in the

GMWprotocol requires a BooleanMultiplication Triple (B-MT) [34].

In the offline phase, we calculate the number of MTs (NA-MT and

NB-MT). The STP precomputes all MTs needed and sends them

to both parties. More precisely, to generate A-MTs, the STP uses

a PRG to produce five l-bit random numbers corresponding to

a0,b0,c0,a1, and b1. We denote the jth triple with [.]j . Therefore,

the STP completesMTs by computing c1’s as [c1]j = ([a0]j+[a1]j)×
([b0]j + [b1]j) − [c0]j . Finally, the STP sends [a0]j , [b0]j , and [c0]j
to the first party and [a1]j ,[b1]j , and [c1]j to the second party for

j = 1,2, ...,NA-MT. Computing B-MTs is also very similar with the

only differences that all numbers are 1-bit and [c1]j is calculated as

[c1]j = ([a0]j ⊕ [a1]j) ∧ ([b0]j ⊕ [b1]j) ⊕ [c0]j .
Reducing Communication. A basic implementation of pre-

computing A-MTs and B-MTs requires communication of 3 × l ×
NA-MT and 3 × NB-MT bits from the STP to each party, respectively.

However, similar to the idea of [34] presented in §5.2, we use a PRG

to generate random strings from seeds locally for each party. To

summarize the steps: the STP

(1) generates two random seeds: seed0 for generating

[a0]j ,[b0]j , and [c0]j and seed1 for [a1]j and [b1]j ;

(2) computes [c1]j = ([a0]j + [a1]j) × ([b0]j + [b1]j) − [c0]j for
j = 1,2, ...,NA−MT ;

(3) sends seed0 to the first party and seed1 together with the

list of [c1]j to the second party.

After receiving the seeds, both parties locally generate their

share of the triples using the same PRG. This method reduces the

communication from 3×l×NA-MT to 256 and 256+l×NA-MT bits for

the first and second party, respectively. The STP follows a similar

process to generate B-MTs. Fig. 1 illustrates the seed expansion

idea to generate MTs [34].

STP

P1

P0

R
seed0

seed1
R

seed0

seed1

PRG

PRG
[c1]j

PRG

PRG

[a0]j , [b0]j , [c0]j

[a1]j , [b1]j [c1]j

[a0]j , [b0]j , [c0]j

[a1]j , [b1]j

Figure 1: Seed expansion process to precompute A-MTs/B-
MTs with low communication.

5.5 Fast STP-aided Oblivious Transfer
Utilizing the idea of correlated randomness [46], we present an

efficient and fast protocol for Oblivious Transfer that is aided by the

Semi-honest Third Party (STP). Our protocol comprises an offline

phase (performed by the STP) and an online phase (performed by

the two parties). The protocol is described for one 1-out-of-2 OT.

The process repeats for asmanyOTs as required. In the offline phase,

the STP generates randommasksq0,q1 and a random bit r and sends
q0,q1 to the sender and r ,qr to the receiver. In the online phase, two
parties execute the online phase of Beaver’s OT precomputation

protocol [12]. Please note that all OTs in Chameleon including OTs

used in GC and secret translation from GC/GMW to Additive are

implemented as described above.

Reducing Communication. Similar to the idea discussed in

§5.4, the STP does not actually need to send the list of (q0,q1) to
the sender and r to the receiver. Instead, it generates two random

seeds and sends them to the two parties. The STP only needs to

send the full list of qr to the receiver.

5.6 Security
Chameleon is based on the ABY framework [35] where we replace

the interactive offline phase with the following STP-based proto-

cols: (i) STP-aided OTs (cf. §5.5) are implemented via Beaver’s OT

precomputation [12] where the original OTs are sent by the STP,

which is trivially secure. (ii) STP-aided generation of MTs (cf. §5.4)

was proven secure in [34, 46]. (iii) STP-aided multiplication (cf. §5.2)

is done based on an STP-aided extension of the Du-Atallah multi-

plication protocol [37] for which we have argued security already

in §5.2; all further optimizations are simply a compression of the

data sent by the STP and hence do not leak any additional informa-

tion. In summary, security of Chameleon follows from the security

of ABY and the security of our STP-based protocols, so we can state

the following theorem.

Theorem 5.1. Chameleon’s STP-based protocols are secure against
HbC adversaries under the assumption that at most one of the two
parties is passively corrupted and none of them colludes with the STP.

6 MACHINE LEARNING APPLICATIONS
Many applications can benefit from our framework since it is

generic. However, due to Chameleon’s optimized VDP protocol

and signed fixed-point number support, especially the efficiency

of machine learning tasks can be improved. In particular, we show

how Chameleon can be leveraged in Deep Learning (cf. §6.1) and

classification based on SVMs (cf. App. B), and compare its perfor-

mance to previous works. In App. D we review further works on

privacy-preserving machine learning.

We run our experiments for long-term security parameters (128-

bit security) on machines equipped with Intel Core i7-4790 CPUs

@ 3.6GHz and 16GB of RAM with AES-NI support. The STP is

instantiated as a separate compute node running a C/C++ imple-

mentation. The communication between the STP and its clients as

well as between the clients is protected by TLS with client authen-

tication. Except when stated otherwise, all parties run on different

machines within the same Gigabit network.

6.1 Deep Learning
We evaluate our framework on Deep Neural Networks (DNNs) and

a more sophisticated variant, Convolutional Deep Neural Networks

(CNNs). Processing both, DNNs and CNNs, requires the support

of signed fixed-point numbers. We compare our results with the

state-of-the-art Microsoft CryptoNets [36], which is a customized

solution for this purpose based on homomorphic encryption, as

well as other recent solutions.

Deep Neural Networks. Deep learning is a very powerful

method for modeling and classifying raw data that has gained a

lot of attention in the past decade due to its superb accuracy. Deep

Learning automatically learns complex features using artificial neu-

ral networks. While there are many different DNNs and CNNs, they

all share a similar structure: They are networks of multiple layers

stacked on top of each other where the output of each layer is the

input to the next layer. The input to DNNs is a feature vector, which

we denote as x. The input is passed through the intermediate layers

(hidden layers). The output vector of the Lth layer is x(L) where
x
(L)
i denotes the ith element. The length of the vector can change

after each layer. The length of the intermediate result vector at

layer L is NL = length(x(L)).
A DNN is composed of a series of different layers. (i) Fully

Connected layer (FC): the output x(L) is the matrix multiplication

of input vector x(L−1) and a matrix weight W, that is, x(L) =
x(L−1) ·W(L)

. In general, the size of the input and output of the FC
layer is denoted as FCNL−1×NL

. (ii) Activation layer (Act): applies an
activation function f (.) on the input vector, i.e., x

(L)
i = f (x

(L−1)
i).

The activation function is usually a Rectified Linear Unit (ReLu),

Tangent-hyperbolic (Tanh), or Sigmoid function [36, 81].

The input to a CNN is a picture represented as a matrix X where

each element corresponds to the value of a pixel. Pictures can have

multiple color channels, e.g., RGB, in which case the picture is

represented as a multidimensional matrix, a.k.a., a tensor. CNNs are
similar to DNNs but they can potentially have additional layers:

(i) Convolution layer (C): essentially a weighted sum of a “square

region” of size sq in the proceeding layer. To compute the next

output, themultiplicationwindow on the inputmatrix is moved by a

specific number, called stride (st). The weight matrix is called kernel.
There can be Nmap (called map count) kernels in the convolution

layer. (ii) Mean-pooling (MeP): the average of each square region

of the proceeding layer. (iii) Max-pooling (MaP): the maximum of

each square region of the proceeding layer. The details of all layers

are provided in Tab. 2.

Many giant technology companies such as Google, Microsoft,

Facebook, and Apple have invested millions of dollars in accurately

training neural networks to serve in different services. Clients who

want to use these services currently need to reveal their inputs,

which may contain sensitive information, to cloud servers. Thus,

there is a special need to run a neural network (trained by the

cloud server) on input from another party (clients) while keeping

both the network parameters and the input private. For this pur-

pose, Microsoft has announced CryptoNets [36] which can process

encrypted queries in neural networks using homomorphic encryp-

tion. Next, we compare the performance result of Chameleon to

CryptoNets and other more recent works.

Table 2: Different types of layers in DNNs and CNNs.
Layer Functionality
FC x

(L)
i =

∑NL−1−1
j=0 W

(L−1)
i j × x

(L−1)
j

Act x
(L)
i = f (xL−1i)

C x
(L)
i j =

∑sq−1
a=0
∑sq−1
b=0 W

(L−1)
ab × xL−1

(i ·st+a) (j ·st+b)

MeP x
(L)
i j = Mean(xL−1

(i+a) (j+b)), a,b ∈ {1,2, ...,sq }

MaP x
(L)
i j = Max(xL−1

(i+a) (j+b)), a,b ∈ {1,2, ...,sq }

Comparison with Previous Works (MNIST Dataset). We

compare the performance of Chameleon when classifying images

from the MNIST dataset to recent works performing the same task

in Tab. 3. The MNIST dataset [59] contains 60,000 images of hand-

written digits. Each image is represented as 28 × 28 pixels with

values between 0 and 255 in gray scale.

We train a CNN architecture using the Keras library [30] running

on top of TensorFlow [1] using 50,000 images. We achieve a test

accuracy of ∼99% examined over 10,000 test images. The architec-

ture of the trained CNN is depicted in Fig. 2 and composed of: (i) C
layer with a kernel of size 5 × 5, stride 2, and map count 5. (ii) Act
layer with ReLu as the activation function. (iii) FC980×100

layer. (iv)

Another ReLu Act layer, and (v) a FC100×10
layer. The output of the

last layer is a vector of ten numbers where each number represents

the probability of the image being each digit (0-9). We extract the

maximum value and output it as the classification result.

The implementation of the CNN architecture in Chameleon is

straightforward: C and FC layers are implemented according to

their specification in Tab. 2 making use of our efficient VDP pro-

tocol (cf. §5.2). The ReLU Act layer is efficiently implemented as

a MUX operation on the sign bit in GMW. The final arg-max op-

eration is already built-in in ABY and evaluates a balanced binary

Ker nels

Input Im age

3

1

4

5

Five Im ages of Si ze

ReLu

Vector of Si ze

Reshape

ReLu(xi)

ReLu(xi)
Vector of Si ze

ReLu(xi)

ReLu(xi)

ReLu arg max Output Label

Vector of Si ze

In fer ence LabelFul l y ConnectedFul ly Connected Act ivat i on LayerAct ivat i on LayerConvolut i onal LayerInput Im age

Cl ient Input

Ser ver Inputs

FC weights

FC weights

Reconst . OutputGMWA-SSAddi t ive Shar ing Inputs A2GMW GMW2A A-SS GMW GMW2A A-SSA2GMW A2GC GC

Cl ient Output

2

Figure 2: Architecture of our Convolutional Neural Network trained for the MNIST dataset. The upper bar illustrates which
protocol is being executed at each phase of the CNN. The lower bar shows different layers of the CNN from the DL perspective.

Table 3: Comparison of secure deep learning frameworks, their characteristics, and performance results for classifying one
image from the MNIST dataset in the LAN setting.

Framework Methodology

Non-linear Activation

and Pooling Functions

Classification Timing (s) Communication (MB) Classification

AccuracyOffline Online Total Offline Online Total

Microsoft CryptoNets [36] Leveled HE ✗ - - 297.5 - - 372.2 98.95%

DeepSecure [77] GC ✓ - - 9.67 - - 791 99%

SecureML [67] Linearly HE, GC, SS ✗ 4.70 0.18 4.88 - - - 93.1%

MiniONN (Sqr Act.) [62] Additively HE, GC, SS ✗ 0.90 0.14 1.04 3.8 12 15.8 97.6%

MiniONN (ReLu + Pooling) [62] Additively HE, GC, SS ✓ 3.58 5.74 9.32 20.9 636.6 657.5 99%

EzPC [29] GC, Additive SS ✓ - - 5.1 - - 501 99%

Chameleon (This Work) GC, GMW, Additive SS ✓ 1.25 0.99 2.24 5.4 5.1 10.5 99%

tree in GC consisting of comparison and MUX gates. The server’s

input consists of the kernels’ values and FC weights whereas the

client’s input is the image to be classified. The output of the secure

computation is the classification (inference) label. The lower bar in

Fig. 2 shows the order of the different layers of the CNN. The upper

bar depicts the corresponding protocol that executes the current

part of the CNN and also the required conversions. Additionally,

the figure shows the sizes of matrices and vectors in each step.

The performance results compared with Microsoft CryptoNets

and other recent works are provided in Tab. 3. The table further

shows differences in the employed methodologies and the sup-

port of non-linear activation and pooling functions. Except for

DeepSecure [77], the structure of the CNN architectures evaluated

in the other works differs. However, the relevant measures here

are classification accuracy and performance. Since our accuracy

of 99% equals the highest achieved by competitors, the following

performance comparison is fair for frameworks with equal accuracy

and to our disadvantage for frameworks with less accuracy. More

specific differences are discussed below.

We report our run-time as Offline/Online/Total. As can be seen,

Chameleon is 133x faster compared to the customized solution

based on homomorphic encryption of CryptoNets [36]. They per-

formed the experiments on a similar machine (Intel Xeon ES-1620

CPU @ 3.5GHz with 16GB of RAM). Please note that in Cryp-

toNets [36] numbers are represented with 5 to 10 bit precision

while in Chameleon all numbers are represented as 64 bit numbers.

Although the precision does not considerably change the accuracy

for the MNIST dataset, it might significantly reduce the accuracy

results for other datasets. In addition, the CryptoNets framework

neither supports non-linear activation nor pooling functions. How-

ever, it is worth-mentioning that CryptoNets can process a batch of

images of size 8,192 with no additional costs. Therefore, the Cryp-

toNets framework can process up to 51,739 predictions per hour.

Nonetheless, it is necessary that the system batches a large number

of images and processes them together. This, in turn, might reduce

the throughput of the network significantly.

A recent solution based on leveled homomorphic encryption is

called CryptoDL [44]. In CryptoDL, several activation functions

are approximated using low-degree polynomials and mean-pooling

is used as a replacement for max-pooling. The authors state up to

163,840 predictions per hour for the same batch size as in Cryp-

toNets. However, for a single instance, CryptoDL incurs the same

Table 4: Classification time (in seconds) and communication
costs (in megabytes) of Chameleon for different batch sizes
of the MNIST dataset in the WAN setting (100Mbit/s band-
width, 100ms round-trip time).

Classification Time (s) Communication (MB)

Batch Size Offline Online Total Offline Online Total

1 4.03 2.85 6.88 7.8 5.1 12.9

10 10.00 10.65 20.65 78.4 50.5 128.9

100 69.38 84.09 153.47 784.1 505.3 1289.4

computation and communication costs as for one batch. Also, note

that in Chameleon one can implement and evaluate virtually any

activation and pooling function.

The DeepSecure framework [77] is a GC-based framework for se-

cure Deep Learning inference. DeepSecure also proposes data-level

and network-level preprocessing steps before the secure computa-

tion protocol. They report a run-time of 9.67 s to classify images

from the MNIST dataset using a CNN similar to CryptoNets. They

utilize non-linear activation and pooling functions. Chameleon

is 4.3x faster and requires 75x less communication compared to

DeepSecure when running an identical CNN.

SecureML [67] is a framework for privacy-preserving machine

learning. Similar to CryptoNets, SecureML focuses on linear activa-

tion functions. The MiniONN [62] framework reduces the classifica-

tion latency on an identical network from 4.88 s to 1.04 s using sim-

ilar linear activation functions. MiniONN also supports non-linear

activation functions and max-pooling. They report a classification

latency of 9.32 s while successfully classifying MNIST images with

99% accuracy. For a similar accuracy and network, Chameleon has

4.2x lower latency and requires 63x less communication.

For the evaluation of the very recent EzPC framework [29], the

authors implement the CNN from MiniONN in a high-level lan-

guage. The EzPC compiler translates this into an ABY program

while automatically inserting conversions between GC and A-SS.

This results in a total run-time of 5.1 s for classifying one image.

Chameleon requires 48x less communication.

Tab. 3 shows that the total run-time of the end-to-end execution

of Chameleon for a single image is only 2.24 s. However, Chameleon

can easily be scaled up to classify multiple images at the same time

using a CNN with non-linear activation and pooling functions. For

a batch size of 100, our framework requires only 0.18 s processing

time and 10.5MB communication per image providing up to 20,000

predictions per hour in the LAN setting. Tab. 4 furthermore shows

the required run-times and communication for different batch sizes

in a WAN setting where we restrict the bandwidth to 100Mbit/s

with a round-trip time of 100ms. In the WAN setting, we replace

all GMW protocol invocations with the GC protocol to benefit from

its constant round property.

Comparison with Previous Works (CIFAR-10 Dataset). In
accordance with previous works, we also evaluate our framework

by running a CNN to classify images from the CIFAR-10 dataset [56].

The CIFAR-10 dataset comprises 60,000 color images with a reso-

lution of 32 x 32 pixels. We implement and train a CNN with the

same architecture as given in Fig. 13 in [62], which achieves 81.61%

accuracy. Compared to the CNN used for classifying MNIST images,

the architecture of this CNN is more sophisticated: in total there

Table 5: Classification time (in seconds) and communication
costs (in gigabytes) of secure deep learning frameworks for
one image from the CIFAR-10 dataset in the LAN setting.

Framework

Classification Time (s) Communication (GB)

Offline Online Total Offline Online Total

MiniONN [62] 472 72 544 6.23 3.05 9.28

EzPC [29] - - 265.6 - - 40.63

Chameleon (This Work) 22.97 29.7 52.67 1.21 1.44 2.65

are 7 convolution layers, 7 ReLu activation layers, 2 mean-pooling

layers, and one fully connected layer. The exact CNN architecture is

given in Fig. 3 in App. A. We report the performance results when

classifying one image in Tab. 5. Compared to MiniONN [62], the

total run-time is reduced by factor 10.3x. The more recent EzPC

framework [29] is still by factor 5x slower than our solution and

requires 15x more communication.

ACKNOWLEDGMENTS
We thank the anoynmous ASIACCS’18 reviewers and our shepherd

Peeter Laud for helpful comments on our paper. The authors from

UCSD are supported in parts by the National Science Foundation

grant (CNS-1619261), Semiconductor Research Corporation grant

(2016-TS-269), Office of Naval Research grant (N00014-17-1-2500),

and NSF Trust-Hub grant (CNS-1649423). This work has been co-

funded by the DFG as part of project E4 within the CRC 1119

CROSSING and by the German Federal Ministry of Education and

Research (BMBF) as well as by the Hessen State Ministry for Higher

Education, Research and the Arts (HMWK) within CRISP.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-

nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,

Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale

Machine Learning. In OSDI.
[2] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. 2013. Secure

Computation on Floating Point Numbers. In NDSS.
[3] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel

Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. 2017. Optimized Honest-

Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per Second

Barrier. In IEEE S&P.
[4] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-Throughput Semi-Honest Secure Three-Party Computation with an

Honest Majority. In CCS.
[5] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. 2012. Multiparty Computation with Low Communi-

cation, Computation and Interaction via Threshold FHE. In EUROCRYPT.
[6] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation.

In CCS.
[7] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-

Reza Sadeghi, Guillaume Scerri, and Bogdan Warinschi. 2017. Secure multiparty

computation from SGX. In FC.
[8] Elaine Barker and John Kelsey. 2015. NIST Special Publication 800-90A Revision 1:

Recommendation for Random Number Generation Using Deterministic Random Bit
Generators. Technical Report.

[9] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-

Reza Sadeghi, and Thomas Schneider. 2009. Secure evaluation of private linear

branching programs with medical applications. In ESORICS.
[10] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and

Thomas Schneider. 2011. Privacy-Preserving ECG Classification With Branching

Programs and Neural Networks. In IEEE TIFS.
[11] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.

In CRYPTO.
[12] Donald Beaver. 1995. Precomputing oblivious transfer. In CRYPTO.

[13] Donald Beaver. 1996. Correlated pseudorandomness and the complexity of private

computations. In STOC.
[14] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.

Efficient garbling from a fixed-key blockcipher. In IEEE S&P.
[15] Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system

for secure multi-party computation. In CCS.
[16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. 2016. Optimizing Semi-Honest

Secure Multiparty Computation for the Internet. In CCS.
[17] Marina Blanton and Paolo Gasti. 2011. Secure and efficient protocols for iris and

fingerprint identification. In ESORICS.
[18] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A framework

for fast privacy-preserving computations. In ESORICS.
[19] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. 2012. High-

performance secure multi-party computation for data mining applications. Inter-
national Journal of Information Security 11, 6 (2012).

[20] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine

Learning Classification over Encrypted Data. In NDSS.
[21] Justin Brickell, Donald E Porter, Vitaly Shmatikov, and Emmett Witchel. 2007.

Privacy-preserving remote diagnostics. In CCS.
[22] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.

2010. SEPIA: Privacy-preserving aggregation of multi-domain network events

and statistics. USENIX Security (2010).

[23] Henry Carter, Charles Lever, and Patrick Traynor. 2014. Whitewash: outsourcing

garbled circuit generation for mobile devices. In ACSAC.
[24] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. 2013.

Secure Outsourced Garbled Circuit Evaluation for Mobile Devices. In USENIX
Security.

[25] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. 2015.

Outsourcing Secure Two-Party Computation as a Black Box. In CANS.
[26] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. 2016.

Secure outsourced garbled circuit evaluation for mobile devices. In Journal of
Computer Security.

[27] Octavian Catrina and Amitabh Saxena. 2010. Secure Computation with Fixed-

Point Numbers. In FC.
[28] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,

and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural

Network. Cryptology ePrint Archive, Report 2017/035. (2017).

[29] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul

Tripathi. 2017. EzPC: Programmable, Efficient, and Scalable Secure Two-Party

Computation. Cryptology ePrint Archive, Report 2017/1109. (2017).

[30] Francois Chollet. 2015. keras. https://github.com/fchollet/keras. (2015).

[31] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. 2009.

Asynchronous multiparty computation: Theory and implementation. In PKC.
[32] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty

computation from somewhat homomorphic encryption. In CRYPTO.
[33] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,

Thomas Schneider, and Shaza Zeitouni. 2015. Automated synthesis of optimized

circuits for secure computation. In CCS.
[34] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2014. Ad-Hoc Secure

Two-Party Computation on Mobile Devices using Hardware Tokens. In USENIX
Security.

[35] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS.
[36] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. CryptoNets: Applying neural networks to encrypted

data with high throughput and accuracy. In ICML.
[37] Wenliang Du and Mikhail J Atallah. 2001. Protocols for secure remote database

access with approximate matching. In E-Commerce Security and Privacy.
[38] Joan Feigenbaum, Benny Pinkas, Raphael Ryger, and Felipe Saint-Jean. 2004.

Secure computation of surveys. In EU Workshop on Secure Multiparty Protocols.
[39] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-

Throughput Secure Three-Party Computation for Malicious Adversaries and

an Honest Majority. In EUROCRYPT.
[40] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.

Cambridge university press.

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental

game. In STOC.
[42] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo

Wehrenberg. 2010. TASTY: tool for automating secure two-party computations.

In CCS.
[43] Amir Herzberg and Haya Shulman. 2012. Oblivious and Fair Server-Aided Two-

Party Computation. In ARES.
[44] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. CryptoDL: Deep

Neural Networks over Encrypted Data. arXiv preprint arXiv:1711.05189. (2017).

[45] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. 2012.

Secure two-party computations in ANSI C. In CCS.
[46] Yan Huang. 2012. Practical Secure Two-Party Computation. Ph.D. Dissertation.

University of Virginia.

[47] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure

Two-Party Computation Using Garbled Circuits. In USENIX Security.
[48] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious

transfers efficiently. In CRYPTO.
[49] Wen jie Lu and Jun Sakuma. 2018. Faster Multiplication Triplet Generation from

Homomorphic Encryption for Practical Privacy-Preserving Machine Learning

under a Narrow Bandwidth. Cryptology ePrint Archive, Report 2018/139. (2018).

[50] Seny Kamara, Payman Mohassel, and Ben Riva. 2012. Salus: a system for server-

aided secure function evaluation. In CCS.
[51] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. 2014. Automatic

protocol selection in secure two-party computations. In ACNS.
[52] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved garbled circuit: Free

XOR gates and applications. In ICALP.
[53] Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and Kevin RB Butler. 2013. PCF:

A Portable Circuit Format for Scalable Two-Party Secure Computation. In USENIX
Security.

[54] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. 2012. Billion-Gate Secure

Computation with Malicious Adversaries. In USENIX Security.
[55] Toomas Krips and Jan Willemson. 2014. Hybrid model of fixed and floating point

numbers in secure multiparty computations. In ISC.
[56] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.

Technical Report. University of Toronto.

[57] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. 2006. Cryptographically

private support vector machines. In SIGKDD.
[58] Yoshinori Aono Le Trieu Phong, Takuya Hayashi, Lihua Wang, and Shiho Moriai.

2018. Privacy-Preserving Deep Learning via Additively Homomorphic Encryp-

tion. IEEE TIFS (2018).
[59] Yann LeCun, Corinna Cortes, and Christopher Burges. 2017. MNIST dataset.

http://yann.lecun.com/exdb/mnist/. (2017).

[60] Yehuda Lindell and Benny Pinkas. 2000. Privacy Preserving Data Mining. In

CRYPTO.
[61] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.

ObliVM: A programming framework for secure computation. In IEEE S&P.
[62] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network

Predictions via MiniONN transformations. In CCS.
[63] Ximeng Liu, Robert H Deng, Wenxiu Ding, Rongxing Lu, and Baodong Qin. 2016.

Privacy-preserving outsourced calculation on floating point numbers. In IEEE
TIFS.

[64] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren. 2017.

PICS: Private Image Classification with SVM. Cryptology ePrint Archive, Report

2017/1190. (2017).

[65] Dahlia Malkhi, NoamNisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay-Secure

Two-Party Computation System. In USENIX Security.
[66] Payman Mohassel, Ostap Orobets, and Ben Riva. 2016. Efficient Server-Aided

2PC for Mobile Phones. In PoPETs.
[67] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In IEEE S&P.
[68] BenjaminMood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor.

2016. Frigate: A validated, extensible, and efficient compiler and interpreter for

secure computation. In IEEE EuroS&P.
[69] Moni Naor, Benny Pinkas, and Reuban Sumner. 1999. Privacy preserving auctions

and mechanism design. In ACM Conference on Electronic Commerce.
[70] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and

Nina Taft. 2013. Privacy-preserving ridge regression on hundreds of millions of

records. In IEEE S&P.
[71] Claudio Orlandi, Alessandro Piva, and Mauro Barni. 2007. Oblivious Neural

Network Computing via Homomorphic Encryption. In EURASIP Journal on In-
formation Security.

[72] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay

Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-

sarial Settings. In IEEE EuroS&P.
[73] Erman Pattuk, Murat Kantarcioglu, Huseyin Ulusoy, and Bradley Malin. 2016.

CheapSMC: A Framework to Minimize Secure Multiparty Computation Cost in

the Cloud. In DBSec.
[74] Pille Pullonen and Sander Siim. 2015. Combining secret sharing and garbled

circuits for efficient private IEEE 754 floating-point computations. In FC.
[75] Yogachandran Rahulamathavan, Raphael C.-W. Phan, Suresh Veluru, Kanap-

athippillai Cumanan, and Muttukrishnan Rajarajan. 2014. Privacy-Preserving

Multi-Class Support Vector Machine for Outsourcing the Data Classification in

Cloud. In IEEE TDSC.
[76] M Sadegh Riazi, Ebrahim M Songhori, and Farinaz Koushanfar. 2017. PriSearch:

Efficient Search on Private Data. In DAC.
[77] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. DeepSecure:

Scalable Provably-Secure Deep Learning. DAC. (2018).

[78] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. 2009. Efficient

Privacy-Preserving Face Recognition. In ICISC.
[79] Ahmad-Reza Sadeghi and Thomas Schneider. 2009. Generalized Universal Circuits

for Secure Evaluation of Private Functions with Application to Data Classification.

https://github.com/fchollet/keras
http://yann.lecun.com/exdb/mnist/

In ICISC.
[80] Thomas Schneider and Michael Zohner. 2013. GMW vs. Yao? Efficient Secure

Two-Party Computation with Low Depth Circuits. In FC.
[81] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In

CCS.
[82] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. 2016. I am

Robot: (Deep) Learning to Break Semantic Image CAPTCHAs. In IEEE EuroS&P.
[83] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,

and Farinaz Koushanfar. 2015. TinyGarble: Highly Compressed and Scalable

Sequential Garbled Circuits. In IEEE S&P.
[84] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. 2008. Privacy-preserving SVM

classification. Knowledge and Information Systems 14, 2 (2008), 161–178.
[85] Andrew Yao. 1986. How to generate and exchange secrets. In FOCS.
[86] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole.

In EUROCRYPT.
[87] Yihua Zhang, Aaron Steele, and Marina Blanton. 2013. PICCO: a general-purpose

compiler for private distributed computation. In CCS.

A CIFAR-10 CNN ARCHITECTURE
In Fig. 3 we give the architecture of the CNN trained and imple-

mented for classifying images from the CIFAR-10 dataset. The ar-

chitecture is the same as the one in Fig. 13 in [62]. We also list the

protocols used to execute each layer of the CNN in Chameleon and

the necessary protocol conversions.

Layer Description Protocol

Convolution

Input image 3 × 32 × 32, window size 3 × 3, stride (1,1),
pad (1,1), number of output channels 64:

R64×1024 ← R64×27 · R27×1024.
A-SS

A2GMW
ReLu Activation Computes ReLu for each input. GMW

GMW2A

Convolution

Window size 3 × 3, stride (1,1), pad (1,1), number of

output channels 64: R64×1024 ← R64×576 · R576×1024.
A-SS

A2GMW
ReLu Activation Computes ReLu for each input. GMW

GMW2A
Mean Pooling Window size 1 × 2 × 2, outputs R64×16×16. A-SS

Convolution

Window size 3 × 3, stride (1,1), pad (1,1), number of

output channels 64: R64×256 ← R64×576 · R576×256.
A-SS

A2GMW
ReLu Activation Computes ReLu for each input. GMW

GMW2A

Convolution

Window size 3 × 3, stride (1,1), pad (1,1), number of

output channels 64: R64×256 ← R64×576 · R576×256.
A-SS

A2GMW
ReLu Activation Computes ReLu for each input. GMW

GMW2A
Mean Pooling Window size 1 × 2 × 2, outputs R64×16×16. A-SS

Convolution

Window size 3 × 3, stride (1,1), pad (1,1), number of

output channels 64: R64×64 ← R64×576 · R576×64.
A-SS

A2GMW
ReLu Activation Computes ReLu for each input. GMW

GMW2A

Convolution

Window size 1 × 1, stride (1,1), number of output

channels 64: R64×64 ← R64×64 · R64×64.
A-SS

A2GMW
ReLu Activation Computes ReLu for each input. GMW

GMW2A

Convolution

Window size 1 × 1, stride (1,1), number of output

channels 16: R16×64 ← R16×64 · R64×64.
A-SS

A2GMW
ReLu Activation Computes ReLu for each input. GMW

GMW2A

Fully Connected Layer

Fully connects the incoming 1024 nodes to the

outgoing 10 nodes: R10×1 ← R10×1024 · R1024×1.
A-SS

A2GC

Arg Max

Extracts the label of the class with the highest

probability.

GC

Figure 3: The architecture of the CNN trained from the
CIFAR-10 dataset (taken from [62]) and the protocols used
to execute each layer in Chameleon, including the necessary
protocol conversions.

B SUPPORT VECTOR MACHINES (SVMS)
One of the most frequently used classification tools in machine

learning and data mining is the Support Vector Machine (SVM).

An SVM is a supervised learning method in which the model is

created based on labeled training data. The result of the training

phase is a non-probabilistic binary classifier. The model can then

be used to classify input data x which is a d-dimensional vector. In

Chameleon, we are interested in a scenario where the server holds

an already trained SVM model and the user holds the query x. Our
goal is to classify the user’s query without disclosing the user’s

input to the server or the server’s model to the user.

The training data, composed of N d-dimensional vectors, can be

viewed as N points in a d-dimensional space. Each point i is labeled
as either yi ∈ {−1,1}, indicating which class the data point belongs

to. If the two classes are linearly separable, a (d − 1)-dimensional

hyperplane which separates these two classes can be used to clas-

sify future queries. A new query point can be labeled based on

which side of the hyperplane it resides on. The hyperplane is called

decision boundary. While there can be infinitely many such hyper-

planes, a hyperplane is chosen that maximizes the margin between

the two classes. That is, a hyperplane is chosen such that the dis-

tance between the nearest point of each class to the hyperplane

is maximized. Those training points that reside on the margin are

called support vectors. This hyperplane is chosen to achieve the

highest classification accuracy. Fig. 4 illustrates an example in two-

dimensional space. The optimal hyperplane can be represented

using a vector w and a distance from the origin b. Therefore, the
optimization task can be formulated as:

minimize ∥w∥ s.t. yi (w · xi − b) ⩾ 1, i = 1,2, ...,N

The size of the margin equals M = 2

∥w∥ . This approach is called

hard-margin SVM.

M

M
argin

w

b
Class -1

Class 1

Decisio
n

Boundar y

Suppor t
Vector s

Figure 4: Classification using Support Vector Machine
(SVM).

An extension of the hard-margin SVM, called a soft-margin SVM,

is used for scenarios where the two classes are not linearly separable.

In this case, the hinge lost function is used to penalize if the training

sample is residing on the wrong side of the classification boundary.

As a result, the optimization task is modified to:

1

N

N∑
i=1

max (0,1 − yi (w · xi − b)) + λ∥w∥2

where λ is a parameter for the tradeoff between the size of the

margin and the number of points that lie on the correct side of the

boundary.

For both soft-margin and hard-margin SVMs, the performed

classification task is similar. The output label of the user’s query is

computed as:

label ∈ {−1,1} = sign(w · x − b)

We run our experiments using the same setup described in §6.

The results of the experiments are provided in Tab. 6 for feature

vector sizes of 10, 100, and 1,000.

Table 6: Classification time (in seconds) and communication
costs (in kilobytes) of Chameleon using SVMmodels for dif-
ferent feature sizes in the LAN setting.

Classification Time (ms) Communication (kB)

Feature Size Offline Online Total Offline Online Total

10 8.91 0.97 9.88 3.2 3.3 6.5

100 9.49 0.99 10.48 3.9 4.7 8.7

1000 10.28 1.14 11.42 11.1 19.1 30.3

Comparison with Previous Works.Makri et al. [64] present

PICS, a private image classification system based on SVM learn-

ing. They evaluate their implementation in SPDZ [32] with two

computation nodes. For one binary classification with 20 features,

they report 145 s/30ms offline/online run-time. Although in a dif-

ferent security and computational model, Chameleon performs the

same task four orders of magnitude faster. Bos et al. [20] study

privacy-preserving classification based on hyperplane decision,

Naive Bayes, and decision trees using homomorphic encryption.

For a credit approval dataset with 47 features, they report a run-time

of 217ms and 40 kB of communication, whereas, Chameleon can

securely classify a query with 1,000 features in only 11.42ms with

30.3 kB of communication. Rahulamathavan et al. [75] also design

a solution based on homomorphic encryption for binary as well

as multi-class classification based on SVMs. In the case of binary

classification, for a dataset with 9 features, they report 7.71 s execu-

tion time and 1.4MB communication. In contrast, for the same task,

Chameleon requires less than 10ms execution time and 6.5 kB of

communication. Laur et al. [57] provide privacy-preserving train-

ing algorithms based on general kernel methods. They also study

privacy-preserving classification based on SVMs but they do not

report any benchmark results. Vaidya et al. [84] propose a method

to train an SVMmodel where the training data is distributed among

multiple parties. This scenario differs from ours where we are in-

terested in the SVM-based classification. As a proof-of-concept, we

have focused on SVM models for linear decision boundaries. How-

ever, Chameleon can be used for non-linear decision boundaries as

well.

C BENCHMARKS OF ATOMIC OPERATIONS
We benchmark different atomic operations in Chameleon and

compare them with three prior art frameworks: TinyGarble [83],

ABY [35], and Sharemind [18]. The result for ABY is reported for

three different scenarios: GC-only, GMW-only, and Additive SS-

only. For TinyGarble, ABY, and Chameleon we run the frameworks

ourselves. The benchmarking environment remains the same as

described in §6. Unlike TinyGarble and ABY, Sharemind lacks built-

in atomic benchmarks and is a commercial product that requires

contracting even for academic purposes. Thus, we give the results

from the original paper [18] and justify why Chameleon performs

better on equal hardware.

We do not include WAN benchmarks of atomic operations for

the following reason: Due to higher latency, GC-based circuit evalu-

ation with constant rounds is preferred instead of GMW for binary

operations. However, since the atomic benchmarks do not measure

input sharing (for which GC uses STP-aided OT generation), no

difference is visible to prior art.

Evaluation Results. The detailed run-times and communica-

tion costs for arithmetic and binary operations are given in Tab. 7

and in Tab. 8, respectively. The highlighted area for ABY-A in both

tables reflects that ABY does not perform these operations in addi-

tive secret sharing. The highlighted area in Tab. 8 for Sharemind

indicates that the corresponding information is not reported in the

original paper. Tab. 9 additionally shows the run-times for conver-

sions between different sharings.
5
All reported run-times are the

average of 10 executions with less than 15% variance.

As can be seen, Chameleon outperforms all state-of-the-art

frameworks. Run-times and communication for arithmetic oper-

ations in Chameleon are only given in A-SS since from the ABY

results and Tab. 9 it follows that even for a single addition or multi-

plication operation it is worthwhile to perform a protocol conver-

sion. The remaining atomic operations for Chameleon are given in

Boolean sharing where we observe major improvements over ABY

due to our efficient B-MT precomputation.
6
Regarding conversion

operations, the GMW2A, GMW2GC, and A2GC performance in

Chameleon benefits from fast STP-aided OTs (cf. §5.5).

Although, the experimental setup of Sharemind is computation-

ally weaker than ours, we emphasize that Chameleon is more effi-

cient because of the following reasons: (i) To compute each MULT

operation, the Sharemind version benchmarked in [18] requires 6

instances of the Du-Atallah protocol whereas our framework needs

only 2. (ii) In Sharemind, bit-level operations such as XOR/AND re-

quire a bit-extraction protocol, which is computationally expensive.

Please note that these costs are not reported in [18] and hence are

not reflected in Tab. 7. (iii) Operations such as CMP, EQ, and MUX

can most efficiently be realized using GC/GMW protocols and as a

result, Chameleon can perform these operations faster.

The run-times for TinyGarble include base OTs, online OTs, gar-

bling/evaluating, and data transmission. This is why the run-time

for MULT is not significantly higher than for other operations that

require orders of magnitude fewer gates. However, in Chameleon,

we precompute all OTs, which significantly reduces the run-time.

Note that the shown run-times and communication results for

Chameleon represent the worst case, namely for the party that

receives additional data from the STP besides the required seeds

for OT and MT generation.
7

Communication in the Offline Phase. The communication

costs of the offline phase in Chameleon are compared to ABY [35]

in Tab. 10. To generate a single B-MT, Chameleon requires only a

constant-size data transmission to one party and 256× less com-

munication to the other party compared to ABY. When generating

a single A-MT, the required communication to the other party is

reduced by factor 273×/289×/321× for a bitlength of 16/32/64, re-

spectively. This is a significant enhancement since in most machine

learning applications, the main bottleneck is the vector/matrix mul-

tiplication, which requires a large amount of A-MTs.

5
The required communication for conversion operations equals ABY [35] since

STP-aided OT generation does not reduce the amount of communication (cf. Tab. 10).

6
The benchmarking methodology inherited from ABY omits input sharing, which

is why no improvement for GC-based operations is measurable compared to ABY.

7
An improved implementation could equally distribute computation and commu-

nication among the two parties by dividing the data sent by the STP evenly, thereby

further reducing the run-times.

Table 7: Run-Times (in milliseconds unless stated otherwise) for different atomic operations and comparison with prior
art. Each experiment is performed for 1,000 operations on 32-bit numbers in parallel. The detailed performance results for
ABY [35] are provided for three different modes of operation: GC, GMW, and Additive. Minimum values marked in bold.

TinyGarble [83] ABY-GC [35] ABY-GMW [35] ABY-A [35] Sharemind [18] Chameleon
Op Online Offline Online Offline Online Offline Online Online Offline Online

ADD 1.57 s 11.71 2.73 25.78 4.73 0.00 0.00 1 µs 0.00 0.00
MULT 2.31 s 423.82 112.29 174.52 14.25 10.46 0.59 17 4.24 0.13
XOR 0.00 0.00 0.00 0.00 0.00 1 µs 0.00 0.00
AND 1.58 s 11.83 2.34 9.27 0.52 17 1.50 0.56

CMP 1.57 s 11.90 2.63 17.39 1.63 2.5 s 2.46 1.48
EQ 1.56 s 11.60 2.42 9.11 1.15 5 s 1.54 1.09
MUX 1.59 s 11.91 2.49 1.06 0.68 34 1.52 0.63

Table 8: Communication (in kilobytes unless stated otherwise) for different atomic operations and comparison with prior art.
Each experiment is performed for 1,000 operations on 32-bit numbers in parallel. The detailed performance results of the ABY
framework [35] is provided for three modes of operation: GC, GMW, and Additive. Minimum values marked in bold.

TinyGarble [83] ABY-GC [35] ABY-GMW [35] ABY-A [35] Sharemind [18] Chameleon
Op Total Offline Online Offline Online Offline Online Total Offline Online

ADD 7936 992 0 3593 76 0 0 0 0 0
MULT 318 K 47649 0 37900 840 1280 16 192 8 16

XOR 0 0 0 0 0 0 0 0
AND 8192 1024 0 1028 16 192 12 8

CMP 8192 1024 0 2851 45 23 33

EQ 7936 992 0 995 16 8 12

MUX 8192 1024 0 33 8 384 8 4

Table 9: Run-Times (in milliseconds) for conversion opera-
tions and comparisonwith prior art. Each experiment is per-
formed for 1,000 operations on 32-bit numbers in parallel.
Minimum values marked in bold.

ABY [35] Chameleon
Op Offline Online Offline Online

GC2GMW 0.00 0.00 0.00 0.00
GMW2A 9.47 2.44 3.45 2.33
GMW2GC 17.05 1.30 13.24 1.15
A2GC 19.75 14.03 15.83 12.91

Table 10: Communication (in bits) in the offline phase in
Chameleon compared to prior art ABY [35].

ABY [35] Chameleon Improvement
OT 128 128 -

B-MT 256 1 256×

A-MT (bitlength ℓ = 16) 4,368 16 273×

A-MT (bitlength ℓ = 32) 9,248 32 289×

A-MT (bitlength ℓ = 64) 20,544 64 321×

D FURTHER RELATEDWORKS ON
PRIVACY-PRESERVING MACHINE
LEARNING

One of the earliest solutions for obliviously evaluating a neural net-

work was proposed by Orlandi et al. [71]. They suggest adding fake

neurons to the hidden layers in the original network and evaluating

the network using HE. Chabanne et al. [28] also approximate the

ReLu non-linear activation function using low-degree polynomials

and provide a normalization layer prior to the activation layer. How-

ever, they do not report experimental results. Sadeghi and Schneider

proposed to utilize universal circuits to securely evaluate neural

networks and fully hide their structure [79]. Privacy-preserving

classification of electrocardiogram (ECG) signals using neural net-

works has been addressed in [10]. The recent work of Shokri and

Shmatikov [81] is a Differential Privacy (DP) based approach for the

distributed training of a Neural Network and they do not provide

secure DNN or CNN inference. Due to the added noise in DP, any

attempt to implement secure inference suffers from a significant

reduction in accuracy of the prediction. Phong et al. [58] propose

a mechanism for privacy-preserving deep learning based on ad-

ditively homomorphic encryption. They do not consider secure

deep learning inference (classification). There are also limitations

of deep learning when an adversary can craft malicious inputs in

the training phase [72]. Moreover, deep learning can be used to

break semantic image CAPTCHAs [82].

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Oblivious Transfer Protocol
	2.2 Garbled Circuit Protocol
	2.3 GMW Protocol
	2.4 Additive Secret Sharing

	3 Related Work
	4 The Chameleon Framework
	4.1 Chameleon Online Execution Flow
	4.2 Security Model
	4.3 Semi-honest Third Party (STP)

	5 Chameleon Design and Implementation
	5.1 GC and GMW Engines
	5.2 A-SS Engine
	5.3 Supporting Signed Fixed-point Numbers
	5.4 Generating Multiplication Triples
	5.5 Fast STP-aided Oblivious Transfer
	5.6 Security

	6 Machine Learning Applications
	6.1 Deep Learning

	Acknowledgments
	References
	A CIFAR-10 CNN Architecture
	B Support Vector Machines (SVMs)
	C Benchmarks of Atomic Operations
	D Further Related Works on Privacy-Preserving Machine Learning

