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Abstract—We have developed a new optimization paradigm for
solving computationally intractable combinatorial optimization
and synthesis problems. The technique, named probabilistic
constructive, combines the advantages of both constructive and
probabilistic optimization mechanisms. Since it is a constructive
approach, it has a relatively short runtime and is amenable for
the inclusion of insights through heuristic rules. The proba-
bilistic nature facilitates a flexible tradeoff between runtime and
the quality of solution, suitability for the superimposition of a
variety of control strategies, and simplicity of implementation.
After presenting the generic technique, we apply it to a generic
NP-complete problem (maximum independent set) and a synthesis
and compilation problem (sequential code covering). Extensive
experimentation indicates that the new approach provides very
attractive tradeoffs between the quality of solution and runtime,
often outperforming the best previously published approaches.

Index Terms—Graph coloring, maximum independent set, opti-
mization algorithm, sequence covering.

I. INTRODUCTION

A. Motivation

I N ORDER TO develop effective synthesis software, a
number of components need to be in place. For example,

one has to build proper abstractions of synthesis problems that
capture the important features of the problem and eliminate
the nonimportant ones, and build models that accurately char-
acterize the design parameters such as delay, area, and early
power prediction. Also, synthesis software must be modular
and written in such a way that it can be easily reused and mod-
ified. Furthermore, there is a strong demand for convenient and
intuitive user interfaces that simplify the designer’s interaction
with computer-aided design (CAD) tools during the design
process. While the list of desired CAD software properties is
long, at the heart of all synthesis software are optimization
algorithms for solving computationally intractable problems.
In the market place, the most important decision factor for
purchasing a certain tool is its performance on standard
benchmarks. Similarly, in the research world, one of the most
important factors in judging new synthesis techniques is the
experimental results with respect to the previously published
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Fig. 1. Classification of optimization algorithms.

papers on the same set of benchmarks. Therefore, it is not
surprising that historically the CAD community has placed a
strong emphasis on developing efficient algorithms [1].

Optimization algorithms used for synthesis have a great va-
riety of features and, therefore, are difficult to be addressed
in a fully systematic way. Fig. 1 shows the classification op-
timization algorithm according to two main criteria: 1) the way
in which the solution is built and 2) the presence or absence
of randomness during optimization. More specifically, all algo-
rithms can be classified as either deterministic or probabilistic
in one dimension, and as constructive or iterative improvement
in the other dimension. The largest group of algorithms are con-
structive deterministic. For example, many CAD algorithms are
based on the force-directed paradigm [2] or use dynamic pro-
gramming [3]. In the last three decades, deterministic iterative
improvement algorithms [4] were proposed for many problems
and were able to produce excellent results. Simulated annealing
[5] and other probabilistic iterative improvement approaches
have attracted a great deal of attention for solving CAD prob-
lems. Techniques such as genetic algorithms, tabu search, and
simulated evolution, due to their programming simplicity and
flexibility, have been used for a variety of synthesis tasks. Their
main disadvantage, however, is usually long runtime [6].

While numerous algorithms populate three of the quadrants
in Fig. 1, the probabilistic constructive (PC) quadrant appears
empty. There are some algorithms that can be interpreted in a
way that is close in spirit to this quadrant (e.g., randomized de-
terministic algorithms [7]). Our goal is to explore techniques to
develop algorithms which are simultaneously constructive and
probabilistic, by leveraging on the noble properties of both con-
structive and probabilistic algorithms. The main advantage of
constructive algorithms is their relatively short runtime and flex-
ibility to incorporate a variety of insights as efficient heuristics.
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On the other hand, the main advantage of probabilistic algo-
rithms is their inherent flexibility that facilitates the tradeoff be-
tween quality of solution and runtime. They are also suitable for
augmentation with a variety of control strategies such as multi-
start and delayed binding.

The new approach can be explained at the intuitive level in
the following way. We start by searching for a small part of
the problem that can be solved effectively, in such a way that
the remainder of the problem is as suitable as possible for fur-
ther optimization. For this search, we propose a probabilistic
methodology, where parts of the solution are considered and
the decision as to which part to select is made in a probabilistic
manner, so that the likelihood of obtaining a high-quality so-
lution is maximized. The quality of the solution is evaluated
using an objective function. After the small part is solved, we
eliminate it from further consideration and solve the remaining
problem iteratively using the same approach.

We conclude this section by presenting informal specifi-
cations for the two demonstration optimization and synthesis
problems. The maximum independent set (MIS) problem is an
optimization problem defined on an undirected graph. The goal
of the MIS problem is to select the largest number of vertices
in the graph in such a way that there is no edge between any
pair of the selected vertices. Sequence covering is defined on
a sequence of symbols and a set of templates created using
the same set of symbols. The templates are short sequences of
symbols which are to be used to cover the long sequence. The
problem is to cover as much of the long sequence as possible,
using as many times as necessary the templates provided,
without overlapping any of the templates. Further illustration
of the application of the PC approach to two other optimization
problems (the graph coloring and scheduling problems) can be
found in [8].

II. RELATED WORK

The related work in terms of its scope can be classified in
two broad groups. The first one consists of generic algorithmic
techniques, specifically, deterministic constructive algorithms,
deterministic iterative improvement algorithms, and proba-
bilistic iterative improvement algorithms. We restrict our scope
to discrete optimization problems. The second part is related
to state-of-the-art techniques for solving the MIS and sequence
covering.

By far the most popular and widely used generic algo-
rithmic paradigm is the deterministic constructive approach.
Algorithms of this type have been applied on a vast variety
of problems, starting from sorting and basic graph algorithms
such as breadth first search and topological sort, to more
complex graph algorithms, such as all-pairs shortest path
and maximum flow [9]. This paradigm has also been applied
to string matching, computational geometry problems and a
number of theoretic algorithms in many other fields. Several
generic algorithmic techniques of the constructive deterministic
approach have found many applications. For example, greedy
algorithms, dynamic programming, and branch-and-bound are
used to solve many problems. There are a number of excellent
textbooks on this topic including [7], [9], and [10].

In 1970, Kernighan and Lin introduced the first iterative im-
provement heuristic, which they applied to graph partitioning
[4]. The algorithm uses pair swap moves to iteratively reas-
sign elements to different partitions. It proceeds in a series of
passes, during which each component is moved exactly once. A
number of improvements on the basic strategies have been pro-
posed over the years [11].

Randomized versions of the deterministic constructive algo-
rithms have been popular for a long time [7]. Randomization
often dramatically improves the average runtime of algorithms.
A typical example is Quicksort and its randomized version [12].

Since 1953, a number of probabilistic iterative improvement
algorithms have been proposed. Two of them have origins
in statistical mechanics: the metropolis algorithm [13] and
simulated annealing [5], [6]. Simulated annealing found a
spectrum of applications in engineering, computer science,
and image recognition [14]. In contrast to deterministic it-
erative improvement algorithms, simulated annealing allows
hill-climbing moves. Moves are not accepted blindly, like
in random-search algorithms, but according to criteria that
takes the objective function and runtime into consideration.
Consequently, a number of probabilistic iterative improvement
algorithms that often explore with analogy to both the physical
and biological world, have been proposed including genetic
algorithms [15], neural networks, simulated evolution [16], and
tabu search [17].

The new PC paradigm is different from all the above
paradigms. In some sense, it is closest to randomized algo-
rithms. Conceptually, the difference is that PC uses extensive
probabilistic search to find an attractive way to solve an
arbitrary small part of the problem and construct (as opposed
to improve) the solution.

MIS is one of the most popular generic NP-complete prob-
lems [18], [19]. For example, it was one of the first problems
proved to be NP-complete [19]. Most commonly, MISs are used
as a set during graph coloring. As a matter of fact, it has been
experimentally demonstrated that in many domains, finding
an MIS is sufficient to make coloring popular benchmarks
both fast and provably optimal [20]. Nevertheless, there are
a number of intriguing MIS problem applications such as
the hereditary subset problem, determining DNA sequence
similarity [21], and efficient use of amorphous computers and
wireless ad hoc networks. Recently, also several cryptographic
and intellectual property protection techniques have been
proposed which exploit the difficulty of finding the largest,
intentionally placed MIS (or clique) in a random graph to build
security mechanisms [22].

A number of optimization algorithms for MIS problems have
also been proposed. The emphasis was mainly on parallel [23]
and randomized algorithms. In addition, several algorithms for
MIS discovery in special types of graphs have been proposed,
in particular, ones where an optimal polynomial time solution
can be found [19]. Furthermore, a great variety of construc-
tive heuristic and iterative improvement approaches has been
reported.

Finally, note that the closely related maximum clique
problem also has a wide range of applications [24] and that
numerous algorithms have been developed to locate the largest
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clique in the graph [25]. The MIS problem is equivalent to the
maximum clique problem in the complemented graph [19].
An excellent survey on the maximum clique problem is [24].
It presents several exact and heuristic approaches (including
sequential, greedy, simulated annealing, neural networks,
genetic algorithms, tabu search, and continuous domain-based
heuristics) and a number of applications such as coding theory,
geometry of tiling, fault diagnosis, and vision and pattern
recognition.

Sequence covering is a special case of template pattern
matching. A work by Hoffman and McDonald provided
major impetus research on this topic [26]. The most widely
used template-matching technique in compilers is utilizing
the dynamic programming approach [27]. In CAD, the most
popular approach is also a dynamic programming-based
implementation of the Dagon template matching at the logic
synthesis level system by Keutzer [3]. In high-level synthesis,
several approaches have been proposed, including [28] and
[29]. Sequential code covering is also the main task in some
approaches for early power estimation [30].

III. PC OPTIMIZATION APPROACH

In this section, we describe a new generic method for solving
intractable optimization problems using the PC approach.
The main idea is to search, probabilistically, for a small part
of the solution which can be solved well and which leaves
the remaining problem amenable for further optimization.
Essentially, during this step, we probabilistically search for the
part of the problem that is under relatively strict constraints
and try to solve this part in such a way that the reminder of the
problem has the least amount of additional constraints imposed.
The basic premise of the new paradigm is that a probabilistic
search enables fast scanning of parts of the design space while
it preserves the speed of deterministic algorithms.

A. Generic PC Optimization

The generic approach has the following nine components.
Note that some of the components are specific for a particular
problem, while others are invariant over different problems.

Candidate Part (CP). The candidate part is a relatively small
portion of the problem that can be efficiently solved in a partic-
ular way. In the general case, we must make two choices re-
garding the CP: 1) which atomic components of the problem to
consider and 2) how to solve that part of the problem. It is im-
portant that the CP is not too small, in order to avoid overly local
and greedy solutions. It is also important that the CP is not too
large, in order to avoid long search times.

Probabilistic Search (PS). One of the more important as-
pects of the algorithm is how to efficiently search the solution
space using probabilistic constructs. There are two main alterna-
tives: 1) iterative improvement and 2) constructive techniques.
The first defines a move that probabilistically replaces a single
component from the CP with a new component. The second
method is to generate a new CP from scratch each time. From
the implementation point of view, random number generation is
a computationally intensive task in the PC algorithm. In our im-
plementation, we use a stored list of randomly generated num-

bers that is traversed starting from randomly selected points.
While this approach generates numbers that are not completely
compliant with the standard tests for randomness [7], [9], the
extensive experimentation implies that it can speed up the per-
formance of the algorithm by an order of magnitude without
sacrificing the quality of the solution.

Candidate List (CL). The candidate list contains the best
solutions for the CPs found using probabilistic search. The most
important criteria related to the CLs are the ones that select
which solutions should be included in the list. The simplest ap-
proach is to include only the best solutions [with the best
objective function (OF) values]. A more sophisticated approach
takes into account the overlap between the new proposed CPs
and CPs in the candidate list. Another, interesting alternative is
to mainly target the parts of problem that are most constrained.
The intuition is that it is often better to solve the difficult parts
of the problem early, in order to address this part of the problem
while we still have significant freedom in how we can address
the constraints of the problem.

Objective Function (OF). The objective function is a
heuristic measure of likelihood that a particular solution to a
particular part of the final solution is a promising choice. This
idea is similar to the scoring strategies used in game playing
[31], [32]. The main tradeoff is between the accuracy (ability to
estimate) and the runtime. This tradeoff can be systematically
exploited by considering the increasing levels of neighbors of
the elements of the CP and by increasing the computational
effort to form a more accurate picture.

Comprehensive Objective Function (COF). The OF is cal-
culated for all proposed solutions and therefore it is important
that it be fast. Once the number of candidates is reduced to only
a few, it is essential to evaluate them as accurately as possible.
Therefore, before the final selection of a particular candidate
from the CL, we calculate the COF. Conceptually, the main dif-
ference between the OF and COF is that the former involves
calculations of properties related only to properties of a small
part of the solution, while the latter takes into account proper-
ties of the still remaining unsolved regions. Another important
criterion that needs to be taken into consideration is the overlap
between the selected CP and other CPs in the CL. Clearly, less
overlap implies that more of the current candidates can be reused
in the next stages of the algorithm. The same tradeoff, accuracy
and runtime, that was stated for the OF also applies to the COF.

Stopping Criteria. The effectiveness of probabilistic search
for a promising CP is positively correlated with the search time.
Although, to some extent, only experimentation of a particular
problem and particular instance of the problem can accurately
indicate this. Nevertheless, two general guidance criteria can be
stated: 1) longer search time is required in the beginning when
the problem is still large and 2) the best indication of finding a
new quality solution for a CP is that, for a long period of time,
no new superior CP is observed.

Best Candidate Selection (BCS). The best candidate selec-
tion is the process of selecting the part of the CP which will be-
come part of the final solution. The simplest strategy is to select
the CP with the best COF. One can envision approaches where
information from the previous runs of the algorithm or delayed
binding are used.
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Fig. 2. Generic PC Algorithm (GPC).

Solution Integration. Divide and conquer is a popular al-
gorithmic paradigm. Its application is often restricted due to
the difficulty of integrating components. Therefore, one of the
most important aspects of the PC approach is to develop mech-
anisms for integrating solutions to the CPs into the solution of
the overall problem. This solution is the most demanding as-
pect of the PC approach, which requires the highest degree of
creativity. Nevertheless, there exists a generic technique for this
task. The technique is based on constraint manipulation, where
the already solved parts, are presented as constraints to the re-
maining problem.

Overall Control Strategy. Since the new approach is prob-
abilistic, each run of the algorithm, in principle, produces dif-
ferent solutions and has different runtimes. One can superim-
pose a variety of control strategies using the generic algorithm
as the building block. For example, one can use multistarts or
keep statistics about the difficulty of resolving some parts of the
solution and use this as the decision criteria of when to termi-
nate an unpromising start.

The new problem-solving paradigm can be explained in the
following way. We attempt to find a small and readily solvable
part of an overall problem and find a high quality solution to
that part. The objective function is used to evaluate the quality
of the proposed solution. Examining all parts of the problem
is a procedure with exponential time complexity and therefore
is not a plausible approach. This suggests the use of a random-
ized search algorithm. The search should avoid visiting the same
parts of the problem more than once. The parts with a high so-
lution quality are stored for future considerations. In particular,
diverse solutions are very beneficial because they can be used
consequently to form other parts of the solution. Furthermore,
if possible, the CP should be flexible in order to allow the im-
posing of additional control or search strategies later on. The
pseudocode of a generic approach for the PC procedure (GPC)
is listed in Fig. 2.

First, the algorithm finds a CL of promising solvable CPs
. Each CP is found after applying the probabilistic search

to the current instance of the problem P. During this probabilistic
selection, the algorithm favors CPs that are more likely to be
solved efficiently (have higher OF values), and adds only the
best CPs to the CL. Next, the COF is calculated for each of the
CPs in the CL. The BCS is selected from the CL according to the
rule for BCS. This selected BCS, or , which evaluated best

Fig. 3. Delayed binding example.

according to the best candidate selection rules, is then integrated
as part of the solution and eliminated from the problem. The
procedure then repeats on the remainder of the problem until a
complete solution is found.

B. Delayed Binding

One of the main advantages of the PC approach is its flexi-
bility. It is easy to superimpose a number of additional optimiza-
tion mechanisms, such as multiple OFs, on the generic tech-
nique in order to explore the tradeoff between quality of the so-
lution and runtime of the program. In this section, we explain
how delayed binding can be used to enhance the performance
of the generic algorithm.

The basic idea behind delayed binding is the postponement
of the CP selection of a particular partial solution (BCS deci-
sion) until later search iterations. This mechanism is illustrated
in Fig. 3. We assume that originally we make a pending commit-
ment to two solutions and . For each of them, we continue
the search to find several consequent CPs. Specifically, for ,
we find parts , , and , and for we find parts ,

, and . Repeating this again results in 18 different CPs as
shown in Fig. 3.

Now, we evaluate each CP corresponding to each path in the
trees. Specifically, we make the final decision for the or

selection based on the OF values the best . There are
a number of strategies that can be adopted for this task; for ex-
ample, one can adopt , which has the best COF in its chil-
dren. If is the best, we would accept and then restart
the same procedure by eliminating all branches that are not se-
lected. Note that selecting the best potential child is not neces-
sarily an optimal strategy for finding the optimal solution. One
potential alternative is to consider the weighted sum of the best
children. This mechanism is affected by several parameters such
as the depth of the search to which a decision is delayed, and/or
the number of branches at each level. The pseudocode for the
delayed binding mechanism is shown in Fig. 4.

Each time we apply the GPC approach as described in the pre-
vious section, we obtain a different solution .
In order to make a decision to accept a particular and pro-
ceed, we generate the first-level and the
second-level CPs, as they would occur
as a consequence of selecting each solution . We then assign
the solution , as the solution that results in the CP
with the best OF among all leaf CPs in the expansion tree. The
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Fig. 4. Algorithm for delayed binding.

elimination and solution integration operations on this ,
is the same as GPC.

IV. APPLICATION TO MIS

In this section, we introduce the MIS problem and explain
how the new PC paradigm can be applied to it. We conclude this
section by illustrating the approach on a small example. Using
the standard Garey–Johnson format [19], the MIS problem can
be defined formally in the following way:

Problem: Maximum Independent Set (MIS)
Instance: Graph , positive integer .
Question: Does G contain an independent set , i.e., a
subset such that for all pairs of vertices
and the edge {u,v} not in E, with ?

The PC algorithm can be applied to the MIS problem in at
least two conceptually different ways. The first is to select nodes
to include in the MIS. The other is to select nodes which are
to be excluded from the MIS. The solution is then the set of
nodes which remain unconnected in the final graph. For the first
approach, where we select nodes to be included in the MIS, we
define the PC components in the following way.

Candidate Part (CP). We select any subset of nodes which
are not connected by any edges to be considered as the CP. Each
CP is a possible subset of the nodes in the final solution, or MIS.
The candidate part can be of size , where is a variable or
constant value. In our experimental evaluations, we used
nodes. There are several simple and good heuristics for selecting

. For example, can be a fraction of the number of nodes in
the graph. Another intuitive heuristic is to select as a linear or
polynomial function of the number of edges in the graph.

Probabilistic Search. We search the solution space by ex-
cluding a single node from a CP of size , and including another
node that previously was not a member of the CP. The nodes to
exclude and include in the CP are chosen according
to the following equations calculated for each node .

where

We define as the number of neighbors of node , and
as the number of unique neighbors of node , i.e., neighbors that
no other node in the CP have edges to. The variable is the
total number of neighbors for all the neighbors of the current
node . In the remainder of the paper, we will denote the number
of neighbors for a node as . Essentially, the intuition is
to exclude nodes which have many neighbors, and in particular
many unique neighbors, and to retain nodes whose neighbors
have many neighbors. We used the following values: ,

, . The reason for inclusion is exactly the
opposite. We select probabilistically which node to exclude or
include according to the value or for node . Probability
is assigned linearly proportional to a node’s and values.

Candidate List (CL). We include CPs in the CL with the
constraint that no node exists in more than one-fifth of the CPs
in the CL. The intuition is that we do not want many CPs in the
CL which cover the same node, because only one of them can
be used. We also note that if the OFs of the CPs are relatively
consistent in value, then we continue to add CPs to the CL to
make it twice as long as usual. On the other hand, the values of
the OF are distributed over long range, then we cease building
the list, assuming that we have satisfied the minimum list size,

. Our intuition is that if the values of the OF are relatively
consistent, then most likely we should continue to search further
to find a good overall selection.

Objective Function (OF). The objective function is the
weighted sum of , the number of nodes in the remainder of
the graph that are still eligible to be included in the MIS, and

is the total number of edges in the current graph minus the
number of incident edges. We give preference to the CPs that
leave a large number of nodes eligible for selection in the next
iteration. We also give preference to the CPs which eliminate
many edges for the graph. The less edges in the graph the more
likely we are to be able to select more nodes to eventually
include in the MIS. Note that is negative in the following
formula for the OF. Both and are set to 1:

COF. For the COF, we combine the OF with an additional
component. This component penalizes a CP for having a large
number of neighbors. We denote the number of neighbors of
node in the CP by . We denote the size of the CP by .
Therefore, the COF has the following form:

We penalize CPs with nodes that have uniform numbers of edges
because they limit the number of possibly easy to include nodes
for the next iterations. Note that in this case, is negative.

Stopping Criteria. We stop searching for new CPs for the
CL after attempts to find a CP with an improved OF, where

is the weighted number of remaining nodes in the graph.
The idea is that if the recent searching efforts do not bring in
any improvement, then most likely, it will not be found without
significant additional search. We found that times the
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Fig. 5. Example of PC approach applied to the MIS problem.

number of nodes remaining in the graph performs well in prac-
tice.

Best Candidate Selection (BCS). We select the best CP by
enhancing the COF with additional criteria—the number of oc-
currences of the CP in nodes in the CL. If the nodes in the BCS
only appear in one CP in the CL, then by selecting the CP we
preserve a large number of already found CPs and leave a large
part of the solution space with high potential untouched. We de-
note the total number of appearances for node in the CL as

where is the weight factor set to value
Solution Integration. We integrate the BCS into the solution

and leave the remaining problem to be solved by removing all
nodes in the selected CP, as well as neighbors of the nodes and
all incident edges to these nodes.

Overall Control Strategy. For the overall control strategy,
we conduct multistarts given that is the number of nodes
in the original instance. This number was determined experi-
mentally.

The second approach, where we select nodes to exclude from
the MIS, uses many of the same component definitions as the
first approach. The definitions of the candidate part, candidate

list, COF, stopping criteria, best candidate selection, solution
integration, and overall control strategy all remain the same. We
define the remaining components in the following way.

Probabilistic Search. We again select any one of the four
nodes to be excluded from the CP and replace it with another
node. The node to be included and the node to be excluded are
selected probabilistically using the following values:

We define the neighbor of node as , and the neighbor of
as . As previously denoted, #_neigh is the total number

of neighbors of a node. We eliminate the nodes with many
neighbors of neighbors, because these neighbors will greatly
harm a potential solution by eliminating a significant number
of nodes from consideration.

Objective Function (OF). In this case, we use the objective
function that includes only the number of edges which remain
in the resulting graph, . We experimentally set to 1

In order to better explain how the PC approach is applied to
the MIS problem, consider the instance of the problem shown in
Fig. 5. We have a graph G, with 12 vertices and 34 edges, shown



WONG et al.: PROBABILISTIC CONSTRUCTIVE OPTIMIZATION TECHNIQUES 865

in the top left of the figure. For the sack of simplicity and clarity,
we select pairs of vertices for our candidate parts. For the sake
of brevity, instead of doing an iterative probabilistic search, we
use the constructive approach to create CPs.

For each pair of vertices (CP) which we consider to include
in the CL, we evaluate the OF. The OF is equal to the number
of nodes in the remainder of the graph after the selection of the
CP as part of the MIS. For example, if we consider the pair,
K and C, we see that the OF will evaluate to zero. By selecting
these two vertices, we eliminate all the remaining vertices in the
graph. In Fig. 5, we build the CL to include four different CPs
with their OFs. Next, for each of the CPs in the CL, we evaluate
their COFs. Again, for the sake of simplicity and clarity, we as-
sume that the COF is equal to the number of vertices remaining
in the graph. Furthermore, we define the BCS as the CP with
the largest number of remaining vertices in the graph. The first
iteration of the PC algorithm is shown in Step 1. In this case,
we see that the last CP in the list, pair of vertices B and J, has
the highest COF. Therefore, these vertices are selected as part of
the solution. To conduct solution integration, we remove the se-
lected vertices from the graph along with all their neighboring
vertices and all incident edges to these vertices. The resulting
smaller instance is shown in Step 2 of Fig. 5.

In the next iteration of the algorithm, we conduct exactly the
same procedure. We first eliminate all CPs from the CL which
are no longer valid, and replace them with new pairs of vertices.
In this case, the only CP which is still valid consists of vertices E
and G. Next, we re-evaluate the COF for each CP in the CL. As a
result, we find that the CP consisting of vertices H and E has the
highest COF and therefore is selected as the BCS. After solution
integration, we have the resulting graph with three vertices as
shown in Step 3.

Now the problem is reduced to the extent that the only feasible
CP consists of vertices L and G. Also in this moment the CP
algorithms is terminated. We combine all the selected CPs to
build our final solution shown in the bottom right of the figure.
The resulting MIS contains six nodes: B, E, G, H, J, and L.
Exhaustive search indicates that this is the optimal solution.

V. APPLICATION TO THE SEQUENTIAL CODE-COVERING

PROBLEM

We begin this section with the definition of sequential code
covering and the proceed to illustrate how to define the PC ap-
proach on the problem. We conclude this section with an illus-
trative example.

In sequential code covering, the goal is to solve the following
problem. Given a program at the assembly level and a set of
functions (small programs) that are well characterized in terms
of their power consumption, find an accurate estimation of the
power consumption of the program by covering the program
using the functions. In order to make the treatment of the
problem more formal and, hence, provide a sound analysis,
we abstract the sequential code covering problem into the
sequence-covering problem.

Problem: Sequence Covering
Instance: Finite set of symbols , set
of templates such that each template

Fig. 6. Sequence-covering example.

is formed by concatenating an arbitrary number of sym-
bols from set , sequence formed using concatenation
of symbols from set and integer .
Question: Can be covered using multiple instances of
templates such that not two templates overlap and the
number of uncovered symbols in is less than ?

We now summarize the relationship between the power-es-
timation problem and the sequence-covering problem. The
sequence-covering problem can be mapped to the high-level
power estimation problem and, therefore, optimization prob-
lems in programmable processors in the following way. The
set is the set of basic program instructions at the assembly
level. The sequence is a program written by using those
instructions. Each of the templates is well characterized in
terms of its power consumption [30]. It has been experimentally
verified that this procedure yields extremely accurate power
prediction within 3% for the Toshiba R3900 microprocessor
[30]. The goal is to define a way to cover the instruction
sequence with templates from the instruction set , in such
a way that the amount of uncovered instructions is minimized.
No two templates can overlap when they cover the instruction
sequence.

Another, probably even more widely applicable abstraction
that leads to the sequence-covering problem is microcode com-
pression in processors with complex instructions. The goal is
to make the code as compact as possible and therefore as fast
as possible by effectively using complex instructions [33]. Also
note that the sequence covering problem is a special case of the
technology mapping problem in logic synthesis [3] and the tem-
plate matching problem in behavioral synthesis [34].

We further clarify the sequence-covering problem using the
example shown in Fig. 6. Our set of symbols is .
We have four templates – . The example is simple; there-
fore, all the covering options can be easily recognized. If we set

, which implies that we always have less than three in-
structions uncovered, , , and are the covering options.

leaves one uncovered instruction, leaves two uncovered
instructions, and covers all the instructions.

When the sequence-covering problem is addressed using the
PC approach, during each pass through the sequence, the selec-
tion of new starting points is important because it impacts the
decision of which templates will be used for immediate covering
from that point on. In the example, if we start the covering pro-
cedure from the first character of the sequence, we will select
template . However, if we start from the second item in the
sequence, we can never go back and use sequence . For this
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reason, we defined our approach for sequence covering in such a
way that the starting point is randomly selected and a numerous
number of attempts ensure high probability to select a suitable
starting point.

We define the components for the PC approach for sequence
covering as follows:

Candidate Part (CP). We select any continuous subsequence
of the sequence which can be covered by any number of tem-
plates such that there are no more than uncovered ele-
ments in the sequence. We found the value of per-
forms well in practice.

Probabilistic Search. We search the solution space by ana-
lyzing subsets of the sequence to be covered. For each subse-
quence, we calculate a PS value, which indicates the likelihood
of adding the subset to the CL. We define to represent the
total number of occurrences of an element in all CPs in the
CL. If we define as the length of the CP, we can define PS
for each element as follows:

The intuition behind the definition is as follows. If element
is difficult to be covered, any sequence that covers that element
should receive proportionally higher preference.

Candidate List (CL). We continue to add CPs to the CL as
long as each element of sequence S appears less than times.

Objective Function (OF). The objective function takes into
account the weighted sum of two components. The first compo-
nents is the length of the subset that is covered by the CP and
the second is the likelihood that the elements in the subset are
covered by other CPs. A CP is more beneficial if it covers sym-
bols in the sequence which are hard to cover and also covers a
large number of symbols. Therefore, the objective function has
the following form:

COF. In addition to the objective function, the COF has one
more weighted component. For each of the CPs, we calculate
the overlap between the CPs in the CL. We define the overlap
between two CPs A and B, , as the number of identical
symbols covered by both CPs. For each CP, we calculate the
COF as a weighted sum of this overlap and the OF. We penalize
the CP if it overlaps significantly with other CPs in the CL.
The more overlap, the more we are constraining the remaining
problem. Therefore, we have

where

Stopping Criteria. We stop searching once each element has
been covered by CPs in the CL times. By doing this, we give
each element in the sequence a good chance of being covered.
Experimentally, we found to work well in practice.

Best Candidate Selection (BCS). We select the CP with the
best COF value. Note that the COF has a component that ensures
that the overlap between high-quality CPs is taken into account.

Solution Integration. We replace the BCS with a new
symbol , which consists of a unique new symbol and we also
add a new template to the library . This symbol can never be

Fig. 7. Sequence-covering example.

covered in the sequence by any other template other than .
We assume that this template has length 0.

Overall Control Strategy. If after multistarts there is
no improvement in the number of total uncovered elements then
we terminate search. In experimentation, we found to
provide the best results.

To clarify the key steps of the PC approach when applied
to the sequence-covering problem, consider an instance of the
problem shown in Fig. 7. The example contains two symbols,
“a” and “b.” There are three templates, one of length three
( —“aba,”), and two of length two ( —“ba,” —“bb”).
The sequence, S, is composed of 20 symbols.

The goal is to cover the sequence using the templates ,
and such that the largest number of symbols in the sequence
is covered. In our definition of the CP for sequence covering we
select subsequences of the sequence which can be covered with
at most elements uncovered. In this case, we set to
zero. We randomly select a starting point for building the CPs.
In this case, we select positions 6, 1, and 0 in the sequence. We
add each of the CPs to the CL and evaluate each of them using
the COF. In this small example, for the sake of brevity, we sim-
plify the COF to only consider the length of the sequence cov-
ered. The three resulting coverage are , , and as shown
in Fig. 7. In this case, we select as our BCS, the sequence that
covers the longest continuous subsequence. uses 6 templates
to cover 14 symbols, uses 6 templates to cover 13 symbols,
and uses 3 templates to cover 7 symbols. Therefore, we se-
lect CP . Once we have selected our BCS, we do solution inte-
gration by creating a new symbol c and a new template —“c.”
Then we replace the entire covered subsequence in with the
symbol c. The resulting simplified sequence is .

Next, we repeat the whole procedure in exactly the same way.
First we select several new random starting points, and rebuild
the CL. For the sake of brevity we omit the elaboration of the
steps of the algorithms which are identical to the ones explained
in the previous paragraph. The solution is shown in of Fig. 7.
In this case, the best coverage is 19 out of the 20 symbols.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results conducted
on real-life examples, as well as specially prepared examples
for which an optimal solution is known. We applied the PC
techniques to each of the four selected problems and compared
the quality of our solutions to previously published results [20],
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TABLE I
EXPERIMENTAL RESULTS FOR MAXIMUM INDEPENDENT SETS

[30], [35]. All experimentation of the PC approach was done
on a 300-MHz Sun Ultra-10 Workstation (SpecInt 12.1). In the
cases where we compare the new approach with previously pub-
lished results for which we had the software available, we exe-
cuted both programs on this machine. When we were not able to
obtain the software from the best previously published result, we
scaled our obtained runtimes to the runtimes on the originally
used machine. For conversion, we exploit the ratio provided by
SpecInt benchmarks on the Sun Ultra-10 workstation and the
machine which the original results were obtained.

The PC approach and other heuristic techniques with a larger
number of tunable parameters are intrinsically difficult for ex-
perimental evaluation. The source of difficulty is a well-known
“curse of dimensionality:” there are an exponentially large
number of potential combination of parameters. To address
this problem, we used two directions: variety of example and
the perturbation approach. The idea of the perturbation-based
validation is to randomly perturbate each of the used param-
eters by a certain percentage. If the quality of the obtained
solution is not significantly altered with a sizable change, it is
a strong indicator that the obtained results are indeed due to the
effectiveness of the employed optimization mechanisms and
not consequence of parameter overtuning. In our experimenta-
tions, we altered the parameters by 25% and did not notice a
significant changes in the quality of the obtained solutions.

In the case of MIS, we ran testing on instances for the problem
of finding the maximum clique. The maximum clique problem
can be easily mapped to MIS by complementing the graph.
Complemented graph of graph G is a graph that has the same
set of vertices as G. However, has edges between two ver-
tices if and only if G does not have edge between these two
vertices. The MIS in a graph is the maximum clique in the com-
plemented graph and vice versa. This decision was made due to
the fact that we were not able to locate experimental results for
MIS solvers, while a number of maximum clique programs are
readily available.

The first column of Table I indicates the name of the max-
imum clique instance (the instances are from [36], [37]), while
the next column states the number of vertices in the graph.
The next two columns give the number of edges in the original
graph and the number of edges in the complemented graph
respectively. The fifth column represents the number of nodes
in the MIS or maximum clique. The sixth column indicates the
runtimes reported by Coudert on a 60 MHz SuperSparc (85.4
SpecInt). Finally, the seventh column displays the runtime
for finding the MIS using the PC heuristic. These times are

TABLE II
EXPERIMENTAL RESULTS FOR SEQUENCE COVERING

scaled using the SPEC conversion to the original machine, and
therefore are good indicators of the real speed-up. The average
speed-up is approximately 5.5 times. Both our PC approach and
the Coudert approach find the optimal solution on all examples.
The optimal solution is known from the implicit enumeration
of the branch-and-bound approach.

For the sequence covering problem, we created instances with
a specified number of templates and the maximum number of
templates in the sequence . The sequences are created with
the specified number of templates along with random compo-
nents which are not templates. Therefore, the optimal solution
is known a priori for all examples. This optimal solution pro-
vides an upper bound for the evaluation of the CP approach.
The lower bound is provided by a greedy heuristic. The greedy
heuristic functions in the following way. We begin by finding
the first occurrence which can be covered with the longest tem-
plate, and we cover the sequence with this template. From the
end of this template, we continue through the sequence always
trying to cover the sequence with the longest possible template
until we detect a mismatch with respect to all the templates. For
each subsequence which is covered by a template, we replace
it with a character which is not used in any template, and the
procedure is iteratively continued until no further matches can
be found.

The first column of Table II lists the number of templates used
in the instance, while the next column lists the number of tem-
plates in the sequence (the maximum of templates which can be
matched). The length of the sequences is presented in the next
column. The next four columns present the percentage of cov-
erage for the optimal solution, by applying the greedy heuristic,
by applying the generic PC (GPC) heuristic, and by applying
the delayed binding approach, respectively. The last row rep-
resents the average percentage for each of the techniques. The
results show that the delayed binding approach slightly outper-
forms the generic approach in this case. For all examples, the
runtime was within a few seconds.

VII. CONCLUSION

We introduced a new PC algorithm paradigm. We searched
for a small part of the problem that can be solved efficiently
and in such a way that the remaining problem is as amenable
as possible for further optimization. The approach proceeds in
an iteration loop until the complete solution is constructed. The
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method combines the relatively short runtime of constructive al-
gorithms and the flexibility of probabilistic algorithms. We dis-
cussed the main components of the new approach and how the
generic approach can be augmented with additional optimiza-
tion mechanisms. We applied the algorithm to both a generic
NP-complete problem (MIS) and a design problem (sequential
code covering).
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