
ExtDict: Extensible Dictionaries for Data- and
Platform-Aware Large-Scale Learning

Azalia Mirhoseini∗, Bita Darvish Rouhani∗∗, Ebrahim Songhori∗∗, and Farinaz Koushanfar∗∗

Google Brain∗, Department of Electrical and Computer Engineering at University of California San Diego∗∗

Abstract—This paper proposes ExtDict, a novel data- and
platform-aware framework for iterative analysis/learning of mas-
sive and dense datasets. Iterative execution is prohibitively costly
for distributed architectures where the cost of moving data
is continually growing compared with the cost of arithmetic
computing. ExtDict creates a performance model that quantifies
the computational cost of iterative analysis algorithms on a target
platform in terms of FLOPs, communication, and memory, which
characterize runtime, energy, and storage respectively. The core
of ExtDict is a novel parametric data projection algorithm, called
Extensible Dictionary, that enables versatile and sparse repre-
sentations of the data to minimize this computational cost. We
show that ExtDict can achieve the optimal performance objective,
according to our quantified cost model, by platform-aware tuning
of the Extensible Dictionary parameters. An accompanying API
ensures automated applicability of ExtDict to various algorithms,
datasets, and platforms. Proof-of-concept evaluations of massive
and dense data on different platforms demonstrate more than an
order of magnitude improvement in performance compared to the
state-of-the-art, within guaranteed user-defined error bounds.

I. INTRODUCTION

Several classes of fast-growing data, including image and
video, that comprise a significant portion of newly generated
mobile/web content, contain dense (non-sparse) dependencies,
i.e., a large number of non-zeros in the data correlation matrix.
These dense dependencies degrade the performance of most
contemporary learning and classification algorithms, which
rely on iterative updates on the correlation matrix to converge,
including, but not limited to, various forms of regression,
sparse approximation, power methods, and support vector
machine. The challenges are exacerbated for massive and
dense datasets whose handling requires distribution of content
across multiple computing cores and/or accelerators. In such
distributed settings, the dense correlation structure leads to a
high number of costly iterative computations and inter-core
communications, a.k.a., message passing.

Finding methods for efficient and scalable learning of
massive and complex datasets is an active area of research.
Broadly speaking, there are two classes of prior work relevant
to addressing this standing challenge. On the one hand, the
data-aware approaches in machine learning and computer
vision attempt to ease the iterative computation by finding
lower dimensional data structures, e.g., [1], [2], [3]. The limi-
tation of the existing approaches based on the dimensionality
reduction is that they are oblivious to the cost and constraints
imposed by the underlying platform which may be distributed
or heterogeneous.

On the other hand, platform-aware methodologies devel-
oped in the computer architecture and parallel computing
communities provide efficient mapping of the algorithms onto
distributed, heterogeneous, or reconfigurable architectures [4],
[5]. As such, they must follow the data/correlation structure
given by the pertinent dimensionality reduction technique,
which is ubiquitous regardless of the hardware platform.
Note that the methodologies for iterative analysis of data
with a sparse correlation matrix/graph, such as Pregel [6], or
GraphLab [7], are of a limited effectiveness for dense datasets.
Performance of these techniques seriously degrades for densely

correlated data as their underlying algorithms work based on
a sparse correlation assumption.

This paper introduces ExtDict, a novel framework for
performance-efficient and scalable (iterative) learning of mas-
sive data with dense correlations that is simultaneously data-
and platform-aware. The key observation in ExtDict is that the
projection of data into lower dimensional subspaces has a sig-
nificant impact on the performance of the subsequent mapping
onto the distributed or heterogeneous computing platform. The
metrics used for quantifying the ExtDict performance are: (i)
the number of arithmetic operations (FLOPs), (ii) the amount
of messages passed among the processors (communications),
and (iii) storage. Common performance indicators such as the
overall timing, energy, power, and memory footprint can be
directly deduced from these metrics.

The core of ExtDict is a scalable data projection (transfor-
mation) technique, called Extensible Dictionary (ExD). ExD
is a novel data projection method whit tunable parameters
that enables producing several possible projection subspaces
within a given error threshold. We leverage this new degree of
freedom given by the parametric projection to best customize
mapping of data to the target distributed platform. In the
ExtDict preprocessing phase, given a target projection error1,
the ExD is scalably formed from subsamples of data. We
also show how the performance cost of the iterative matrix
computation on the pertinent platform can be modeled based
on a small subset of the data. Given this platform-aware
model, ExtDict automatically tunes the parameters of ExD
to optimize the performance of distributed processing on the
entire dataset. It is worth noting that the preprocessing cost
of the performance minimizing projection is amortized over
several runs as the target learning algorithms for dense and
massive data require multiple iterations to converge. We also
discuss methods for updating the projection given by ExD in
case the data structure dynamically changes.

A. Contributions
The detailed contributions of this paper are as follows:
• Introducing ExtDict, the first end-to-end data- and

platform-aware framework for scalable iterative learning
of big and densely correlated data. Given a performance
cost model and a projection error, ExtDict provably
optimizes the cost of executing the learning algorithm on
the underlying platform.

• Creating a performance model for quantifying the compu-
tational efficiency of ExtDict. The quantified cost metrics
can be used for optimizing the performance in terms of
runtime, energy, and storage.

• Devising Extensible Dictionary (ExD), the first scalable
(linear-time) data transformation methodology that can
produce several possible projection subspaces within the
given error threshold; ExtDict tunes ExD’s parameters
for achieving the best performance on the underlying
platform.

• Developing a new distribution strategy for ExtDict that
enables efficient execution of iterative big data analysis

1We use transformation or projection error interchangeably.

algorithms. The proposed strategy simultaneously per-
forms load balancing and communication minimization;
it reaches the theoretical lower bounds on the mem-
ory/communication bandwidth that are known to be the
performance bottlenecks.

• Providing an open-source ExtDict API in C++ that en-
ables an end-to-end distributed implementation using the
MPI standard message passing interfaces.

• Demonstrating proof-of-concept evaluations of ExtDict
on several massive real-world datasets with up to 5 billion
non-zeros. We evaluated ExtDict on important learning
algorithms including gradient-descent based regression
optimization and power method for applications including
image denoising, image super-resolution, and Principle
Component Analysis (PCA). The results show more than
an order of magnitude improvement in runtime, energy,
and memory footprint compared to existing work.

II. PRELIMINARIES
A. Target Data Analysis Algorithms

The key to many important data analysis and learning
algorithms is exploring the dependency between various data
points. In particular, the pairwise correlation (Gram) matrix
of the variables or signals is widely used for representing the
dependencies. If the original data matrix is denoted by A, the
Gram matrix can be written as G = ATA. Using the Gram
matrix, most learning algorithms iteratively update a vector of
unknown parameters until they converge to a solution. Each
update process requires matrix multiplications in the form of
Gx = ATAx, where x is the unknown parameter vector. When
it comes to big data analysis, the cost of an update process
arises from iterative multiplications of very large matrices and
vectors. In particular, if the dataset is too massive and has
to be distributed, the cost of communication across multiple
computing nodes adds to the overhead of computation.

Examples of such iterative learning algorithms include
descent-based algorithms for solving regression problems such
as LASSO, Elastic net, and Ridge [8], Power method for find-
ing PCA [9], interior point methods for solving Support Vector
Machines (SVM) [10], etc. Due to their universal applicability,
the ExtDict framework targets iterative algorithms that operate
on massive and dense Gram matrices.

For our evaluations, we consider two algorithms and their
applications. The first algorithm is least squares minimization
with `1 regularization, also knows as LASSO [8]. LASSO is a
widely popular machine learning approach with a vast range of
applications in feature selection [11], pattern recognition [8],
classification [12], etc. In our experiments we apply LASSO
for image denoising and image super-resolution applications.
The second algorithm is Power method, which can be used
for solving problems including large-scale PCA [13], spectral
partitioning [14], sparse PCA [13], etc. We use Power method
to find the eigenvalue and eigenvectors of the data.

B. Target Datasets
While several current techniques and frameworks for

running iterative update algorithms on big data rely on
data/correlation sparsity to increase efficiency [15], their per-
formance on densely correlated data heavily degrades. This is
because of the massive number of arithmetics and communica-
tions incurred by the large number of non-zeros of dense data.
Many dense datasets, however, benefit from a less apparent
property that is known as coarse-grained data parallelism. In
other words, dense datasets were shown to often belong to a
single or a union of low-rank subspaces [16].

In this work, we show that several important classes of
visual datasets, including Light Field, Hyperspectral, and Can-
cer Cell images demonstrate union of low-rank properties. In
particular, we demonstrate how this property can be exploited
so that versatile projections of dense data are formed.

III. RELATED WORK
To the best of our knowledge, ExtDict is the first framework

based on platform aware data projection for making subsequent
ML-based processing more resource efficient. Nonetheless,
prior research are related to ExtDict in terms of the problem.
Dimensionality Reduction Approaches. Traditional matrix
projection methods such as SVD and PCA become infeasible
in large scale as they incur O(M2N) complexities (with
large constant factors) for an M ×N matrix. To address this
challenge, randomized algorithms known as Column Subset
Selection (CSS) have been developed [17]. CSS approaches
project data into a lower dimensional subspace. The projec-
tion basis, a.k.a., dictionary, is learned by selecting a subset
of data columns. While the scalability of Randomized CSS
(RCSS) techniques make them most appealing for large data
[17], [18], adaptive CSS methods can create more accurate
dictionaries [19], [1], [20]. Farahat [19] and Leverage Scores
[1] are adaptive methods that aim to minimize the dictionary
size to achieve a given approximation error. Both methods
require creation and storage of the N×N correlation matrices
which is impractical for dense and large data. oASIS [20]
is another adaptive CSS technique that greedily chooses the
most informative columns to add to the dictionary. oASIS
is memory efficient and its runtime scales linearly with N
[20]. Note that the above dimensionality reduction methods
can replace ExD within our framework. We evaluate the
performance of our framework based on ExD (our proposed
platform aware dimensionality reduction) as well as RCSS and
oASIS techniques.
Content Aware Methods for Accelerating ML. Previous
works demonstrate the usability of data transformation meth-
ods for accelerating certain learning/linear algebra problems,
including SVM [21], spectral clustering [14], dimensionality
reduction [17], least squares, norm-1 minimization algorithms
[22], and square-root LASSO [23]. However, unlike ExtDict,
all of the above methods are tailored for the specific learn-
ing/algebraic problem and are not directly applicable to generic
iterative algorithms on the correlation matrix such as LASSO,
Elastic Net (least squares with `1 and `2 regularization), or
Power method. Several prior works have explored the benefit
of optimization based on content for performance efficiency
[24], [25], [26], [27]. Our earlier work, RankMap, proposes
the usability of data transformation to generic iterative update
algorithms [28]. However, RankMap (unlike ExtDict) does
not perform platform aware optimization. In addition, the
error-based criteria for selecting the transformation basis in
RankMap prevents it from creating versatile and over-complete
dictionaries. Stochastic Gradient Descent (SGD) [29] is an-
other common, greedy approach for accelerating ML that does
not always guarantee convergence to the actual solution. It
also does not provide memory usage reduction. We also use
RankMap and SGD as our comparison basis.
Platform Aware Techniques for Hardware Mapping. Prior
research extensively addressed efficient mapping of linear
algebra and ML algorithms onto distributed, heterogeneous,
or reconfigurable architectures [4], [30]. While such methods
effectively optimize the performance with hardware aware
mapping, they do not provide any customization with respect

to hidden data geometry. They instead operate on the data
given by the application which is ubiquitous regardless of the
platform.

IV. GLOBAL FLOW OF EXTDICT
The ExtDict framework targets iterative algorithms that

operate on the massive and dense correlation or Gram matrices.
Many contemporary ML algorithms focus on exploring the
correlations between different data samples. Examples include
descent-based solutions to regression problems such as Ridge
and LASSO [8], Power method for finding PCA [9], interior
point methods for solving SVM [10], etc. The major cost of
an iterative update arises from multiplications on the Gram
matrix, i.e., G = ATA, where A is the original data matrix.
For large and dense data, an update becomes prohibitively
costly due to the huge number of floating point operations
and message passing across the processing nodes.

The overall flow of ExtDict is shown in Figure 1. ExtDict
exploits the well-understood fact that many ML applications
are tolerant to variations in output solution, offering the oppor-
tunity to trade the solution accuracy with resource efficiency
[17], [18]. In Section V, we introduce our novel and parametric
data transformation method, called ExD. ExD seeks to find a
low-dimensional dictionary matrix D and a sparse coefficient
matrix C such that:

min ‖C‖0 s.t. ‖A−DC‖F ≤ ε‖A‖F , (1)

where D is M × L, C is L × N , and L � N . Parameter
ε is a user-defined approximation error, ‖C‖0 is the number
of non-zeros in C, and ‖ · ‖F is the Frobenius norm. ExD
is a pre-processing step whose goal is to create a projection
such that iterative updates on the transformed components
i.e., (DC)TDC, become much more efficient than ATA. The
key idea is that dictionary size L can be used to control the
redundancy in D, to create different levels of sparsity in C. In
other words, by elastically tuning the dictionary size, we can
achieve sparser C’s.

In Section VI, we propose an optimal distributed computing
model to perform iterative computations on DC. We show
that L governs the communication cost, thus, there is a trade-
off between the number of non-zeros (or computation and the
memory footprint) of the projected data and the communica-
tion overhead. We propose metrics to quantify the computing
cost for our distributed model, which directly characterize
memory, runtime, and energy. In Section VII, we demonstrate
our approach for tuning ExD to minimize the quantified costs.
In Section VIII, we provide our evaluations.

V. EXTENSIBLE DICTIONARIES
In this section, we present ExtDict’s scalable sparsity

driven method for projecting the dense data matrix AM×N into
a product of a dictionary matrix DM×L and a sparse matrix
CL×N such that the objective function in Equation 1 holds.

A. ExD Algorithm
In Algorithm 1, we outline ExtDict’s projection method

which we refer to as ExD. The first step is to create the
dictionary matrix D by sub-sampling columns of A uniformly
at random. Once D is created, Equation 1 becomes equivalent
to a generic sparse approximation problem. Each column ci
of C is a sparse approximation of the column ai of A with
respect to D and the user-specified projection error (ε). The
second step is to solve the sparse approximation problem. To
do so, we use Orthogonal Matching Pursuit (OMP) which is a

Algorithm 1 : ExD Algorithm

Input: Normalized data matrix A ∈ RM×N , error tolerance
ε, number of processors NP , and number of columns to
select L.
Output: A sparse matrix C ∈ RL×N and a dictionary
D ∈ RM×L such that ‖A−DC‖F ≤ ε‖A‖F .

0. pid = 02creates a random subset of in dices of size L
(from 1, 2, . . . , N), denoted by IL and broadcasts it to other
processors.
1. pid = i loads D = A(:, IL).
2. pid = i loads Ai = A(:, iNNP

: (i+1)N
NP

).

3. pid = i applies OMP to solve ai = Dci for the tolerance
error ε:

3.0. Initialize r = ai,φ = ∅
while ‖r‖2 < ε‖ai‖2 do

3.1. k = argmaxj |dj .r|
3.2. φ = (φ, k).
3.3. y = D+

φ ai
3.4. r = ai −Dφy

end while

greedy sparse coding routine [31]. When the data is sufficiently
sampled such that the span of columns of D is “close” to
the span of columns of A, OMP finds a sparse coefficient
matrix C such that the error tolerance criteria is met. Setting
the error tolerance to zero (ε = 0) guarantees achieving the
same projection error as least-squares approaches. We note
that sparse approximation has never been used for platform-
customized performance optimization.

B. Sparsity Guarantees for C
Our approach is motivated by recent results for sparse

subspace clustering [12], where the goal is to discover multiple
low-dimensional subspaces present in a collection of data and
then cluster signals according to their subspace membership.
The key intuition is that a sparse representation of a data signal
(columns of A) ideally corresponds to a combination of a few
other signals of A.

In particular, when columns of A lie on a union of
subspaces, if enough columns are selected that represent a
particular subspace (cluster), then the representations of the
remaining columns in A are guaranteed to be sparse [16].
Formally, we say that a set of N columns of A = a1, . . . , aN
each of dimension M , live on a union of Ns subspaces if
a1, . . . , aN ⊂ ∪Ns

i=1Ui, where Ui is a Ki-dimensional subspace
of RN . In this case those columns of C that lie on a Ki-
dimensional subspace will admit a Ki-sparse representation,
i.e., at most Ki non-zeros will be used to represent a signal
within this subspace. This data modeling is quite general
because it can be used to describe data living on a single
subspace (low rank model) and/or multiple subspaces that
might be corrupted with a few outlier columns [16].

In the following, we provide an example that shows how
ExD benefits from the union-of-subspace properties of the data
for sparsification. Figure 2 shows a dataset in R2 space. Each
point is represented by two non-zero elements in the direction
of X and Y axis. This dataset is full-rank, i.e., an SVD
factorization finds two orthogonal basis to represent the data.
Figure 2 shows the orthonormal basis that is found via SVD.

2Processor ID’s are denoted by pid. This notation means processor with
pid = i (0 ≤ i < NP) is in charge of the task.

Fig. 1: Global flow of ExtDict: during pre-processing, dataset A is transformed into a dictionary D and a sparse coefficient
matrix C. The transformation is platform-specific and is tailored to benefit subsequent processing of data.

X

Y

b

a

SVD
ExD

Fig. 2: A union of two 1-dimensional signal models. By
selecting vectors a and b as the atoms of the dictionary, each
data point can be approximated using only one atom.

However, one can observe that by choosing a more suitable
basis for the data, i.e., the two vectors a and b on the figure,
we can approximately represent each data point using only
one non-zero element in the direction of either a or b. Thus,
while the 2D dataset is not inherently low-rank in the classic
definition (as its rank is 2), it lies on a union of two lower
dimensional (rank-1) subspaces. Our approach uses the union
of lower-rank subspaces by forming the dictionary columns,
a.k.a., dictionary atoms from the sample data points, i.e., a and
b in our example. When the data is much higher dimensional
than our 2D example, there is a higher degree of freedom in
the way atoms in D can be selected.

C. The Extensible Dictionary
As discussed earlier, choosing enough columns to create

D is critical for ensuring that we meet the transformation
error criteria and achieve sparsity. Note that when L > M ,
with a high probability, matrix D becomes full rank and
thus the OMP algorithm converges (meets the error criteria).
Theoretical work in the domain of subspace sampling has
attempted to find bounds for L with respect to the intrinsic rank
of a matrix. Recent work by Mahoney et al. [32] proves that
by sampling L ≤ Ω(k log k

(1−δ)2) columns at random, a maximum
(least-squares) error equal to 1

δ of the nuclear norm of the best
K-dimensional approximation of the data (i.e., K-dimensional
truncated SVD of A) is guaranteed.

Unlike existing decomposition approaches based on sub-
space sampling that create matrix C by projecting the data
using C = D+A 3, our approach focuses on creating sparse
representations in C. Our key observation is that by increasing
the redundancy in D (i.e., increasing L), one can vary the
sparsity level of C. We extensively use this property to tune
ExD in order to optimize the performance in a distributed
setting.

3The pseudo-inverse is calculated as: D+ = (DTD)−1DT .

A Anew

D

D
n
ew

C

Cnew

0

0

≈

Fig. 3: Updating the transformation for evolving data.

D. Complexity Analysis
The low-overhead and scalability of ExD is crucial for

its applicability to large datasets. In Algorithm 1, the main
computing task is executing OMP sparse coding routine. In
our implementations, we use Batch-OMP based on Cholesky
factorization updates [3]. The upper bound on the complexity
is O(LMN + L2nnz(C)), where nnz(C) is the number of
non-zeros in C. As we show in our experiments for many
datasets nnz(C)� LN can be achieved. Since each column
of C is computed independently, this algorithm is highly
parallel. Let NP be the number of parallel processing cores.
By replicating D and a fraction of columns of A in each node
(i.e., N

NP
columns), the complexity of Step 3 would reduce to

O(N
NP

(LM + L2 nnz(C)
N)).

E. Evolving Data
In some applications, the dataset A may dynamically

evolve over time. Let us assume A = DC. Whenever a new set
of columns are added to A, we update the coefficient matrix
C by using OMP (Step 3 of ExD) to solve Anew = DCnew;
where A = [A,Anew] and C = [C,Cnew] represent the
updated dataset and coefficient matrix. In some cases the newly
added columns of A may not be expressed well by the space
spanned by the current dictionary D. In other words, the
OMP algorithm might not be able to find Cnew such that the
transformation error criteria is met. For example, a new set
of drastically different images can expand the space of the
original dataset. In such cases, D should also be modified
to include those new structures. To do so, we apply ExD
on Anew to find both Dnew and Cnew. Then we update the
transformation of the entire dataset using zero-padding shown
in Figure 3. The proposed approach enables us to update the
transformation while avoiding the cost of re-applying ExD on
the entire dataset.

VI. DISTRIBUTED COMPUTING MODEL AND
PERFORMANCE QUANTIFICATION

In this section, we first propose an efficient data partitioning
and distributed computing model to perform iterative analysis
on the transformed data, i.e., (DC)TDCx ' ATAx. We
next quantify the performance metrics based on the proposed
distributed model.

Algorithm 2 : Distributing Gram Matrix Multiplication on
DC ' A

Input: Vector xN×1 and transformed data matrices DM×L
and CL×N .
Output: CTDTDCx.

0.0 pid = i loads Ci = C(:, iNNP
: (i+1)N

NP
).

0.1 pid = i loads xi = x(iNNP
: (i+1)N

NP
).

1. pid = i computes v1i = Cixi; v1i is an L× 1 vector.

Case 0: L >M
2. pid = i. loads D.
3. pid = i computes v2i = Dv1i ; v2i is an M × 1 vector.
4. Vectors v2i will be reduced in pid = 0.
5. pid = 0 computes v2 =

∑
v2i ; v2 = DCx is an M × 1

vector.
6. pid = 0 broadcasts v2 to all other processors.
7. pid = i computes CTi (DT v2).

Case 1: L ≤M
2. pid = 0 loads D.
3. Vectors v1i will be reduced in pid = 0.
4. pid = 0 computes v2 = D(

∑
v1i); v2 = DCx is an

M × 1 vector.
5. pid = 0 computes v3 = DT v2; v3 = DTDCx is an
L× 1 vector.
6. pid = 0 broadcasts v3 to all other processors.
7. pid = i computes CTi v

3.

A. Data Partitioning and Distributed Mapping
Algorithm 2 outlines ExtDict’s computing model. Depend-

ing on whether L > M (Case 0) or L < M (Case 1), we
propose two different approaches. In Case 0, we replicate
matrix D in all the processors to reduce communication. How-
ever, doing so requires all the processors to do the redundant
multiplication, i.e, DT v2 in Step 7. In Case 1 however, the
computation corresponding to DT v2 is done only by processor
0. As discussed in Section V, most contemporary datasets are
in the regime that M, L � N . Thus, D is a relatively small
matrix that can easily fit into the memory of processor 0.
Execution phase in Figure 1 shows Case 1 where L < M
and D is stored only in processor 0.

B. Performance Quantification
In the following, we first provide the arithmetic and com-

munication bounds. We then use these bounds to quantify the
performance in terms of runtime, energy, and memory.
Bounds on Arithmetics. The cost of arithmetics is directly
dependent on the number of floating point operations for doing
(DC)TDCx. The computations involving C should be done
in an efficient way to exploit its sparsity. This reduces the
computations in Steps 1 and 7 (for both cases) to the number
of non-zeros in C or nnz(C). The number of floating point
operations (in serial) is 2(ML+ nnz(C)

NP
) multiplications and

2MNP additions. Here, the cost of additions is negligible
because in many cases we have NP � L.

Bounds on Communication. The communication overhead of
Algorithm 2 stems from the reduce and broadcast activities.
In Case 0, Step 4, each processor sends a message containing
M words to Processor 0, and in Step 6, Processor 0 sends a
message containing M words back to other processors. In a
similar fashion in Case 1, at Steps 3 and 5, L words are com-
municated. The total number of words that are communicated
simultaneously is 2×min(L,M).

We exploit the extensive work in applied numerical linear
algebra to show that our computational model achieves the
optimal communication. More exactly, Demmel et al.’s work
on communication-optimal parallel recursive rectangular ma-
trix multiplication directly applies to our target problem [33].
In that work, it is shown that for multiplying Z = XY where
dimensions of matrices X , Y , and Z belong to {d1, d2, d3}
such that (d1 ≤ d2 ≤ d3), if 2d3d2 > NP (which is the
case in our framework when d3 = N), the communication
lower bound (number of communicated words) is Ω(d1d2).
Substituting the dimensions by those of matrices D, C, and x
we get d1 = 1 and d2 = min(M,L) which brings the number
of transferred words to min(M,L). Thus, our communication
achieves the optimal (minimum) bound.

1) Runtime Performance: The overall execution runtime is
directly affected by the arithmetic and communication costs
and is approximately proportional to:

ML+
nnz(C)

NP
+ min(M,L)NPR

time
b2f , (2)

where Rtimeb2f is the word-per-FLOPs ratio that characterizes
the memory bandwidth per unit of time performance.

The first two terms reflect the computational operations
and the third term reflects the adjusted communication over-
head. During the message passing phases in Algorithm 2, all
processors are locked and no computation is done. Although
a number of other factors affect the runtime such as memory
hierarchy, cache size, size of shared memory (for the cores
within a computing node), and geometry of the distributed
nodes, in our experiments, we quantitatively show that our
approximation provides a reasonable estimation of the actual
runtime.

2) Energy Performance: Similarly, the overall execution
energy is approximately proportional to:

ML+ nnz(C) + min(M,L)NPR
energy
b2f , (3)

where Renergyb2f is the word-per-FLOPs ratio that characterizes
the memory bandwidth per unit of energy performance. The
first two terms reflect the computational operations and the
third term reflects the adjusted communication overhead.

3) Memory Performance: The sparsifying effect of ExD
transformation results in significant reductions in memory
footprint. Memory usage decreases due to replacing the orig-
inal dense matrix A with the relatively lower dimensional
dictionary matrix D and the sparse coefficient matrix C. In
both proposed implementations (Algorithm 2) the memory
footprint per processing node is bounded by:

ML+
nnz(C) +N

NP
. (4)

VII. AUTOMATED CUSTOMIZATION OF EXD
In this section, we present ExtDict’s approach for optimiz-

ing the performance of the iterative update algorithms. More
exactly, we discuss how the extensible dictionaries proposed
in Section V can be tuned to minimize the performance costs
quantified in Section VI.

We tune ExD by finding an optimized L as an input
for Algorithm 1. The input must be such that the resulting
(L, nnz(C)) pair minimizes the performance costs quantified
in Equations 2, 3, or 4. In the following, we propose a novel
scalable method to tune ExD. Our method estimates nnz(C)
as a function of L with preprocessing only portions of the
original, massive data matrix A.

0

30

60

90

120

150

α
(L

)

α(L)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

L

N
or

m
al

iz
ed

 e
rr

or

Salina 203 × 54129

Transformation
Error

Fig. 4: Density function (or the number of non-zeros in each
column of C) α(L) as a function of the columns sampled
L. The bars show the variance for 100 trials of random sub-
sampling to form D. The average transformation error ‖A −
DC‖F /‖A‖F as a function of L.

Estimating nnz(C). Here we provide an example dataset to
show the relationship between L and nnz(C). Figure 4 shows
the normalized transformation error (‖A − DC‖F /‖A‖F) as
a function of L. The figure also plots the average per-column
number of non-zeros in C as a function of L. We denote this
function as:

α(L,A, ε) =
nnz(C)

N
. (5)

The dataset is a collection of Hyperspectral signals from [34]
with M = 203, N = 54129. The search space for parameter L
is limited to L ≥ Lmin, where Lmin is the minimum number
of columns that should be sampled such that the transformation
error criteria is met (‖A−DC‖F < ε‖A‖F). In this example
Lmin ≈ 175.

It can be seen that function α(L,A, ε) is decreasing for
L > Lmin. This is due to the fact that a larger L would result
in a greater ensemble of signals in D. This enables representing
columns of A as a linear combination of fewer signals from
D. In an extreme case when L = N (or D = A), then the ith
column of A (ai) can be transformed as ai = Dei, where ei is
a unit vector whose ith entry is 1 and all of its other entries are
0. In this case α(N,A, ε) = 1, however, the cost in Equation
2 becomes too large due to the large L. When L < Lmin, the
OMP method cannot reconstruct some of the ai columns even
if all the columns in D are selected in the reference set φ (see
Algorithm 1).

The bars on the graph shows the variation in α(L,A, ε) for
100 different initial ensemble collection for D. It can be seen
that the variations are very negligible for a fixed L (dispersion
index is less than 4% for this example).

Estimating α(L,A, ε) from Smaller Subsets of A. In order
to optimize the performance cost (e.g., Equation 2), function
α(L,A, ε) needs to be characterized. While a Brute Force
approach (i.e., running Algorithm 1 for various L values)
would provide us with the best L, it is not an efficient nor
a feasible solution for massive N . To provide an effective way
to find α(L,A, ε), we rely on the following two important
observations.

First, let A be a data with a union of subspace signal model.
Let As be a random subset of A such that |As|4= n, then for
n → N : E[α(L,As, ε)] = E[α(L,A, ε)]. Second, recalling
our formal definition of union-of-subspace data (which is a
generalization of low-rank datasets) in Section IV, we assume
columns of A are a collection of signals from Ns subspaces
where each subspace Ui is Ki-dimensional (for 1 ≤ i ≤ Ns).
In this case if ni columns of A lie on subspace Ui, then the

4| · | is the cardinality or number of columns.

coefficient matrix corresponding to those ni columns have at
most Kini non-zeros [16], [12]. Based on our definition of the
density measure, we have α(L,A, ε) ≤

∑
1≤i≤Ns

Ki
ni

N . Let
us create As by selecting n columns at random from A. The
expected number of columns in As that belong to subspace
Ui is ni

N n. If we apply Algorithm 1 to As, we get As =
DsCs. Thus, the following expected upper bound is achieved
for α(L,As, ε) ≤

∑
Ki

ni

N which is the same as the bound on
α(L,A, ε).

The above observations indicate that finding α(L,As, ε)
from a subset of A yields a close estimation of α(L,A, ε).
One can run ExD for random subsets of A denoted by Ai,
such that |A1| < |A2| < · · · < |A| until the discrepancy
in α(L,Ai, ε) reduces to a prespecified threshold. In Section
VIII-B2 we experimentally verify the above observations.

VIII. EVALUATION

Implementation and API. We implement our proposed tun-
able ExD transformation (Section V) and the distributed iter-
ative model on the transformed data (Sections VI and VII) in
C++ using the standard message passing system (MPI). We use
Eigen library for linear algebra computation. Our API takes
the following user inputs: dataset A, transformation error ε,
and the learning algorithm as an iterative update function on
Gram matrix. We experimentally measure the platform-specific
relative cost of arithmetic vs. communication (Rtimeb2f).

All our evaluations are done on IBM iDataPlex (node
type: Intel-Xeon-X5660@2.80GHz) cluster. Within the IBM
iDataPlex platform, we studied several configuration of nodes
and cores within each node to emulate various platforms. Note
that all previous work in data transformation literature are
oblivious to platform and always return the same outputs for
the same approximation error.
Datasets. Our evaluations are done on the datasets shown in
Table I.

TABLE I: Datasets used for various applications.
Denoising Super-Resolution PCA

Gradient-descent Gradient-descent Power method
Light Field [35] Light Field [35] Salina [34] Cancer Cell 5 Light Field [35]
1600× 146000 576× 146000 203× 54129 1024× 111296 18496× 272320

1.86GB 672.7MB 87.9MB 911.7MB 40.3GB

A. Applications and Baselines

Applications and Algorithms. We evaluate 3 applications:
image denoising, image super-resolution, and PCA. In the
following, we describe each application and our baselines for
comparison.

In the first two applications, we use gradient-descent to
solve a LASSO objective. The LASSO objective function is
written as follows: ‖Ax− y‖2 + λ|x|1, where λ is a learning
parameter. As discussed in Section II-A, LASSO is a widely
popular approach with numerous applications including feature
selection [11], pattern recognition [8], and classification [12].

For image denoising, y is a noisy image, A is a dataset of
denoised Light Field pixels. The reconstructed signal, i.e., Ax
would become the denoised image. For image super-resolution,
y is a lower-resolution image that is reconstructed via LASSO
objective using a scaled down version of A, where A is
a dataset of high-resolution pixels. To be more precise, we
consider a scenario where Alf is a dataset created from 8× 8
patches of a 5×5 light-field camera setting. Thus, Alf has 1600

5This dataset consists of cancer tumor morphologies collected in MD-
Anderson cancer center.

rows. y is an image derived from a 3 × 3 subset of lightfield
cameras and has 576 rows. We create a subset of Alf , denoted
by A, corresponding to the 3× 3 camera subset. Thus, A also
has 576 rows. We then solve LASSO using A and y to find x.
Once x is found, Alfx would yield a higher-resolution version
of y with 1600 rows. To solve the LASSO problem, we use
iterative gradient descent approach. Each iteration performs an
update of type Gxt − AT y. We use the Adagrad method for
updating the gradient [36].

Our last application is the Power method, a widely used
algorithm for finding the principle components of large-scale
datasets (PCA analysis). Finding PCA of a large-scale data
is a highly expensive computational task. Once the principal
components (singular and eigen-values) are found, they can
be readily used to solve a wide range of learning problems
including image classification [37], [14], feature extraction
[13], and face recognition [38].

Power method iteratively performs matrix-vector multi-
plication on the Gram matrix, i.e., xt+1 = Gxt

‖Gxt‖2 , until
convergence (to the largest eigenvalue) is achieved. Vector xt
and the norm ‖Gxt‖2 denote the estimated eigenvector and
eigenvalue at the tth iteration respectively. After convergence,
the content associated with the found eigenvalue is subtracted
from the data. Power method then re-iterates itself to find the
next largest eigenvalue.

In our experiments, we provide extensive runtime, memory,
and error analysis. We do not provide energy analysis. How-
ever, the energy usage is dominantly governed by the number
of floating point operations and communication (Equation 3).
Thus, the runtime and memory analysis directly translate to
energy as well.

Baselines. We consider two types of comparisons. The first
type compares our preprocessing, i.e., ExD transformation,
with other state-of-the-art existing scalable transformations
including Random Column Subset Selection (RCSS) [32],
Adaptive column sampling for kernel matrix approximation
method (oASIS) [20], and the sparsifying columns subset
selection-based methos (RankMap) [28], [39]. Each of these
transformations can substitute ExD within our proposed frame-
work. In Section VIII-B3, we compare the memory and
runtime performance of the transformed data, using each of the
above methods against ExD and demonstrate the advantages
of using our platform-aware approach.

The second type, compares our approach with other prac-
tices for solving learning objectives for large datasets. More
precisely, for the denoising and image super-resolution appli-
cations, we compare ExtDict’s implementation of gradient-
descent based approach, with Stochastic Gradient Descent
(SGD). SGD is a popular but approximate method that cir-
cumvents operations on large kernel matrices by using only
a subset (or a batch) of data in each iteration. The subset,
denoted by Ab, is randomly constructed from a rows of A.
The update is done using ATb Abx instead of ATAx. Different
subsets of rows are selected at each iteration. We implemented
a distributed SGD method using Adagrad to update the gra-
dients. The drawback of SGD is in its sub-optimality, non-
guaranteed, and slow convergence, since only portions of data
is used to update the solution [29]. ExtDict, however, runs the
provably converging gradient-decent algorithm on the entire
(but transformed) dataset.

For PCA application, we compare Power method on orig-
inal data A as opposed to using the transformed data DC.

B. Evaluating ExtDict’s Preprocessing
Our framework is developed based on the proposed tunable

ExD transformation for preprocessing data. In the following,
we investigate several aspects of ExD including its tunability,
sparsifying effect, and overhead. We also compare its perfor-
mance with other transformation methods.

1) Tunability of ExD: We verify the ability of ExD to create
versatile sparse transformations. Figure 5 shows the effect of
varying the input parameters of ExD, namely dictionary size
L, and transformation error ε, to achieve different sparsity
levels in the coefficient matrix C. The y axis demonstrates
the average number of non-zeros per column of C denoted
by α(L) 6. On each figure, the name and size of datasets are
shown. As it can be seen, α(L) can be significantly lower than
the number of non-zeros in the original data. For example, for
Light Field data, when L = 1000 the average number of non-
zeros per column is reduced from 18496 in A to approximately
800, 600, and 200 for (ε = 0.01, 0.05, and 0.1 respectively)
in C.

The following two novel and critical properties of ExD
are evident: (i) by increasing the redundancy in the dictionary
(large L), we can achieve sparse coefficient matrices. (ii) by
increasing the transformation error-tolerance, we can achieve
sparser solutions. ExtDict takes advantage of these tunable
characteristics to tune the transformation w.r.t. the platform
requirement. Recall that the tradeoff is that increasing L would
yield a higher communication (Equation 2), and increasing
error might yield to unwanted error in learning applications
that use the transformed data.

L
200 400 600 800 1000

,
(L

)

0

50

100

150

200

Salina 203 # 54129

0 = 0.01
0 = 0.05
0 = 0.1

(a)
L

1000 2000 3000 4000 5000 6000

,
 (

L
)

0

200

400

600

800

1000
Cancer Cells 1024 # 111296

0 = 0.01
0 = 0.05
0 = 0.1

(b)
L

1000 2000 3000 4000 5000 6000

,
 (

L
)

0

200

400

600

800

1000
Light Field 18496 # 272320

0 = 0.01
0 = 0.05
0 = 0.1

(c)

Fig. 5: Tunablity of ExD transformation. The average number
of non-zeros per column of C (i.e., α(L)) versus L for
different transformation errors ε are shown. Both increasing
the redundancy in dictionary and increasing error tolerance
yield sparser transformations.

2) Low-overhead ExD Tuning and Executing: We exper-
imentally verify our claim in Section VII, that we can use
subsets of data to tune parameter L. Figure 6, demonstrates
α(L) as a result of applying ExD on the subsets of the data,
i.e., A1 ⊂ A2 ⊂ A3 ⊂ A4 ⊂ A5 ⊂ A. The transformation
error ε is set to 0.1 (10%). It is evident that a reasonable
estimation of α(L) can be achieved by running ExD on subsets
of data, thus, reducing the overhead of tuning ExD during the
preprocessing phase. For example for L = 1000 using only
10% of data is sufficient to estimate α(L) within less that
14% error for all datasets. Once, α(L) is estimated for various
Ls, target performance model (Equations 2, 3, or 4) can be
used to find the optimal L that reduces the costs.

Table II shows the total preprocessing time overhead, which
accounts for both tuning and running ExD for the optimal L.
The computations are done on 64 cores (8 nodes each with
8 cores). As we will see later, the overhead of ExD, which
is a one-time preprocessing step, is amortized when iterative
algorithms are run on the transformed data. Note that even
though Light Field has a larger dimension than Cancer Cells

6We abbreviate α(L,A, ε) with α(L).

L
0 500 1000 1500 2000

,
(L

)

0

20

100

Salina 203 # 54129

|A
3
|=541

|A
3
|=1.1k

|A
3
|=5.4k

|A
2
|=11k

|A
1
|=27k

|A|=54k

(a)
L

0 1000 2000 3000 4000 5000 6000

,
 (

L
)

0

100

200

300

400

Cancer Cells 1024 # 111296

|A1| = 1.1k
|A2| = 5.5k
|A3| = 11k
|A4| = 22k
|A5| = 55k
|A| = 111k

(b)
L

0 2000 4000 6000 8000 10000

,
(L

)

0

50

100

150

200

250

Light Field 18496 # 272320

|A
1
|=2.7k

|A
2
|=5.4k

|A
3
|=27k

|A
4
|=54k

|A
5
|=136k

|A|=272k

(c)

Fig. 6: Effective ExD tuning based on subsets of A. As the
sizes of the subsets increase, α(L) converges to that of the full
data A.

TABLE II: Preprocessing overhead in (ms) which includes
ExD tuning and execution time. The computations are done
on 64 cores (8 nodes each with 8 cores).

Salina Cancer Cells Light Field
203× 54129 1024× 111296 18496× 272320

Tuning 1687 120042 175780
Transformation 931 564092 164522

Overall 2618 684134 340302

data, the latter incurs a higher preprocessing overhead. This is
due to the data-dependent nature of ExD. As can be seen in
Figure 5, Cancer Cells have a denser geometry that requires
more iterations of the OMP algorithm (Step 3 in Algorithm 1)
to achieve a given ε.

3) Comparison with Other Transformations: We show the
effectiveness of our customized preprocessing approach by
substituting ExD with other existing scalable data transforma-
tion methods within our framework. More precisely, we report
ExtDict’s runtime and memory performance when each of the
projection methods are used to preprocess the data.

Runtime Analysis. Figure 7 demonstrates the runtime im-
provement achieved by using ExtDict for Gram matrix updates,
over other approaches including the original ATA, and the
state-of-the-art scalable transformations RCSS, oASIS, and
RankMap as discussed in Section VIII-A. All the transfor-
mations (including ExD) are done for the same transformation
error of ε = 0.1. We compare the runtime of an iterative update
on the Gram matrix, i.e., ATAx, while using the transformed
data ((DC)TDCx) instead. AM×N is the dataset and xN×1 is
a random vector. We measure the runtime for four platforms:
1 × 1, 1 × 4, 2 × 8, and 8 × 8 configurations, where the first
number indicates the nodes and the second indicates the cores
per node. We tune ExD to optimize for runtime (Equation 2)
on each platform.

In all cases, ExD yields better or equal runtime (for an
iterative update on the Gram matrix) compared with other
schemes. We observe up to 40.78× (runtime) improvement
over ATA, 9.12× improvement over RCSS, 6.67× over
oASIS, and 2.63× improvement over RankMap. For Light
Field we achieve comparable runtime with RankMap (ExtDict
achieves 10% runtime improvement for NP = 1 and equal
runtime for other NP s). This is because, as shown in Figure 8,
for this data the optimally tuned dictionary size is very close
to the smallest possible value that meets the transformation
error. Thus, similar to RankMap, in this case ExtDict chooses
the smallest transformation basis.

Note that we do not provide comparison of the runtime
performance of other transformations for the three learning
applications as we already demonstrated ExD’s superiority
over them in Figure 7; Since all the transformation methods
are applied for the same error tolerance ε, the number of
iterations required for convergence of learning algorithms (e.g.,

TABLE III: Comparison of different transformations in terms
of memory. The transformation error is set to 0.1 (10%). ExD
is the only transformation that can be customized to platform.
All values are in MB.

Original RCSS oASIS RankMap ExtDict ExtDict ExtDict ExtDict
data Np = 1 Np = 4 Np = 16 Np = 64

Salina 87.9 86.9 65.1 38.2 10.11 10.11 10.11 19.1
Cancer Cells 911.7 898.5 808.7 254.6 172.6 172.6 206.7 254.6
Light Field 40294.6 2326.5 1977.5 567.5 517.9 567.5 567.5 567.5

LASSO or Power method) are similar. Therefore, the relative
performance of different transformations remain the same as
what is shown in Figure 7.
Memory Analysis. Table III compares the memory perfor-
mance of different approaches. The values show the memory
consumption for storing matrices C and D, achieved from
different transformations. The memory usage of the original
data (matrix A) is also provided. Other than ExtDict, other
approaches always result in the same memory footprint re-
gardless of the platform. It can be seen that ExtDict results in
up to 77.8× (memory usage) improvement over ATA, 8.6×
improvement over RCSS, 6.4× improvement over oASIS,
and 3.8× improvement over RankMap. ExtDict achieves its
memory reduction by choosing over-complete dictionaries that
can produce sparse coefficient matrices. Other approaches do
not offer such flexibility.

Np
1 4 16 64

Im
pr

ov
em

en
t (
#

)

0

2

4

6

8

10
Salina 203#54129

ATA
RCSS
oASIS
RankMap

(a)
Np

1 4 16 64

Im
pr

ov
em

en
t (
#

)

0

2

4

6

8
Cancer Cells 1024#111296

ATA
RCSS
oASIS
RankMap

(b)
Np

1 4 16 64

Im
pr

ov
em

en
t (
#

)

10-1

100

101

Light Field 18496#272320

ATA
RCSS
oASIS
RankMap

(c)

Fig. 7: Runtime improvement achieved by ExtDict on different
platforms. The runtime corresponds to execution of an iterative
update on the transformed Gram matrix.

C. Evaluating ExtDict’s Proposed Performance Model

L
100 200 500 1000 2000

fl

oa
ti

ng
 p

oi
nt

 o
pe

ra
ti

on
s

#106

0

2

4

6
Salina 203 # 54129

N
P
=64

N
P
=16

N
P
=4

N
P
=1

(a)
L

500 1000 2000 5000

fl

oa
ti

ng
 p

oi
nt

 o
pe

ra
ti

on
s

#107

0

1

2

3

4

5
Cancer Cells 1024 # 111296

Np = 64
Np = 16
Np = 4
Np = 1

(b)
L

1000 2000 5000

fl

oa
ti

ng
 p

oi
nt

 o
pe

ra
ti

on
s

#107

0

2

4

6

8

10

Light Field 18496 # 272320

N
P
=64

N
P
=16

N
P
=4

N
P
=1

(c)

L
100 200 500 1000 2000

T
im

e
pe

r
it

er
at

io
n

(m
s)

0

5

10

15

20

25
Salina 203# 54129

N
P
=64

N
P
=16

N
P
=4

N
P
=1

(a*)
L

500 1000 2000 5000

T
im

e
pe

r
it

er
at

io
n

(m
s)

0

50

100

150

Cancer Cells 1024 # 111296

Np = 64
Np = 16
Np = 4
Np = 1

(b*)
L

1000 2000 5000

T
im

e
pe

r
it

er
at

io
n

(m
s)

0

200

400

600

Light Field 18496# 272320

N
P
=64

N
P
=16

N
P
=4

N
P
=1

(c*)

Fig. 8: Verification of performance model: top row is the
estimated and bottom row is the actual performance of running
(DC)TDCx on various platforms. Our predicted runtime (in
terms of number of floating point operations) closely follows
the trend (in terms of milliseconds) in the actual evaluations.

We verify the accuracy of our performance model for
predicting the runtime trend (as quantified in Equation 2) by
comparing it against the measured runtime on the platform.
Figure 8 shows the results for running one iteration of Gram
matrix update of the form (DC)TDCx. The measured run-
times are averaged over 100 iterations. The tests are done

on various platforms. Recall that the number of distributed
processing cores are denoted by NP ’s (1 × 1, 1 × 4, 2 × 8,
8×8 configurations). As can be observed, the measured perfor-
mance (bottom) is very similar to our estimated performance
(top), corroborating that one can use our performance model
to tune ExD without having to measure the actual runtimes.

D. Evaluating Learning Applications

Np
1 4 16 64

T
o

ta
l

T
im

e
(m

s)

106

107

108

109
Denoising

Baseline (SGD)
ExtDict

(a)
Np

1 4 16 64

T
o

ta
l

T
im

e
(m

s)

106

107

108

109
Super-Resolution

Baseline (SGD)
ExtDict

(b)

Fig. 9: Runtime comparison of image denoising and super-
resolution applications vs. SGD on various platforms.

1) Runtime Analysis: Figures 9a and 9b compare the
overall runtime performance of ExtDict for image denoising
and image super-resolution applications. Our gradient-descent
approach not only benefits from a guaranteed convergence (as
opposed to SGD), it also yields faster convergence for both
applications. Another advantage of our approach over SGD
is in reducing the memory usage for storing the data. Unlike
our approach, SGD does not affect the memory usage. In both
applications the ε in ExD is set to 0.1 (10%). It can be seen
that ExtDict achieves up to 3.7× (runtime) improvement for
denoising application and up to 10.9× improvement for super-
resolution application over SGD.

For the same dataset (fixed N), as it is suggested by
Equation 2, by increasing the number of processors the cost
of communication becomes dominant over the cost of FLOPs.
SGD’s communication is limited to the batch-size, which in
our experiments is set to 64. Thus, SGD’d communication
in each iteration is lower than ExtDict’s communication, i.e.,
min(M,L). However, SGD requires many more iterations
to converge compared with the gradient-descent approach.
Reversely, for a fixed platform setup, as the size of data
increases (increasing N), the cost of FLOPs become dominant
over the cost of communication.

Np
1 4 16 64

T
ot

al
 T

im
e

(m
s)

104

105

106

107
Salina 203#54129

Baseline (ATA)
ExtDict

(a)
Np

1 4 16 64

T
ot

al
 T

im
e

(m
s)

105

106

107

108
Cancer Cells 1024#111296

Baseline (ATA)
ExtDict

(b)
Np

1 4 16 64

T
ot

al
 T

im
e

(m
s)

106

108

1010
Light Field 18496#272320

Baseline (ATA)
ExtDict

(c)

Fig. 10: Runtime comparison of PCA application (while run-
ning Power method) using (DC)TDCx vs. using original data
ATAx on various platforms.

Figure 10 compares the runtime performance of Power
method for finding the first 100 eigenvalues of different
datasets. The baseline is the case where the Gram matrix is
computed using ATA. The ε in ExD is set to 0.1 (10%). The
results show significant runtime improvement when ExD is
applied. It can be seen that ExtDict achieves up to 8.68×,
5.29×, and 71.2× (runtime) improvement for Salina, Cancer
Cells, and Light Field datasets over baseline respectively.

2) Error Analysis: We evaluate the trade-off between the
preprocessing error tolerance versus the final learning error.

Figures 11a and 11b provide the reconstruction error of Ext-
Dict for image denoising and super-resolution applications.
The reported error is calculated as ‖y−ŷ‖2

2

‖y‖2 , where ŷ is the
approximated solution achieved by solving LASSO and y is
the denoised or high-resolution benchmark.

A more intuitive way to evaluate the quality of the denoised
or higher-resolution reconstructed images is by using the Peak
Signal to Noise Ratio (PSNR) metric. PSNR is the ratio
between the maximum power of a signal and the power of
the corrupting noise. PSNR is defined as 10 log10(MAX

2√
MSE

)
(dB), where MAX is the maximum pixel value of the original
image patch and MSE is the mean square reconstruction error.
Typical recommended PSNR values in vision applications are
25 dB and higher [40]. For denoising application, our output
PSNR is 29.39 dB when input SNR of the noisy image is
15.15 dB. For super-resolution application, our output PSNR
is 24.69 dB.

A notable observation is that although higher transfor-
mation errors can result in meaningful runtime and memory
improvements (Sections VIII-B3), they may not drastically
affect the reconstruction error.

Transformation Error
0.01 0.05 0.1

R
ec

on
st

ru
ct

io
n

E
rr

or

0.2

0.205

0.21

0.215

0.22
Denoising

(a)
Transformation Error

0.01 0.05 0.1

R
ec

on
st

ru
ct

io
n

E
rr

or

0

0.02

0.04

0.06

0.08

0.1

Super-Resolution

(b)

Fig. 11: Error comparison of image denoising and super-
resolution applications. Effect of transformation error (ε) on
the learning error is shown.

Transformation Error
0.01 0.05 0.1

L
ea

rn
in

g
E

rr
or

10-4

10-3

10-2
Salina 203#54129

(a)
Transformation Error

0.01 0.05 0.1

L
ea

rn
in

g
E

rr
or

10-8

10-6

10-4

10-2
Cancer Cells 1024#111296

(b)
Transformation Error

0.01 0.05 0.1

L
ea

rn
in

g
E

rr
or

#10-3

0

1

2

3

Light Field 18496#272320

(c)

Fig. 12: Error comparison of PCA application. Effect of
transformation error (ε) on the learning error is shown. The
learning error is computed by comparing the reconstructed
eigen-values computed by using ExD against the actual eigen-
values computed by using A.

Figure 12 demonstrates the learning error in finding
singular-values of different datasets. The learning error is the
normalized cumulative error of the first 100 eigen-values found
by running Power method using ExtDict. The baseline singular
values are derived from running Power method on A. It can
be seen that ExtDict results in negligible learning error while
drastically improving the runtime.

E. Discussions
Our evaluations demonstrate the significance of ExD’s

preprocessing step to reduce the cost of immensely expensive
learning algorithms. As our results show, even moderate size
datasets can be (computationally) extremely expensive. For
example, on a 64-core platform, Power method on a Light
Field dataset with size 18496×272320 takes more than 8
hours and 42 minutes to converge (Figure 10). ExtDict reduces
this time to less than 2 hours and 8 minutes on the same
platform (Figure 10). Our one-time preprocessing overhead
for this dataset on the same platform is less than 6 minutes

(Table II). This drastic improvement also translates to dollar-
cost reduction on clouds.

Note that several learning algorithms (e.g., LASSO or other
regression algorithms) require model selection. This means the
learning objective should be tuned for varying parameters (e.g.,
regularization variables such as λ in LASSO objective) until
the best ones are identified. Model selection requires running
the learning algorithms several times, further amortizing the
one-time preprocessing overhead.

IX. CONCLUSION
In this paper we present ExtDict, the first data- and

platform-aware solution for highly efficient execution of it-
erative learning algorithms on massive datasets. We introduce
the novel idea of Extensible Dictionary (ExD) which lever-
ages coarse-grained parallelism in the data to create tunable
sparse transformations. The transformation is low-overhead
and highly scalable. Our framework reduces the performance
cost by adaptively tuning the transformation with respect to the
properties of the underlying computing platform. We provide
a distributed API that enables applying ExtDict to a wide rang
of learning problems in large scale. Our extensive evaluations
demonstrate the importance of platform-aware tuning. ExtDict
can achieve more than an order of magnitude improvement in
execution runtime, energy, and memory footprint compared to
existing work.

ACKNOWLEDGMENT
This work was supported in parts by the ONR (N00014-

11-1-0885) grant.

REFERENCES
[1] A. Gilbert, M. Strauss, J. Tropp, and R. Vershynin, “One sketch for all:

Fast algorithms for compressed sensing,” 2007.
[2] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component

analysis,” JCGS, pp. 265–286, 2006.
[3] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation

of the k-svd algorithm using batch orthogonal matching pursuit,” CS
Technion’08.

[4] J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, “Communication-optimal parallel recursive rectangular
matrix multiplication,” in IPDPS’13.

[5] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick, “Minimizing
communication in sparse matrix solvers,” in SC’09.

[6] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: a system for large-scale graph processing,”
SIGMOD, 2010.

[7] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “GraphLab: A new parallel framework for machine learn-
ing,” UAI, 2010.

[8] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Royal Statist. Soc B, vol. 58, no. 1, pp. 267–288, 1996.

[9] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projections for
sparse reconstruction: Application to compressed sensing and other
inverse problems,” IEEE J. Select. Top. Signal Processing, vol. 1, no. 4,
pp. 586–597, 2007.

[10] M. C. Ferris and T. S. Munson, “Interior-point methods for massive
support vector machines,” SIAM J. on Optimization, pp. 783–804, 2002.

[11] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and clustering
via dictionary learning with structured incoherence and shared features,”
CVPR’10.

[12] E. Elhamifar and R. Vidal, “Sparse subspace clustering: algorithm,
theory, and applications,” TPAMI’13.

[13] M. Journee, Y. Nesterov, P. Richtárik, and R. Sepulchre, “Generalized
power method for sparse pca,” JMLR’10.

[14] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the nystrom method,” TPAMI’04.

[15] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
Distributed graph-parallel computation on natural graphs,” OSDI, 2012.

[16] E. Dyer, A. Sankaranarayanan, and R. Baraniuk, “Greedy feature
selection for subspace clustering,” JMLR’13.

[17] P. Drineas and M. Mahoney, “On the nyström method for approximating
a gram matrix for improved kernel-based learning,” JMLR, pp. 2153–
2175, 2005.

[18] A. Gittens and M. Mahoney, “Revisiting the nystrom method for
improved large-scale machine learning,” ICML’13.

[19] A. Farahat, A. Elgohary, A. Ghodsi, and M. Kamel, “Greedy column
subset selection for large-scale data sets,” Knowledge and Information
Systems, pp. 1–34, 2014.

[20] R. Patel, T. Goldstein, E. Dyer, A. Mirhoseini, and R. Baraniuk, “oasis:
Adaptive column sampling for kernel matrix approximation,” arXiv
preprint:1505.05208, 2015.

[21] S. Fine and K. Scheinberg, “Efficient svm training using low-rank kernel
representations,” JMLR’02.

[22] V. Pham, L. Ghaoui, and F. A., “Lsrn: A parallel iterative solver for
strongly over or under-determined systems,” SIAM Journal of Scientific
Computing, 2014.

[23] A. F. Vu Pham, Laurent El Ghaoui, “Robust sketching for multiple
square-root lasso problems,” Optimization and Control, 2014.

[24] A. Mirhoseini, B. D. Rouhani, E. M. Songhori, and F. Koushanfar,
“Perform-ml: Performance optimized machine learning by platform and
content aware customization,” in Proceedings of the 53rd Annual Design
Automation Conference. ACM, 2016, p. 20.

[25] B. D. Rouhani, A. Mirhoseini, E. M. Songhori, and F. Koushanfar,
“Automated real-time analysis of streaming big and dense data on recon-
figurable platforms,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 10, no. 1, p. 8, 2016.

[26] B. D. Rouhani, E. M. Songhori, A. Mirhoseini, and F. Koushanfar, “Ss-
ketch: An automated framework for streaming sketch-based analysis of
big data on fpga,” in Field-Programmable Custom Computing Machines
(FCCM), 2015 IEEE 23rd Annual International Symposium on. IEEE,
2015, pp. 187–194.

[27] E. M. Songhori, A. Mirhoseini, X. Lu, and F. Koushanfar, “Ahead:
automated framework for hardware accelerated iterative data analysis,”
in Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition. EDA Consortium, 2015, pp. 942–947.

[28] A. Mirhoseini, E. Dyer, E. Songhori, R. Baraniuk, and F. Koushanfar,
“Rankmap: A platform-aware framework for distributed learning from
dense datasets,” arXiv preprint:1503.08169, 2015.

[29] T. Zhang, “Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms,” ser. ICML ’04.

[30] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” USENIX CHTCC’10.

[31] Y. Pati, R. Rezaifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” Proc. Asilomar Conf. Signals, Systems, and Computers,
Nov. 1993.

[32] A. Gittens and M. Mahoney, “Revisiting the nystrom method for
improved large-scale machine learning,” JMLR’13.

[33] J. Demmel, D. Eliahu, A. Fox, A. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, “Communication optimal parallel multiplication of sparse
random matrices,” in SPAA ’13.

[34] “Aviris salinas valley and rosis pavia university hyperspectral
datasets,” http://www.ehu.es/ccwintco/index.php/Hyperspectral
Remote Sensing Scenes.

[35] The stanford light field archive. [Online]. Available: http://lightfield.
stanford.edu/

[36] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” ser. JMLR ’11.

[37] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[38] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. Fisher-
faces: recognition using class specific linear projection,” tpami, 1997.

[39] A. Mirhoseini, E. Songhori, B. Rouhani, and F. Koushanfar, “Flexible
transformations for learning big data,” SIGMETRICS, 2015.

[40] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” TSP, pp.
4311–4322, 2006.

