INVITED
Things, Trouble, Trust: On Building Trust in lIoT Systems

N. Asokan

Aalto University

Tigist Abera
TU Darmstadt

Andrew Paverd
Aalto University

ABSTRACT

The emerging and much-touted Internet of Things (IoT)
presents a variety of security and privacy challenges. Promi-
nent among them is the establishment of trust in remote IoT
devices, which is typically attained via remote attestation,
a distinct security service that aims to ascertain the cur-
rent state of a potentially compromised remote device. Re-
mote attestation ranges from relatively heavy-weight secure
hardware-based techniques, to light-weight software-based
ones, and also includes approaches that blend software (e.g.,
control-flow integrity) and hardware features (e.g., PUFs).
In this paper, we survey the landscape of state-of-the-art
attestation techniques from the IoT device perspective and
argue that most of them have a role to play in IoT trust
establishment.

Keywords
Trust Establishment, Remote Attestation, Internet of Things

1. INTRODUCTION

The increasingly popular paradigm of “Internet of Things”
is the product of the current trend to interconnect all kinds
of devices and systems. IoT encompasses a broad spectrum
of application domains, ranging from large-scale smart en-
ergy grids to personal wearable devices. One distinguish-
ing feature of IoT is that it involves cost- and/or resource-
constrained devices: so-called “things”. These constraints,
coupled with the scale of IoT devices, present significant
security and privacy challenges.

One key challenge is the vulnerability of IoT devices to
malware. Although malware is not a new threat, IoT broad-
ens and amplifies its attack surface. Sophisticated mal-
ware exemplified by Stuznet and Dugu demonstrate the im-
pressive impact of attacks that target specialized embedded
systems. Meanwhile, comparatively simpler DNS-focused
(pharming) malware targeting residential routers shows just

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DAC 16, June 05-09, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2897937.2905020

Ahmad-Reza Sadeghi
TU Darmstadt

Farinaz Koushanfar
UC San Diego

Lucas Davi
TU Darmstadt

Gene Tsudik
UC Irvine

how close to home IoT attacks can reach.! Such threats
clearly and urgently motivate a means of verifying that re-
mote [oT devices are in the intended state and behave as
expected. In other words, we need to ascertain whether IoT
devices are currently trustworthy.

Remote attestation is a well-known and popular technique
for verifying the state of remote computing devices. It ap-
pears to be well-suited for the IoT setting. For example,
as discussed by Saroiu and Wolman [18], remote attesta-
tion can benefit a broad range of IoT-like applications that
involve sensors, e.g., participatory sensing and energy con-
sumption monitoring. However, we argue that integrating
remote attestation into IoT devices is not a trivial matter.
Numerous remote attestation techniques have been proposed
over the years. They vary greatly in terms of complexity and
adversarial models, as well as security, communication and
device feature assumptions. Secure hardware-based tech-
niques (e.g., using a Trusted platform Module (TPM)) are
very effective and applicable to high-end devices that can
accommodate the additional “real estate”, monetary cost
and power consumption. They are naturally less appeal-
ing to small(er) low-end devices. At the other end of the
spectrum are software-based methods that involve minimal
overall costs, while offering limited (and often uncertain)
security guarantees and imposing other environmental re-
strictions. In between the two extremes are so-called hybrid
approaches that blend hardware (e.g., PUFs) and software
(e.g., control flow integrity) features; they tend to offer bet-
ter security than software-based methods, though commen-
surate with limited security functionality.

This paper has two main goals: (i) to provide a broad
overview of attestation in the IoT context, and (ii) to show
how various types of attestation can complement one an-
other in this setting. We begin by collating fundamental se-
curity requirements for remote attestation (Section 2) which
serve as our frame of reference. We then overview current at-
testation approaches and show that each of them addresses
only a part of the overall problem (Section 3). As the core
of this work, we identify and justify attestation approaches
that are well-suited for IoT. We then highlight their distinct
advantages (Section 4). Finally, in Section 5, we present and
discuss three new attestation-related challenges that arise in
the IoT context: (1) scalability, (2) heterogeneity of attested
devices, and (3) abuse of attestation functionality.

1 https://blog.trendmicro.com/trendlabs-security-intelligence/
dns-changer-malware-sets-sights-on-home-routers

2. ATTESTATION PRELIMINARIES

Attestation is an interaction between two parties: a prover
and a verifier, through which the latter ascertains the cur-
rent state and/or behavior of the former. Regardless of the
specifics, the objective of attestation is to provide the ver-
ifier with sufficient information to make a decision about
whether the prover is in a trusted state. Remote attesta-
tion occurs in a setting where the prover and the verifier
are distinct entities, possibly communicating over an open
multi-hop network, such as the Internet. There are two main
aspects of attestation: (1) the process for obtaining the ev-
idence of the prover’s current state (sometimes called the
measurement process), and (2) the protocol for conveying
that evidence to the verifier. Attestation techniques vary
in terms of whether these two aspects are independent or
inter-linked.

Threat & Adversary Model. The main threat model
involves a compromised prover that lies about its current
state and/or behavior to the verifier. Therefore, the primary
attestation requirement is an authentic and timely represen-
tation of the current state and/or behavior of the genuine
prover. Although this threat model is very general, it can
stem from a variety of adversarial types:

e Remote Adversary’s goal is to remotely infect the prover
with malware, e.g., as in Stuxnet.

Local Adversary is sufficiently near the prover to be
capable of eavesdropping on, and interfering with, the
prover’s communication.

Physical Non-Intrusive Adversary is physically even
closer to the prover, so as to be capable of mounting
side-channel attacks.

Stealthy Physical Intrusive Adversary can capture the
prover and attempt to physically extract any informa-
tion (including secrets) stored thereupon.

Physical Intrusive Adversary, besides being able to phys-
ically capture the prover, can attempt to modify its
state and/or hardware components (e.g., introduce ad-
ditional memory).

One unifying feature of all aforementioned adversarial fla-
vors is the goal to subvert the prover via one or more of: (1)
infecting it with malware, i.e., modifying its software con-
figuration, (2) extracting its secrets, and (3) modifying its
hardware configuration.

As discussed below, attestation originated in the context
of general-purpose computers: devices that can easily ac-
commodate an additional trusted hardware component (e.g.,
a TPM) that can withstand attacks by all (or most) adver-
sarial flavors. However, contemporary attestation-related
research for [oT devices focuses on mitigating the Remote
Adversary, for three reasons. First, it is the most likely (as
illustrated by Duqu and Stuxnet) adversary type and the
easiest to defend against, since it operates from afar. Sec-
ond, it is also the most natural adversary type due to the
potentially large scale of its impact.? Finally, IoT devices,
at least those on the lower-end, can not bear the added costs
(including monetary, power, and space) of dedicated secure
hardware.

2If the adversary is local or physical, its attack scale is lim-
ited.

3. SECURE HARDWARE-BASED
ATTESTATION

Remote attestation originally came to prominence as a
feature of the TPM [4]. As standardized by the Trusted
Computing Group (TCG), the TPM is a co-processor de-
signed to protect cryptographic keys and record the soft-
ware state of a computing platform. It achieves this by
using a set of special-purpose Platform Configuration Regis-
ters (PCRs). Each PCR stores a single cryptographic hash
which can be read by external software. Although direct
over-writing of a PCR is not allowed, a PCR can be ez-
tended (via a special command) with a new value by hash-
ing the latter together with the prior PCR value and storing
the result in the PCR. During a measured boot, each bi-
nary in the boot chain computes a hash (a measurement) of
the subsequent binary, records it in a measurement log, and
extends it into the PCRs. The first piece of software is mea-
sured by a trust anchor (referred to as the “root of trust for
measurement” in TCG terminology), typically the platform
firmware. Integrity of the measurement log can be checked
by comparing the sequence of measured values to current
PCR values. PCRs can thus accumulate an unforgeable and
easily verifiable chain of values that have been accumulated
since the platform was last reset.

Since the PCR values are a representation of the system’s
state, they can be used as attestation evidence. To assure
the verifier that the values are authentic, the TPM creates
a quote: it signs the PCR values with its attestation key,
which is certified to be held by a genuine TPM. To ensure
that the quote represents the current state of the system, the
verifier can provide a random challenge to be included in the
quote. Gasmi et al. [12] discuss how to link such quotes to
secure channel end-points.

With respect to the model in Section 2, TPM-based at-
testation is effective against all, except (perhaps) physical
intrusive® adversarial flavors.

Dynamic Root of Trust. One drawback of the above
is the potentially large number of measurements in a TPM
quote, which can make verifying a quote time-consuming.
For example, on a PC, a quote would include the system
firmware, the bootloader, the OS and all running applica-
tions. The concept of a Dynamic Root of Trust for Measure-
ment (DRTM) was introduced to address this issue by al-
lowing the chain of measurements to begin at a user-defined
point in the platform’s operation. In a DRTM late-launch,
the platform performs a partial CPU reset and resets a sub-
set of the PCRs to an initial value. This prevents any soft-
ware that was previously run on the platform from interfer-
ing with the platform’s new state.

Attestation in SGX. Extending the idea of DRTM, In-
tel’s recent Software Guard Extensions (SGX) [2] provide a
hardware-enforced isolated execution environment (an en-
clave) for application software. The enclave isolates and
protects its contents from all other software on the plat-
form, and provides a means of attesting only the software
inside the enclave to other enclaves, or other platforms. As
with the TPM, attestation evidence consists of a hash of the
software, signed by the CPU.

Property-Based Attestation. The attestation approaches

3This depends on the specifics of the TPM’s tamper-
resistance features.

described above are referred to as binary attestation, since
attestation evidence is based on software binaries that have
been executed on the platform. Binary attestation is brit-
tle in the sense that any configuration changes or software
upgrades result in different hashes of binaries, even if the
platform remains in a trustworthy state. Verifiers are there-
fore required to maintain extensive lists of trusted values.
To mitigate this, property-based attestation techniques, e.g.
[17, 15], convert measurements of binaries into statements
about system properties.

4. ATTESTATION OF THINGS

The distinguishing feature of secure hardware-based attes-
tation is the reliance on explicit, purpose-built trust anchors,
e.g., a TPM or an SGX-capable CPU. However, resource-
constrained devices commonly found in IoT systems are un-
likely to have these types of trust anchors due to cost and
complexity considerations. First, a TPM increases the costs
of materials and integration. Also, platforms that provide
firmware TPMs or SGX are likely to be more expensive. Sec-
ond, using explicit trust anchors requires additional software
(e.g. TPM drivers and libraries), which increases overall sys-
tem complexity. Therefore, although they may be part of
the solution, secure hardware-based attestation techniques
alone are insufficient in the IoT context. In the following
sections we describe more recent attestation techniques de-
signed for constrained devices and discuss how they fit into
trust establishment for IoT systems.

4.1 Software-based Attestation

Software-based attestation verifies integrity of resource-
constrained embedded devices which have no hardware se-
curity features to support attestation. Thus, software-based
attestation cannot (and does not) assume any secrets on the
prover device (since there is no secure place to keep them). It
also cannot rely on the prover executing any specific code,
since no code integrity can be assured. Instead, software-
based attestation exploits side-channel information, such as
precise time needed by the prover to perform specific com-
putation.

Many software-based attestation techniques have been pro-
posed in the academic literature. One early example is Pi-
oneer [20]. It computes a checksum of the device memory
using a function with run-time side-effects (e.g., status reg-
isters), such that any emulation of that function incurs ad-
ditional timing overhead (i.e., extra delay) that is sufficient
to detect cheating. Also, attestation that relies on time-
based checksums has been adapted to embedded devices
in [21]. However, several attacks on software-based attes-
tation schemes have been demonstrated, e.g., Castelluccia
et al. [7].

In general, all current software-based attestation tech-
niques make strong assumptions about adversarial capabili-
ties, and only work if the verifier communicates directly with
the prover, with no intermediate hops. There are two rea-
sons for this restriction: (1) a multi-hop path between the
prover and the verifier usually incurs variable round-trip de-
lay, thus skewing any timing measurements, and (2) a veri-
fier must be able to detect attacks by a local adversary which
can assist a malware-infected prover by computing (on the
latter’s behalf) the correct response to the attestation chal-
lenge. If these two limitations do not pose a problem, and
referring to Section 2, software-based attestation can defend

against all (except physical intrusive) adversarial flavors. In
general, though it is the cheapest form of attestation, ap-
pealing in some very specific settings (e.g., attestation of
legacy computer peripherals), software-based attestation is
not viable in a network setting.

4.2 Hybrid Attestation

To overcome the aforementioned limitations of software-
based attestation, various hybrid architectures have been
proposed that employ software/hardware co-design to re-
duce the “footprint” of attestation on the prover. Hybrid
architectures are also motivated by the inability to accom-
modate dedicated secure hardware (such as a TPM) on low-
end devices. The objective of hybrid attestation is to resist
all, except physical invasive, adversaries in a network set-
ting (i.e., multiple hops between the prover and the verifier)
while minimizing hardware changes.

Minimal Trust Anchors. The SMART architecture [9]
provides a dynamic root of trust for low-end devices with-
out specialized memory management or protection features.
Its software /hardware co-design attempts to minimize hard-
ware changes to the prover device. SMART has four main
components: 1) a demarcated attestation read-only memory
code region in ROM; 2) a secure key storage region that can
only be accessed from SMART code in ROM; 3) MCU ac-
cess controls that prevent non-SMART code from accessing
secure key storage and interrupting SMART code execution;
and 4) reset and memory erasure if any error is reported by
these components. Upon a challenge from the verifier, the
ROM-resident attestation code computes a cryptographic
checksum of the prover’s memory region and returns it to
the verifier. SMART’s viability has been demostrated via
prototypes on two common low-end MCU platforms.

Building on the design of SMART, follow-up work by
Francillon et al. [10, 11] presents a more precise specification
of minimal hardware features needed to support attestation
on low-end provers. The issue of verifier authentication (as
well as DoS attacks on the prover) is also highlighted, as
discussed in Section 5.2.

TrustLite [13] is a generic security architecture for low-end
embedded systems. It allows OS-independent isolation of
specific software modules, called trustlets. TrustLite intro-
duces the Ezecution-Aware Memory Protection Unit (EA-
MPU) as a generalization of simple means of memory pro-
tection, such as SMART. Though similar to a memory man-
agement unit (MMU), a memory protection unit (MPU) is
primarily designed for lightweight access control and does
not provide virtual memory. While an MPU makes access
control decisions based on accessed memory address, an EA-
MPU is ezecution-aware — it also considers the address of
the currently executing instruction.

In TrustLite, an EA-MPU enforces that a given trust-
let’s data can only be accessed by that trustlet’s code. This
mechanism can also be used to control access to hardware
peripherals. Unlike SMART, TrustLite also handles mem-
ory access violations and hardware interrupts. TrustLite
can be instantiated in several configurations, and can scale
from providing a simple protected firmware runtime to more
advanced functionality, such as attestation and trusted exe-
cution of user-space tasks.

The EA-MPU concept is also used in the more recent
TyTAN system [5]. Compared with TrustLite, TyTAN pro-
vides more flexibility by enabling dynamic loading and un-

loading of multiple tasks at runtime, real-time scheduling
guarantees and secure interprocess communication (IPC),
with sender and receiver authentication.

PUF-based attestation. As discussed earlier, software-
based attestation is only effective in restricted settings where
the prover and the verifier communicate directly. Moreover,
it cannot explicitly authenticate underlying hardware com-
ponents of the prover, making it vulnerable to imperson-
ation attacks [19]. Meanwhile, in the presence of physical
stealthy or physical invasive adversaries, even hybrid attes-
tation methods (such as SMART or TrustLite) are ineffec-
tive since device keys can be obtained and the prover can be
impersonated and/or cloned.

A Physically Unclonable Function (PUF) is physical struc-
tures that generates a unique hardware-specific output (re-
sponse) to each input (challenge), by exploiting side-effects
in chip manufacturing. PUFs are a promising technology
that binds attestation to the specific physical hardware of a
particular prover [19]. Thus, PUFs can be used instead of
access-restricted device keys in hybrid architectures. For ex-
ample, [14] extended the lightweight PUF remote attestation
scheme of [19] and presented the design and implementation
of the ALU PUF, a novel minimalist hardware trust anchor
based on manufacturing variations in commodity processors.

However, PUFs typically offer only limited resilience against

operational and environmental influences, such as tempera-
ture, power supply variations or silicon aging effects. Hence,
it is necessary to integrate effective error correction mecha-
nisms at the prover while minimizing the PUF’s hardware
overhead. Furthermore, current PUF-based techniques typ-
ically require: (1) a costly enrollment phase for each PUF,
and (2) maintaining a large database of PUF challenges and
responses (needed for authentication).

4.3 Control-Flow Attestation

Trustworthiness of code also pertains to the runtime be-
havior of attested code. Static attestation discussed in Sec-
tion 3), although efficient, only provides assurance of the
integrity of binaries and not of their execution. Static at-
testation completely fails to capture software corruptions
that hijack a program’s control flow. Such attacks tamper
with state information on the application’s stack or heap
to arbitrarily divert the execution flow while the binaries
remain the same. Today’s state-of-the-art memory corrup-
tion attacks (or runtime exploits) use code-reuse techniques,
such as return-oriented programming (ROP), that dynami-
cally generate malicious programs based on code snippets
(gadgets) in benign binaries, without injecting any mali-
cious code [16]. Consequently, measurements computed over
static binaries remain unchanged.

A more fine-grained approach would be a hybrid attes-
tation approach combining static and runtime attestation.
We are currently working on a runtime attestation scheme
which provides precise attestation of the execution path of a
program for the case of embedded devices [22]. The execu-
tion path of an application can be encoded either as a trace
of taken branches, executed instructions, function calls, or a
cumulative hash over the execution path. In either case, the
execution path serves as a fingerprint of software execution
allowing a remote device to attest the dynamic execution
state of running processes. This represents an important
step towards tackling the open problem of runtime attesta-
tion.

Runtime attestation has several benefits over other run-
time mitigation technologies, such as control-flow integrity
(CFI) [1]. CFlis enforcement-based, ensuring that no control-
flow violation has occurred. However, runtime attestation
requires reporting the executed control-flow path rather than
only whether an attack occurred. Also, control-flow attesta-
tion captures non-control-data attacks [8] that corrupt data
values (e.g., authentication variables) to follow a privileged
path in the control-flow graph (CFG) without violating the
legitimate CFG. Finally, it is context-sensitive since it cap-
tures the control flow from beginning to end while CFI typ-
ically validates a branch without considering previous flows.

S. FURTHER CHALLENGES

The IoT context highlights some further important chal-
lenges for attestation. First, attestation mechanisms must
be sufficiently scalable to handle a potentially large number
of devices in an IoT system, e.g., in a factory, or a building
automation scenario. On a related note, a large IoT system
might include a range of devices, each with a distinct set
of hardware security features. Thus, attestation of multiple
heterogeneous devices, becomes the next challenge. Also,
the presence of attestation support on resource-constrained
low-end IoT devices can be exploited, e.g., via verifier im-
personation and/or denial of service attacks against hon-
est provers. We discuss some potential means of addressing
these challenges in the following sections.

5.1 Scalability

Most attestation techniques, including those described in
the preceding sections, operate in a setting with one prover
and one verifier. However, many current and emerging sce-
narios require a verifier to attest a (possibly large) group of
provers. For example, in industrial control systems, many
autonomously operating devices collaborate to monitor and
control safety-critical processes [3]. Such systems are often
referred to as device swarms. The difficulty of attesting a de-
vice swarm is compounded by potentially dynamic topology
and membership, e.g. an ad-hoc vehicular network where
nodes move around as well as join and leave the swarm.

The first attempt to provide attestation for swarms is
SEDA: Scalable Embedded Device Attestation [3]. The de-
sign of SEDA was informed by two requirements [3]: (1) the
attestation scheme must verify the integrity of the swarm
as a whole, in a more efficient manner than attesting each
individual device, and (2) it must be independent of the
underlying integrity measurement mechanism(s) used by in-
dividual devices. The latter allows the swarm attestation
scheme to support multiple single-prover attestation tech-
niques, such as those described in Section 4.

After an initial setup phase, a device (e.g., Dg in Figure 1)
can join swarm S or change its position using the join pro-
tocol, which establishes pairwise attestation keys with each
of its neighbours. The principal idea behind SEDA is that
attestation is performed recursively throughout the swarm,
starting with any initiator node (e.g. D1) selected by the
verifier. The verifier sends D; an unpredictable challenge
N, and D; generates a new global session identifier g.

Using the attdev protocol, D; sends an attestation re-
quest containing N and ¢ to each of its neighbours. When
a node receives an attdev request with a new ¢, it forwards
this to all of its own neighbours and awaits their responses.
This way, the request propagates along the edges of a span-

/ attdev
I @ j i
; join

- = -Swarm S

Authenticated connection

Spanning tree

Figure 1: Swarm attestation (adapted from [3])

ning tree, rooted at D;. After all neighbours respond or
time-out, the node aggregates their responses with its own
attestation report and returns the result to the parent. At-
testation reports are thus accummulated as they flow from
the leaves of the tree towards the root, D;. This is clearly
more efficient than attesting each individual node. Once
the aggregated attestation reaches D, the aggegated re-
sponse is sent to the verifier. To demonstrate its viability,
SEDA has been successfully prototpyed over SMART and
and TrustLite architectures; both discussed in Section 4.2.

5.2 The Prover’s Perspective

Remote attestation techniques typically consider a com-
promised prover, while assuming that the verifier is trusted.
However, in a real-world scenario, the verifier can be imper-
sonated by the adversary, resulting in unauthorized invoca-
tion of attestation functionality on the prover and leading
to, e.g., DoS attacks. To this end, Brasser et al. [6] analyzed
the potential impact of abusing remote attestation (on the
prover) as a vector for DoS attacks. For example, an attes-
tation scheme that computes a message authentication code
(MAC) over the entire memory of the prover running on a
typical low-end MCU could consume about 754 ms per at-
testation request [6]. This is an important problem, largely
ignored by prior attestation schemes. It occurs in part due
to significant asymmetry in the amount of work performed
by the prover and the verifier, as well as asymmetry in their
computational abilities (since the verifier is generally a more
powerful entity).

Brasser et al. [6] proposed several simple techniques to
mitigate DoS attacks on the prover. Intuitively, the veri-
fier must authenticate itself to the prover, using using either
public or symmetric key cryptography. However, since the
former is computationally intensive, its use could exacerbate
the problem by providing yet another vector for DoS attacks.
Thus, symmetric cryptography should be used. However,
the prover must also detect replays of previous legitimate
attestation requests. There are several standards for this:
nonces, counters and timestamps. Using nonces is unwork-
able, since a large amount of non-volatile storage is required
to keep track of previous nonces. Monotonically-increasing
counters also require non-volatile storage, albeit only a small
amount. (They also cannot help in detecting delayed re-
quests). Although timestamps offer the best security, their
use requires the prover to have a reliable real-time clock.

Brasser et al. [6] also considered a stronger roaming adver-

sary model, which can temporarily compromise the prover
and alter its dynamic state. For example, a roaming adver-
sary can reset the prover’s counters or change the prover’s
clock. The proposed counter-measure involves execution-
aware memory access control (EA-MAC) to protect the coun-
ters, clock and other critical aspects of the prover’s attesta-
tion functionality. An experimental evaluation shows that
this can be achieved with low additional costs.

6. CONCLUSION

Remote attestation can mitigate some important security
threats in IoT systems. Secure hardware-based attestation
techniques are not well-suited for the IoT context, since IoT
devices: (1) can be resource-constrained, (2) may not have
specialized hardware trust anchors, and (3) often operate
in (possibly large and heterogeneous) groups. Meanwhile,
software-based attestation techniques, while appropriate for
very specific settings, are not applicable in remote scenarios,
i.e., where the prover and the verifier are not communicating
directly. Fortunately, other types of attestation protocols
can fill this gap. In this paper, we surveyed some attesta-
tion techniques that might be suitable for the IoT context.
We also overviewed recent results that overcome specific IoT
attestation challenges, such as scalability as well as protec-
tion against malicious verifiers and DoS attacks. We believe
that the presented approaches are likely to play a role in
trust establishment in IoT systems. They also form a solid
foundation for further research in this area. There remain
several open challenges, including (1) new system architec-
tures to efficiently attest groups (or swarms) of heteroge-
neous devices, (2) new schemes to attest runtime properties
and behavior, and (3) robust trust anchors for IoT systems.

7. ACKNOWLEDGEMENTS

This work was supported in part by the German Science
Foundation (project S2, CRC 1119 CROSSING), European
Union’s Seventh Framework Programme (609611), Academy
of Finland (283135), National Security Agency (H98230-15-
1-0276), Department of Homeland Security (under subcon-
tract from the HRL Laboratories), National Science Foun-
dation (CNS-1059416), and a Multidisciplinary University
Research Initiative grant (FA9550-14-1-0351/Rice 14-0538).

8. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity: Principles, implementations,

[12]

and applications. ACM Trans. Inf. Syst. Secur., 13(1),
20009.

I. Anati, S. Gueron, S. Johnson, and V. Scarlata.
Innovative Technology for CPU Based Attestation and
Sealing. In Workshop on Hardware and Architectural
Support for Security and Privacy, 2013.

N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi,

M. Schunter, G. Tsudik, and C. Wachsmann. SEDA:
Scalable Embedded Device Attestation. In ACM
Computer and Communications Security (CCS), 2015.
B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and

G. Proudler. Trusted computing platforms: TCPA
technology in context. Prentice Hall Professional, 2003.
F. Brasser, B. El Mahjoub, A.-R. Sadeghi,

C. Wachsmann, and P. Koeberl. TyTAN: Tiny Trust
Anchor for Tiny Devices. In Design Automation
Conference (DAC), 2015.

F. Brasser, A.-R. Sadeghi, K. B. Rasmussen, and

G. Tsudik. Remote Attestation for Low-End
Embedded Devices: the Prover’s Perspective. In
Design Automation Conference (DAC), 2016.

C. Castelluccia, A. Francillon, D. Perito, and

C. Soriente. On the difficulty of software-based
attestation of embedded devices. In ACM Computer
and Communications Security (CCS), 2009.

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K.
Iyer. Non-control-data attacks are realistic threats. In
USENIX Security Symposium, 2005.

K. El Defrawy, A. Francillon, D. Perito, and

G. Tsudik. SMART : Secure and Minimal
Architecture for (Establishing a Dynamic) Root of
Trust. In NDSS, 2012.

A. Francillon, Q. Nguyen, K. B. Rasmussen, and

G. Tsudik. Systematic Treatment of Remote
Attestation. Cryptology ePrint Archive, 2012.

A. Francillon, Q. Nguyen, K. B. Rasmussen, and

G. Tsudik. A Minimalist Approach to Remote
Attestation. In Design, Automation & Test in Europe
(DATE), 2014.

Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and
N. Asokan. Beyond secure channels. In ACM workshop

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

on Scalable trusted computing (STC), 2007.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and

V. Varadharajan. TrustLite: A Security Architecture
for Tiny Embedded Devices. In European Conference
on Computer Systems (EuroSys), apr 2014.

J. Kong, F. Koushanfar, P. K. Pendyala, A.-R.
Sadeghi, and C. Wachsmann. PUFatt: Embedded
Platform Attestation Based on Novel Processor-Based
PUFs. In Design Automation Conference (DAC),
2014.

K. Kostiainen, N. Asokan, and J.-E. Ekberg. Practical
property-based attestation on mobile devices. In
International conference on Trust and Trustworthy
Computing (TRUST), 2011.

R. Roemer, E. Buchanan, H. Shacham, and S. Savage.
Return-oriented programming: Systems, languages,
and applications. ACM Trans. Inf. Syst. Secur.,
15(1):2:1-2:34, 2012.

A.-R. Sadeghi and C. Stiible. Property-based
Attestation for Computing Platforms: Caring about
properties, not mechanisms. In Workshop on New
Security Paradigms (NSPW), 2005.

S. Saroiu and A. Wolman. I am a sensor, and [
approve this message. In HotMobile, New York, New
York, USA, 2010.

S. Schulz, A.-R. Sadeghi, and C. Wachsmann. Short
Paper: Lightweight Remote Attestation using Physical
Functions. In ACM conference on Wireless network
security (WiSec), 2011.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. Khosla. Pioneer: Verifying integrity and
guaranteeing execution of code on legacy platforms. In
Symposium on Operating Systems Principles (SOSP),
2005.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla.
SWATT: software-based attestation for embedded
devices. In IEEE Symposium on Security and Privacy,
2004.

T. Abera et al. C-FLAT: Control flow attestation for
embedded systems software. Work in Progress, 2016.

