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Abstract—The operability of a portable embedded system is
severely constrained by its supply’s duration. We propose a novel
energy management strategy for a combined (hybrid) supply
consisting of a battery and a set of supercapacitors to extend
the system’s lifetime. Batteries are not sufficient for handling
high load fluctuations and demands in modern complex systems.
Supercapacitors hold promise for complementing battery supplies
because they possess higher power density, a larger number
of charge/recharge cycles, and less sensitivity to operational
conditions. However, supercapacitors are not efficient as a stand-
alone supply because of their comparatively higher leakage and
lower energy density. Due to the nonlinearity of the hybrid
supply elements, multiplicity of the possible supply states, and
the stochastic nature of the workloads, deriving an optimal
management policy is a challenge. We pose this problem as
a stochastic Markov Decision Process (MDP) and develop a
reinforcement learning method, called Q-learning, to derive an
efficient approximation for the optimal management strategy.
This method studies a diverse set of workload profiles for a
mobile platform and learns the best policy in form of an adaptive
approximation approach. Evaluations on measurements collected
from mobile phone users show the effectiveness of our proposed
method in maximizing the combined energy system’s lifetime.

I. INTRODUCTION

The mobile system’s lifetime and functionality is limited
by its constrained energy supply. The commonly utilized
electronic energy supply (EES) unit for the mobile and em-
bedded systems is an electrochemical battery. The battery
technology has been improving at a very slow rate, setting
back the otherwise fast growing processor functional capabil-
ities. The wide-spread usage of batteries is because of their
cost, rechargeability, and energy capacity advantages. Their
drawbacks include nonlinear dependence of the lifetime on
the drawn current, where a higher incident load depletes the
battery’s energy much faster.

An emerging form of EES with properties complementary
to battery is a supercapacitor (s-cap). The energy density of a
s-cap is lower than a battery, but it is significantly higher than
a capacitor. The s-caps also have higher energy leakage than
batteries and their leakage increases with rising the voltage.
On the other hand, when compared to batteries, the s-caps have
better efficiencies in chargeing/discharging, higher number of
cycles, where they are also more reliable and more robust
to operational conditions. Recent work has suggested that a
hybrid combination of batteries and s-caps can take advantage
of their complementary energy properties [1]. Examples of
combined solar batteries and s-caps were prototyped; The
earlier evaluations were promising, especially for the sensor
network load currents that have low duty cycles [2], [3], [4].

This paper aims to perform adaptive energy management
optimization for a hybrid set of EES elements (consisting
of s-caps and a battery) to extend the system’s lifetime for
much more complex scenarios than those available earlier. At
each point of time, based on the present system state and the
incident load, the management unit decides on a set of actions
to best save the total energy. The problem is a combination
of discrete decisions and continuous linear and nonlinear EES
element properties. Our approach to address this problem is
to map all the parameters and values into the discrete domain.

We start by quantizing the charge values in the EES ele-
ments, the workload values, and the actions. Next, we define
formal notations for the states, actions, and outcomes. Using
the discrete values and our introduced notations, we model
the hybrid supply management problem as an instance of a
discrete time stochastic Markov Decision Process (MDP): at
each time step, the battery and the s-caps are at a certain
charge state. Given the (present) load demand, the uncertainty
in future workload, and the cost of taking actions, the system
needs to decide among the presently available actions to
maximize the overall objective of extending the lifetime.

The MDP solution should simultaneously consider all the
dimensions for finding the optimal management policy. There
are at least two sets of challenges. The first set of challenges is
due to the three sources of curse of dimensionality: the state
space, the action space, and the demand space. The second
set of challenges is due to the workload uncertainty; Optimal
management depends on the (uncertain) future load values that
are often not available and hard to estimate in advance.

We develop a reinforcement learning method based on Q-
learning, that studies a diverse set of collected workload traces
to find an approximate optimum MDP solution. To address
the first challenge set, our approach breaks down the compu-
tations into time steps and then iteratively traverses the states
and variables to update the management policy. To address
the second challenge set, our method iteratively updates the
decision states. Assuming the workload fluctuations can be
modeled as a wide sense stationary (WSS) random process, the
Q-learning approach converges to the optimal policy [5], [6].
Our user studies on mobile platforms shows that the workload
scenarios conform to the WSS assumption.

Our explicit contributions are as follows: (i) We develop a
transformation of the hybrid EES management optimization
problem to the discrete domain and formalize the parame-
ters for the states, outcomes and actions. The problem is
formulated as a stochastic dynamic MDP in the discrete
domain. (ii) We introduce an approach for addressing our



MDP problem based on approximations by reinforcement
learning that adaptively operates and learns the best policy.
Our method overcomes the challenges associated with curse-
of-dimensionality and inherent uncertainty that arise in the
optimization problem. (iii) We validate our methods and
models on extensive mobile phone measurements in our lab.
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Fig. 1. Block diagram of the combined source.

II. RELATED WORK

Recent progress in the s-cap technology is paving the way
for the widespread adoption of the s-caps as a major EES
element. New generation of s-caps benefits from high energy
densities in addition to their inherent high power densities [7].
It is now possible to utilize them in lower power applications
such as portable systems’ supplies. Larger s-caps have already
been used in hybrid car applications.

A large body of work has focused on characterizing bat-
tery’s behavior and exploiting its features for increasing the
supply system’s lifetime [8], [9], [10]. This paper incorporates
the non-linear battery and s-cap models within the reward
function of our MDP optimization framework.

The generic idea of combined sources consisting of fuel
cells, batteries, and s-caps has been recently proposed [11],
[1], [12], [13]. However, a detailed optimization framework
considering different design parameters has not been provided.
In our recent work [14], we proposed a hybrid management
methodology, considering different optimization parameters,
for scenarios where the system’s tasks could be reordered
(within a time budget) in order to maximize the supply’s
lifetime efficiency. In this work we target the more general sce-
narios, where optimizations are done on realtime workloads.

Hybrid systems integrating s-caps along with energy scav-
enging sources such as photovoltaic cells have recently been
studied [3], [2], [4]. The optimization methods rely on both
energy scavenging system and as s-cap properties. The earlier
work has mainly focused on sensor network applications
with notably low duty cycles. Those methods are often not
directly applicable to more complex workloads. For embedded
systems scenarios, such as mobile phones, there is an appar-
ent difference in the usage patterns and reliability/usability
requirements. Furthermore, battery properties are considerably
different from other EES elements such as energy scavenging
sources in that (i) they have a high energy density and can
always provide a continuous source of energy to reliably serve
the load, and (ii) they have a particular nonlinearity pattern that
favors drawing a low current to increase their lifetime.

Learning the stochastic component(s) has been shown to be
effective in finding near-optimal solutions to complex MDP
problems [15], [16]. Q-learning is a reinforcement learning
method mostly used in unsupervised settings [5]. To the best of
our knowledge, this is the first work that models the combined
energy supply management as an MDP problem and addresses
the problem using reinforcement learning.

III. COMBINED SYSTEM OVERVIEW

To derive an optimal hybrid management strategy, the
characteristics of each EES element should be considered. For
example, battery’s rate capacity effect governs the non-linear
relationship between battery’s lifetime and its charge/current
demand; A high current load can exhaust a battery much faster.
As another example, s-caps outperform batteries in power
delivery because of their large power density that enables them
to supply higher power loads. The Hybrid EES management
should consider multiple aspects. First, it is desired to ensure
that s-caps have a sufficient charge prior to serving the high-
power loads. A challenge is that the workload peaks are
usually not known a priori. Second, due to leakage, it is
inefficient to fully precharge the s-caps when they are not
needed for a long time duration. Therefore, the timing and rate
of battery’s charge recycling into the s-caps should be carefully
selected. Third, to enhance efficiency, decisions for choosing
the best EES element should be made in realtime based on
the incident workload observations. Lastly, it is necessary to
consider the cost (overhead) of each control decision.

Considering the above aspects, the management tasks, re-
ferred to as actions, are to adaptively assign the best EES
element to supply the load. Also, there is a need to recycle
the charge from the battery into the s-caps at optimal rates and
at proper times. A key point is that the best EES management
policy is a function of the uncertain workload. While the exact
workload values are unpredictable, our in-lab measurements
confirm their stochastic properties for a mobile platform.

To find the best management policy, we start by collecting a
representative set of load currents from the comprehensive user
studies. Next, we develop a reinforcement learning approach
that studies the stochastic workload properties to provide
the most energy efficient actions over the representative load
scenarios. The reinforcement learning is performed offline.
The resulting policy is then loaded to the portable system’s
hybrid management unit. The policy is applied online as the
instantaneous load is observed at each state.

Figure 1 shows the block diagram of our proposed system.
At each decision point, the management unit receives an
instance of the online load and observes the EES state. Then,
based on the learned policy, it determines the next action of
the combined source. The charger and current controller unit
sets the appropriate rate of charge transfer from the battery to
the s-cap set as dictated by the management unit. The DC/DC
converter is used to maintain the voltage value at the load
level. The switches are incorporated to enable the appropriate
charge flow (from the battery to the load or other s-caps or
from the s-caps to the load) as needed according to the action.



IV. PROBLEM DEFINITION

In this section, we outline the parameters, our hybrid
management problem, constraints, and the design properties.

A. Notation and parameter definition

We adopt the common notation used in dynamic optimiza-
tion to model the quantized discrete state/action problem. All
the states and actions are made at pre-specified discrete time
instants from a set T , where T = {0, 1, 2, ..., T − 1} and T
is the total number of planning periods.

1) The source and load parameters: We assume that the
charge values of the batteries and s-caps can only take discrete
values; The average workload demand is discrete and constant
during one time period. We also put a limit on the maximum
charge that can be transferred from a battery to a s-cap in a
single time interval. This condition is imposed to avoid battery
exhaustion for charging the s-caps. Our notations are,

NC Total number of s-caps.
Nc The index set of s-caps: Nc = {1, 2, . . . , NC}.
rcapit Charge state of s-cap i ∈ Nc at time t ∈ T .
Ccap S-cap charge values (rcapit ∈ Ccap), Ccap=

{0,∆r1, 2∆r1, . . . , R
cap
max −∆r1, R

cap
max}.

rbatt Charge state of the battery at time t ∈ T .
Cbat Battery charge values (rbatit ∈ Cbat), Cbat=

{0,∆r2, 2∆r2, . . . , R
bat
max −∆r2, R

bat
max}.

wt Load demand during (t, t+ 1) for t ∈ T .
Rth Maximum charge that battery transfers to a s-cap

at a single period.
2) Action parameters: At each planning instant, a decision

(action) for assigning the best source to the workload should
be made. Besides, it should be determined whether the battery
charges any of the s-caps or not. In our system model, a
s-cap cannot be simultaneously charged by the battery and
discharged by the load. The action-related parameters are,
A Set of all possible Actions.
at Action at time t: at = {acap1t , acap2t , ...acapNCt, a

bat
t }.

acapit Action at time t for s-cap i ∈ NC ,
acapit = (acapit (x), acapit (y)) ∈ {(0, 0), (0, 1), (1, 0)}.

acapit (x) 1 if s-cap i ∈ NC gets charged; 0 otherwise.
acapit (y) 1 if s-cap i ∈ NC supplies the load; 0 otherwise.
abatt 1 if battery supplies load in (t, t+ 1); 0 otherwise.
3) State variables and state transition function: State vari-

ables are representative of the relevant history of the system.
In our model, the state variable contains the EES’s state of
charge and the change in battery’s charge in consecutive time
instants. The transition function takes the current state, actions,
and load as inputs. It outputs the next state. The model and
notations are,

S Set of all possible hybrid system states.
st State variable at time t ∈ T , st ∈ S

st = {rcapt1 , rcapt2 , . . . , rcaptNC
, rbatt ,∆rbatt }.

∆rbatt =rbatt−1 − rbatt for t ∈ T .
SM (.) Transition function, st+1 = SM (st, at, wt).

At time t, the transition function computes the next charge
state of the s-cap indexed i denoted by rcap(t+1)i, as follows,
rcap(t+1)i = rcapti − acapit (y)wt + (Rth − wta

bat
t )ait(x).

The equation adjusts the s-cap’s charge (rcap(t+1)i), by the
amount of charge the s-cap delivers to the load (acapit (y)wt).
It also adds the amount of charge the s-cap receives from the
battery (Rth − wta

bat
t )ait(x) during (t, t+ 1).

The transition function similarly adjusts the next charge
state of the battery (rbat(t+1)) as follows,

rbat(t+1) = rbatt − wta
bat
t − (Rth − wta

bat
t )

∑
i∈Nc

ait(x).
The equation above adjusts the battery’s charge (rbatt+1) by

the amount delivered to the load (wta
bat
t ), and the amount sent

to the s-caps ((Rth − wta
bat
t )

∑
i∈Nc

ait(x)). Note that Rth,
is an upper limit for the charge that the battery transfers to
the s-caps at each single time period.

4) Reward function: Let R(st, at) denote the reward func-
tion for making a decision at at state st during the interval
(t, t + 1) . The reward should reflect the net lifetime incre-
ment/energy saving of the battery in the combined system; It
is a function of the profit in terms of battery energy savings
and the penalty in terms of the s-caps’ leakage cost and the
system’s overhead cost. The formal definition is as follows,

R(st, at) = −e(∆rbat
t ) − e

(Σi∈Nc

r
cap
it

R
cap
max

) − λe(E[∆rbat
t ]). (1)

The first term presents the savings in battery charge consump-
tion. Adopting the battery model from [9], we observed the
exponential relationship between the battery’s incident current
and its lifetime. The second term reflects the leakage cost of
the s-caps. The exponential modeling for the s-cap’s leakage is
derived by regression techniques performed on a real s-cap’s
leakage data. The approximate leakage power model (PL)
that we derived for the 200F s-caps used in our evaluations
is PL(vc) = αeβvc(w), where vc is the voltage of the s-
cap, α = 1.14.10−9(mW ) and β = 9.354(v−1). The third
term presents the overhead cost of the system where λ is an
estimation of the ratio of the overhead cost to the expected
saving profit.

B. Formal problem and constraints definition

Our objective is to maximize the expected reward over the
entire T . Assuming that the initial state s0 is known, the
objective function (OF) and constraints (C’s) are written as,

OF : max
a0∈A

R(s0, a0) + E[
∑
t>0

max
st∈S,at∈A

R(st, at)] (2)

C ′s : ∀t ∈ T ,

1 : abatt +
∑
i∈Nc

acapit (y) = 1,

2 :
∑
i∈Nc

acapit (x) ≤ 1,

3 : rcapti ≥ ait(y)
capwt, i ∈ NC ,

4 : rcapti + (Rth − wta
bat
t )ait(x) ≤ Rcap

max,

5 : rbat(t+1) ≥ 0.

The expectation is applied to represent the problem uncer-
tainty caused by the stochastic future workload. The first two
constraints reflect our design policy requirements. The first
equation states during each single interval (t, t+1), exactly one



EES element, either the battery or one of the s-caps, supplies
the load. The second constraint states that during each single
interval (t, t + 1), at most one s-cap could be charged by
the battery. We set these limits to avoid the voltage balancing
problem. The last three constraints express the physical bounds
of the problem. The third constraint set ensures the charge
availability of the s-cap selected to supply the load. The forth
one is to avoid overcharging s-caps. The last constraint set
ensures charge availability of the battery.

V. ADDRESSING HYBRID MANAGEMENT PROBLEM

In this section, we develop methods for addressing the
optimization management problem in Equation 2 that results in
an efficient dynamic energy management policy. To obtain the
best policy for our discrete state, decision and workload space
problem as defined in the previous section, we first model the
problem as an MDP. At each planning instant, based on the
given state of the hybrid source and the incident workload,
a decision is made to improve the overall objective function.
To solve the MDP problem, a method that considers all the
variables of the system model such as the EES properties and
the uncertainty of the workload should be incorporated.

Our approach for finding the best solution is based on
assigning a value to a state st ∈ S and following an optimal
policy from time t to the end of the planning period. This value
is denoted by Vt(st) and is called the value function. The value
function is related to our OF (Equation 2) as follows,

Vt(st) = max
at∈A

R(st, at) + E[
∑
τ≥t

max
sτ∈S,aτ∈A

R(sτ , aτ )] (3)

According to the OF in Equation 2, objective maximization
is equivalent to obtaining V0(s0). It was shown that an
approximate MDP solution can be obtained by breaking the
complex, multi-period OF in Equation 2 into easier steps at
different points of time and expressing it as a Bellman equation
that is the necessary condition to find an optimal solution of
an MDP [16]. The Bellman representation of Equation 3 is,

Vt(st) = max
at∈A

(R(st, at) + E[Vt+1(st+1|st)]). (4)

We first discuss the complexity of solving the above equation,
and then provide a solution strategy.

1) Problem complexity: There are two major sources of
complexity in Equation 4. The first source comes from the state
and action variables which have multiple levels, resulting in a
curse of dimensionality. As an example, assume that NC = 2,
Rcap

max = 40 and Rbat
max = 100. Then if the battery and s-

caps could only take integer charge values, i.e, ∆r1 = 1
and ∆r2 = 1, the S space that contains all the possible
states would consist of 412 × 1012 = 17147881 states. For a
more precise modeling of the continuous values in the discrete
space, one would need to quantize to more levels, rendering the
problem even more complex. The second source of complexity
for our problem is the workload uncertainty. Computing the
expectation in Equation 4 requires a priori workload informa-
tion. Thus, this expectation has to be estimated.

2) Solution strategy: We develop a Q-learning approach to
solve our MDP problem. Equation 4, in case the probabilistic
characteristics of the load were known, could be solved by a
dynamic program stepping backward in time. This requires
iterating over all possible states to compute Vt(st), which
is computationally impractical. Instead, our Q-learning ap-
proximation approach studies the load by stepping forward in
time and updates an approximate value function for making
decisions. We begin with an initial approximation of value
function for all points of time t and all possible states st. Then,
we improve the approximation over a number of updating
iterations (denoted by Nite). Q-learning is particularly useful
when one cannot predict the next state (at a future time) given
a state and an action. We assign a value, which we call Q-
factor, for being in a state st and imposing an action at. The
value function of a state is the maximum Q-factor that can be
obtained over all the applicable actions to that state,

Q(st, at) = R(st, at) + Vt+1(st+1), (5)
Vt(st) = max

at∈A
Q(st, at).

In this setting, at st, we choose an action and then ob-
serve the next state (st+1) based on the sample workload:
st+1 = SM (st, at, wt), where, wt is the workload at time t
and SM (.) is the transition function defined in Section IV-A3.
Beginning with an initial approximation of Q-factor values,
denoted by Q0(st, at), for all possible points of time and
states, one can iteratively update Q-factors over time and for
the sample workloads. The update criteria is as follows. First,
we record a sample estimate of the Q-factor for being at a
state st and taking the action at at the nth (1 ≤ n ≤ Nite)
iteration using, q̂n = R(st, at)+V n−1

t+1 (st+1). Then, the value
function and the Q-factor are updated,

V n−1
t+1 (st+1) = max

at+1∈A
Qn−1(st+1, at+1), (6)

Qn(st, at) = (1− αn−1)Q
n−1(st, at) + αn−1q̂

n.

The superscript indices n denote the iteration number; αn−1

is a scaling factor. A typical approach is to set αn−1 to 1
n to

reduce the impact of later observations on the value function.
Our approach addresses the dimensionality challenge by

beginning with an estimation for the Q-factors (and thus the
value function) and then updating those values over a set of
sample loads. After simulating the problem for enough number
of iterations, an approximate value function converges to its
exact value for WSS processes [16]. We now have a method
that does not require computing the expectation in Equation 4.
Instead, our method requires access to a set of representative
loads. We formalize the solution in Algorithm 1.

Algorithm 1 works as follows: Step 0 initializes the param-
eters. Step 1 sets the general iteration criteria for updating
Q-factors. Step 2 represents iterations over all sample loads.
At Step 3, for all time instants, a decision is made first by
solving the maximization problem (3a). Then, based on the
decision and the sampled load, the next state is obtained (3b).
The corresponding V value is then updated (3c). Lastly, a new
sample observation is taken (3d) to update the Q-factor (3e).



Algorithm 1. Q-learning
0 Initialization
0a Initialize Nite, S0;
0b Initialize mth sample workload with wm

t for t ∈ T ,
m ∈ {1, 2, ...,M};

0c Initialize R(s, a) for all s ∈ S and a ∈ A;
0d Q0(s, a) = 0 for all s ∈ S and a ∈ A;
1 For n=1 to Nite

2 For m=1 to M
2a s0 = S0;
3 For t=0 to T-1
3a Opt a decision to solve maximization problem;

at = argmaxa∈AQn−1(st, at);
3b Find next state using sample workload;

st+1 = SM (st, at, wm
t );

3c Update V;
V n−1(st+1) = maxa∈A Qn−1(st+1, a);

3d Record a sample Q-factor;
qn = R(st, at) + V n−1(st+1);

3e Update the estimate of Q-factor;
Qn(st, at) = (1− αn−1)Qn−1(st, at) + αn−1qn;

 Profile Indices  (Pi  for 1≤i≤8 ) Duration (min) 

U1 4,6,1,3,8,2 15,18,40,5,20,5 

U2 1,3,4,7 40,28,25,35 

U3 3,1,4,1,5,1,3,8,1 20,4,6,45,10,5,18,2,18 

U4 1,7,3,1,4,6,1,2,6,8 20,18,15,10,7,13,15,4,16,
10 

U5 8,1,7,6,2,8 40,30,8,12,18,20 

U6 4,3,7,1,3,6 25,15,38,14,36 

U7 1,2,8,4 33,60,29,6 

U8 5,7,3,1,4,6,1,2,6,8,5,
1,2,1,3 

2,10,8,10,7,13,15,5,6,18,
4,20,10 

U9 1,8 110,18 

U10 5,7,3,1,4,6,1,2,6,8,5,
1,2,1,3,5,2,8,6,5,4,1,
2,6,3,7,4,5,1 

2,4,8,18,7,5,4,2,7,5,6,5,
4,6,3,1,2,4,3,2,1,3,2,5,4
,1,6,2,6 

 

Fig. 2. User profiles. The tasks are as follows: P1-airplane mode and display
off (40mA); P2-default mode and display off (100mA); P3-browsing Internet
over 3G network (310mA); P4-the revenge game tap-tap (220mA); P5-3D
game GTI racing (400mA); P6-youtube video over WiFi (260mA); P7-youtube
video (350mA); P8-voice phone (170mA).

After execution of Algorithm 1, the final derived Q-factors
are loaded into the management unit of the combined system.
The management unit, based on the observation of the system
state st at each time t, makes a decision using Equation 7. By
applying the optimal action at and observing the uncertain
workload wt, the system traverses to its next state st+1.

at = argmax
at∈A

Q(st, at). (7)

VI. EXPERIMENTAL RESULTS

We adopted the workload scenarios from iPhone battery
current measurements in our department [17]. The applica-
tion current values are presented in the caption of Figure 2
(averaged over one minute with an accuracy of 10mA). We
created 10 user benchmarks. Figure 2 shows the task indices
and the corresponding durations for each user benchmark.

A. Evaluation setup

We opted to use two 200F s-caps with capacities of 400C.
At each instant, the management unit was able to use one s-cap
to supply the load and the battery to charge the other s-cap. A
4V , 1000C battery was incorporated. Thus, supply system’s
initial energy capacity was 1800C. We quantized and scaled
the source and demand charge such that at each updating

instant t, the load charge demand σload(t) was round(σload(t)
10 )

referring to a general round function. The decisions were
made at the beginning of one minute intervals. We assumed
a fully charged initial state and set it to S0 = {40, 40, 100, 0}
corresponding to the aforementioned workload scaling. Rth

was set to 1C and λ in Equation 1 was set to 10% .

B. Convergence of the Q-learning algorithm

Considering the large state/decision space dimensionality
of the problem, we verify the practicality of Algorithm 1
by evaluating its convergence rate. We observe the effect of
incrementing Nite on the Q-factors. We refer to the set of all
Q-factors as the Q-table. Note that in an ideal case, if we do
enough simulations to fill all possible elements of the Q-table,
we would ensure that all the system states have been already
studied and the Q-factors corresponding to those states are
available. It can be seen in Figure 3 (left) that as the number
of iterations increases, the number of elements of the Q-table
that are filled for the first time decreases. Figure 3 (right),
shows the normalized L1 norm of (|Qn|− |Qn−1|) where Qn

is the Q-table at iteration n and Q0 = 0. This result shows that
although increasing the number of iterations can increase the
number of visited states, the newly visited states have much
smaller Q-factors, meaning that they are less probable. After
100 iterations, the percentage of newly filled elements of Q-
table (compared to the first iteration) and the normalized L1

difference error is less than 12% and 3% respectively.

C. Q-learning efficiency evaluations

To verify the performance efficiency of our method for each
source of complexity (i.e., the large decision state space and
the stochastic properties), we create two sets of experiments.
The first experiment is based on the assumption that the
workload is known a priori. Thus, we train the hybrid system
to optimally perform for the particularly known workload. The
evaluation results for this experiment reflects the efficiency
of our method in handling the large space dimension of the
problem. As an example, to find the best policy for U1, its
workload is used to obtain the Q-factors in Algorithm 1.

The second experiment is performed on general realtime
workloads. Here, the performance of our method for the
stochastic workloads is evaluated. For this purpose, we gen-
erate Q-factors using multiple sample workloads; We run
algorithm 1 for M = 10 sample paths that are the 10 user
workloads. The result is a global table of Q-factors. For each
user, we exploit the derived table to make decisions based on
the incident state observation (st) and by using Equation 7.
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Fig. 5. Energy efficiency (σsav%) of Q-learning for the two experiments.

Figure 4 shows the EES elements charge depletion patterns
in the two aforementioned experiments for the same load. On
the left, the system is specifically trained for the workload (first
experiment) and on the right, a global policy is applied (second
experiment). In both cases, the management unit continuously
recycles the battery’s charge into the s-caps and discharges the
s-caps into the load. In the first experiment, the s-caps’ are
fully discharged into the load, while in the second experiment
the battery is totally depleted and s-cap1 has some charges
left. The difference is due to the policy optimality when the
load is known a priori compared to the case where a global
policy is applied based on the incident load.

We define a metric denoted by σsav to quantitatively mea-
sure the energy efficiency of our method. For each workload,
we measure the supply’s charge depletion in our combined
system (denoted by ∆σbc). We also measure the charge
depletion associated with those workloads for a battery-only
supply system (denoted by ∆σb), where the battery’s capacity
is equal to the total capacity of our combined system. The
metric is defined as, σsav = 1 − ∆σbc

∆σb
. We adopt Lithium-

Ion’s battery model from [9] to extract the battery’s charge
consumption for each load considering the rate capacity effect.

Figure 5 shows the final results for the two sets of experi-
ments. As expected, the efficiency is higher for a priori known
workloads because the system is best trained for one particular
workload. Even in this case, approximating the best solution
requires the Q-learning to handle a large space of states and
actions. The results verify an average σsav(%) of 19.0% for
the 10 users. However, the results for the general realtime
workloads show an average σsav(%) of 13.1% over the 10
tested loads.

VII. CONCLUSION

We developed a novel power management methodology
for combined battery and supercapacitor energy supplies.

To provide an optimal management strategy, we posed this
problem as a discrete Markov Decision Process (MDP) based
upon the EES element characteristics and the stochastic nature
of the load. To solve our MDP formulation, we developed
a Q-learning method that learns the dynamics of the load
and iteratively updates the management policy based upon
a specified reward function. Our framework can be easily
modified and tuned to different design parameters including
the reward function and the number of s-caps. Increasing
the number of s-caps allows for a reduction in the overall
leakage by lowering the stored energy per s-cap. However,
the reasonably low leakage of our s-caps and the overhead
cost did not necessitate incorporating more than two s-caps in
our studied workload scenarios. We evaluated our approach on
real iPhone’s workload current measurements. Two scenarios
for a priori known workload and a general unknown workload
were evaluated. Using the Q-learning algorithm, the results
showed an average energy savings of 19% and 13.1% for the
two scenarios respectively.
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