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Adversarial attacks have exposed the unreliability of machine learning models for decision making in autonomous
agents. This article discusses recent research for ML model assurance in face of adversarial attacks.

The fourth industrial revolution
shaped by Machine Learning (ML)

algorithms is underway. ML algorithms
have provided a paradigm shift in de-
vising automated systems that can even
surpass human performance in con-
trolled environments. While advanced
learning technologies are essential for
enabling interaction among autonomous
agents and the environment, a charac-
terization of their quality or careful
analysis of the system reliability in the
presence of malicious entities are still in
their infancy.

Reliability and safety consideration
is the biggest obstacle to the wide-
scale adoption of emerging learning al-
gorithms in sensitive scenarios such as
intelligent transportation, health-care,
warfare, and financial systems. Al-
though ML models deliver high accu-
racies in conventional settings with lim-
ited simulated input samples, recent re-
search in adversarial ML has shed light
on the unreliability of their decisions in
real-world scenarios. For instance, con-
sider a traffic sign classifier used in self-
driving cars. Figure 1 shows an example
adversarial sample where the attacker
carefully adds imperceptible perturba-
tion to the input image to mislead the
employed ML model, and thus, jeopar-
dizes the safety of the vehicle.

In light of the adversarial attacks,
to pervasively employ autonomous ML

agents in sensitive tasks it is imperative
to answer the following two questions:

• What are the vulnerabilities of
machine learning models that at-
tackers can leverage for crafting
adversarial samples?

• How can we characterize and
thwart the adversarial space for
effective ML model assurance
and defense against adversaries?

In this article, we discuss our recent
research results for adaptive ML model
assurance in face of adversarial attacks.
In particular, we introduce, implement,
and automate a novel countermeasure
called Modular Robust Redundancy
(MRR) to thwart the potential adversar-
ial space and significantly improve the
reliability of a victim ML model.1

Unlike prior defense strategies,
MRR methodology is based upon unsu-
pervised learning, meaning that no par-
ticular adversarial sample is leveraged
to build/train the modular redundan-
cies. Instead, our unsupervised learning
methodology leverages the structure of
the built model and characterizes the
distribution of the high dimensional
space in the training data. Adopting
an unsupervised learning approach, in
turn, ensures that the proposed detec-
tion scheme can be generalized to a
wide class of adversarial attacks. We
corroborate the effectiveness of our

method against the existing state-of-
the-art adversarial attacks. In partic-
ular, we open-source our API to en-
sure ease of use by data scientists and
engineers and invite the community
to attempt attacks against our pro-
vided benchmarks in form of a chal-
lenge. Our API is available at https:
//github.com/Bitadr/CuRTAIL

Adversarial samples have already
exposed the vulnerability of ML mod-
els to malicious attacks; thereby under-
mining the integrity of autonomous sys-
tems built upon machine learning. Our
research, in turn, empowers coherent in-
tegration of safety consideration into the
design process of ML models. We be-
lieve that the reliability of ML models
should be ensured in the early develop-
ment stage instead of looking back with
regret when the machine learning sys-
tems are compromised by adversaries.

Figure 1: The left image is a legiti-
mate “stop” sign sample that is clas-
sified correctly by an ML model. The
right image, however, is an adversar-
ial input crafted by adding a particu-
lar perturbation that makes the same
model classify it as a “yield” sign.
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Adversary Models and Present Attacks

An adversarial sample refers to an input to the ML model that can deceive the model to make a wrong decision. Adversarial
samples are generated by adding carefully crafted perturbations to a legitimate input. In particular, an adversarial sample should at
least satisfy three conditions: (i) The ML model should perceive a correct decision on the original (legitimate) sample; for instance,
in a classification task, the ML model should correctly classify the original sample. (ii) The ML system should make a wrong
decision on the perturbed adversarial sample; e.g., in a classification task, the model must misclassify the adversarial sample. (iii)
The perturbation added to the original sample should be imperceptible, meaning that the perturbation should not be recognizable
in the human cognitive system.
Depending on the attacker’s knowledge, the threat model can be categorized into three classes:

• White-box attacks. The attacker knows everything about the victim model including the learning algorithm, model topol-
ogy, defense mechanism, and model/defender parameters.

• Gray-box attacks. The attacker only knows the underlying learning algorithm, model topology, and defense mechanism
but has no access to the model/defender parameters.

• Black-box attacks. The attacker knows nothing about the pertinent machine learning algorithm, ML model, or defense
mechanism. This attacker only can obtain the outputs of the victim ML model corresponding to input samples. In this
setting, the adversary can perform a differential attack by observing the output changes with respect to the input variations.

Henceforth, we consider the white-box threat model as it represents the most powerful attacker that can appear in real-world
settings. We evaluate our proposed countermeasure against four different classes of attacks including Fast-Gradient-Sign (FGS),1

Jacobian Saliency Map Attack (JSMA),2 Deepfool,3 Basic Iterative Method (BIM),4 and Carlini and Wagner attack (CarliniL2),5,6

to corroborate the generalizability of our unsupervised approach. The aforementioned attacks cover a wide range of one-shot and
iterative attack algorithms. The goal of each attack is to minimize the distance between the legitimate sample and the corresponding
adversarial samples with a particular constraint such that the generated adversarial sample misleads the victim ML model. Please
refer to the technical papers for the details of each attack algorithm. For the realization of different attack strategies,7 we leverage
the well-known adversarial attack benchmark library known as Cleverhans.
——————————-
References
1. Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.
2. Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. The limitations of
deep learning in adversarial settings. In Proceedings of the IEEE European Symposium on Security and Privacy (SP), 2016.
3. Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
4. Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. International Conference on
Learning Representations, 2017.
5. Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (SP), 2017.
6. Nicholas Carlini and David Wagner. Magnet and “efficient defenses against adversarial attacks" are not robust to adversarial
examples. arXiv preprint arXiv:1711.08478, 2017.
7. Ian Goodfellow Reuben Feinman Fartash Faghri Alexander Matyasko Karen Hambardzumyan Yi-Lin Juang Alexey Kurakin
Ryan Sheatsley Abhibhav Garg Yen-Chen Lin Nicolas Papernot, Nicholas Carlini. cleverhans v2.0.0: an adversarial machine learn-
ing library. arXiv preprint arXiv:1610.00768, 2017.

Adversarial Defenses
In response to various adversarial at-

tacks proposed in the literature, several
research attempts have been made to de-
sign ML models that are more robust
in face of adversarial examples. The ex-

isting countermeasures can be classified
into two distinct categories:

(i) Supervised strategies which aim to
improve the generalization of the learn-
ing models by incorporating the noise-
corrupted version of inputs as train-

ing samples and/or injecting adversar-
ial examples generated by different at-
tacks into the DL training phase.2, 3, 4, 5

The proposed defense methods in this
category are particularly tailored for
specific perturbation patterns and can
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Figure 2: (a) In this example, data points (denoted by green squares and blue triangles) can be easily separated
in one-dimensional space. Having extra dimensions adds ambiguity in choosing the pertinent decision boundaries.
For instance, all the shown boundaries (dashed lines) are sufficient to classify the raw data with full accuracy in two-
dimensional space but are not equivalent in terms of robustness to noise. (b) The rarely explored space (region specified
by diagonal striped) in a learning model leaves room for adversaries to manipulate the nuisance (non-critical) vari-
ables and mislead the model by crossing the decision boundaries. (c) In MRR methodology, a set of defender modules
is trained to characterize the data density distribution in the space spanned by the victim model. The defender modules
are used in parallel to checkpoint the reliability of the ultimate prediction and raise an alarm flag for risky samples.

only partially evade adversarial sam-
ples generated by other attack scenarios
(e.g., with different perturbation distri-
butions) from being effective.6

(ii) Unsupervised strategies which aim
to smooth out the decision bound-
aries by incorporating a smoothness
penalty7, 8 as a regularization term in the
loss function or compressing the neural
network by removing the nuisance vari-
ables.9 These works have been devel-
oped based on an implicit assumption
that the existence of adversarial samples
is due to the piece-wise linear behav-
ior of decision boundaries (obtained by
the gradient descent approach) in high-
dimensional spaces. As such, their in-
tegrity can be jeopardized by consider-
ing a slightly higher perturbation at the
input space to cross the smoothed deci-
sion boundaries.10

More recently, an unsupervised
manifold projection approach (called
MagNet) is proposed in the literature to
reform adversarial samples using auto-
encoders.11 Unlike MRR countermea-

sure, MagNet is inattentive to the perti-
nent data density in the latent space. As
shown by Carlini and Wagner,12 mani-
fold projection methods including Mag-
Net are not robust to adversarial samples
and can approximately increase the re-
quired distortion to generate adversarial
sample by only 37 percent.

To the best of our knowledge, our
proposed MRR methodology is the first
unsupervised learning countermeasure
that simultaneously considers both data
geometry (density) and decision bound-
aries for an effective defense against ad-
versarial attacks. Our proposed coun-
termeasure is able to withstand the
strongest known white-box attack to
date by provably increasing the robust-
ness of the underlying model. The MRR
methodology does not assume any par-
ticular attack strategy and/or perturba-
tion pattern. This obliviousness to the
underlying attack or perturbation mod-
els demonstrates the generalizability of
the proposed approach in face of poten-
tial future adversarial attacks.

Furthermore, a recent line of re-
search in adversarial ML has shown a
trade-off between the robustness of a
model and its accuracy.13 To avoid this
trade-off, instead of learning a single
model that is both robust and accurate,
our proposed countermeasure learns a
set of complementary defender modules
while keeping the victim model intact;
therefore, our defense mechanism does
not impose any degradation of accuracy
on the victim model.

What is the root cause
of adversarial samples?

Our hypothesis is that the vulnera-
bility of ML models to adversarial sam-
ples originates from the relatively large
subsets of the data domain that remain
mainly unexplored. This phenomenon is
likely caused by the limited access to
the labeled data and/or inefficiency of
the algorithms in terms of their general-
ized properties. Figure 2 provides a sim-
ple illustration of the partially explored
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space in a two-dimensional setup. We
analytically and empirically back up our
hypothesis by extensive evaluations1 on
various benchmarks including the well-
known MNIST, CIFAR10, and mini-
ImageNet datasets.

Due to the curse of dimensionality,
it is often not practical to fully cover
the underlying high-dimensional space
spanned by modern ML applications.
What we can do, instead, is to con-
struct statistical modules that can quan-
titatively assess whether or not a certain
sample comes from the subspaces that
were exposed to the ML agent. To en-
sure robustness against adversarial sam-
ples, we argue that ML models should
be capable of rejecting samples that lie
within the rarely-explored regions.

How can we character-
ize and thwart the ad-
versarial space?

We formalize the goal of prevent-
ing adversarial attacks as an optimiza-
tion problem to minimize the rarely ob-
served regions in the latent feature space
spanned by an ML model. To solve the
aforementioned minimization problem,
a set of complementary but disjoint re-
dundancy modules are trained to capture
the Probability Density Function (PDF)
of the legitimate (explored) subspaces.
In MRR methodology, the victim model
is kept as is while separate defender
modules are trained to checkpoint the re-
liability of the victim model prediction.

Each modular redundancy learns a
PDF to explicitly characterize the ge-
ometry (density) of a certain high-
dimensional data abstraction within an
ML model. In a neural network, for ex-
ample, each MRR module checkpoints
a certain intermediate hidden (or input)
layer (Figure 3). A DL layer may be
checkpointed by multiple MRR mod-
ules to provide a more robust defense

strategy. Each defender marks the com-
plement of the space characterized by
the learned PDF as the rarely observed
region, enabling statistical tests to deter-
mine the validity of new samples.

Once such characterizations are ob-
tained, statistical testing is used at run-
time to determine the legitimacy of new
data samples. The defender modules
evaluate the input sample probability in
parallel with the victim model and raise
alarm flags for data points that lie within
the rarely explored regions. As such, the
adversary is required to simultaneously
deceive all defender modules in order to
succeed. Unlike the prior works, our ap-
proach does not suffer from a degrada-
tion of accuracy since the victim model
is untouched.

Latent  
Checkpoints

Input 
Checkpoint

Defender DefenderDefender

Figure 3: A high-level overview of
proposed MRR methodology. The
output layer of the victim neural
network (the green neurons) is aug-
mented with a single risk measure
(the red neuron) determining the le-
gitimacy of the prediction.

The outputs of MRR modules are
aggregated into a single output node
(the red neuron in Figure 3) that quan-
titatively measures the reliability of the
original prediction. For any input sam-
ple, the new neuron outputs a risk mea-
sure in the unit interval [0,1], with 0 and
1 indicating safe and highly risky sam-
ples, respectively. The extra neuron in-

corporates a “don’t know” class into the
model: samples with a risk factor higher
than a certain threshold (a.k.a., security
parameter) are treated as adversarial in-
puts. The threshold is determined based
on the safety-sensitivity of the applica-
tion for which the ML model is em-
ployed. This approach is beneficial in a
sense that it allows dynamic reconfigu-
ration of the detection policy with mini-
mal required recomputing overhead.

Adversarial and legitimate samples
differ in certain statistical properties.
Adversarial samples are particularly
crafted by finding the rarely explored di-
mensions in an `∞ ball of radius ε . In
MRR methodology, samples whose fea-
tures lie in the unlikely subspaces are
marked and identified as risky samples.
Our conjecture is that a general ML
model equipped with the side informa-
tion about the density distribution of the
input data as well as the distribution of
the latent feature vectors can be made
arbitrary robust against adversarial sam-
ples. Our proposed MRR methodology
strengthens the defense by training mul-
tiple defenders that are negatively corre-
lated. Informally, if two MRR modules
are negatively correlated, then an adver-
sarial sample that can mislead one mod-
ule will raise high suspicion in the other
module and vice versa.

As an example, consider a classifi-
cation task where a 4-layer neural net-
work is used to categorize ten differ-
ent classes of the popular digit recogni-
tion dataset known as MNIST. Figure 4a
demonstrates the feature vectors within
the second-to-last layer of the pertinent
victim neural network in the Euclidean
space. Note that only three dimensions
of the feature vectors are shown for vi-
sualization purposes. The feature vec-
tors of samples corresponding to the
same class (same color) tend to be clus-
tered in the Euclidean space. Each clus-
ter has a center obtained by taking the
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Figure 4: Example feature samples in a 4-layer neural network trained for a digit recognition task. Latent feature
samples in the second-to-last layer of (a) the victim model and (c) its corresponding transformation in our defender
module. The majority of adversarial samples (e.g., the red dot points in (c)) reside in the regions with low density
of training samples. Figures (b) and (d) show the histogram of the distance between samples and cluster centers for
legitimate and adversarial inputs in the victim and defender models, respectively.

average of the features of the corre-
sponding class. For each input sample
identified as a certain class by the vic-
tim model, we compute the distance be-
tween the feature vector and the corre-
sponding center.

Figure 4b demonstrates the distribu-
tion of the distance between data sam-
ples and the center of the pertinent
class for legitimate (blue) and adver-
sarial (red) samples. In this experiment,
we generate the adversarial samples us-
ing the FGS attack algorithm. It can be
seen that the aforementioned distance
is higher for adversarial samples com-
pared to legitimate samples. This, in
fact, validates our hypothesis that ad-
versarial samples lie within the unex-
plored subspaces (higher distance from
cluster centers in this case). The adver-
sarial samples can be simply detected
by thresholding the aforementioned dis-
tance. Nevertheless, building a detec-
tion method based on this distance in its
current form will lead to a high prob-
ability of false alarm: legitimate inputs
might be incorrectly marked as adver-
sarial samples.

Each defender module is regular-
ized based on a prior distribution (e.g.,

a Gaussian Mixture Model) to enforce
disentanglement between the features
corresponding to different categories
and be more robust against skewed fea-
ture distributions.1 As an example, the
corresponding data distribution and dis-
tance measure for a single defender are
shown in Figures 4c and 4d, respec-
tively. It can be seen that the clusters
are well-separated, thus, the characteri-
zation of the adversarial subspace incurs
a small probability of false alarms. Ta-
ble 1 summarizes the Area Under Curve
(AUC) score attained against four differ-
ent attacks in a black-box setting.

Table 1: AUC score obtained by 16
latent defenders that checkpoint the
second-to-last layer of the victim model
for MNIST and CIFAR-10 benchmarks.
For ImageNet benchmark, we only used
1 defender due to the high computa-
tional complexity of the pertinent neural
network and attacks.

MNIST CIFAR10 ImageNet
FGS 0.996 0.911 0.881
JSMA 0.995 0.966 -
Deepfool 0.996 0.960 0.908
CarliniL2 0.989 0.929 0.907
BIM 0.994 0.907 0.820

Adaptive white-box attack. To fur-
ther corroborate the robustness of PCL
methodology, we applied the state-of-
the-art CarliniL2 attack in a white-box
setting.12 A similar strategy was pre-
viously used in the literature to break
the state-of-the-art countermeasures in-
cluding MagNet,11 APE-GAN,14 and
other recently proposed efficient de-
fenses methods.15 Table 2 summarizes
the success rate of the CarliniL2 attack
algorithm for different numbers of re-
dundancy (defender) modules and risk
thresholds (security parameters) for the
MNIST benchmark.

Our MRR methodology offers a
trade-off between robustness of the ML
model and its computational complex-
ity. On the one hand, increasing the
number of MRRs enhances the robust-
ness of the model as shown in Ta-
ble 2. On the other hand, the compu-
tational complexity grows linearly with
the number of MRRs (each redundancy
module incurs the same overhead as the
victim model). Our proposed MRR de-
fense mechanism outperforms existing
state-of-the-art defenses both in terms
of the detection success rate and the
amount of perturbation required to fool
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Table 2: Evaluation of PCL methodology against adaptive white-box attack. We compare our results with prior-art works in-
cluding Magnet,11 Efficient Defenses Against Adversarial Attacks,15 and APE-GAN.14 For each evaluation, the L2 distortion
is normalized to that of the attack without the presence of any defense mechanism. For fair comparison to prior work, we
did not include our non-differentiable input defenders in this experiment. Note that highly disturbed images (with large L2
distortions) can be easily detected using the input dictionaries/filters.

MRR Methodology (White-box Attack) Prior-Art Defenses (Gray-box Attack)
Security Parameter SP=1% SP=5% Magnet Efficient Defenses APE-GAN
Number of Defenders N=0 N=1 N=2 N=4 N=8 N=16 N=0 N=1 N=2 N=4 N=8 N=16 N=16 - -
Defense Success - 43% 53% 64% 65% 66% - 46% 63% 69% 81% 84% 1% 0% 0%
Normalized Distortion (L2) 1.00 1.04 1.11 1.12 1.31 1.38 1.00 1.09 1.28 1.28 1.63 1.57 1.37 1.30 1.06
FP Rate - 2.9% 4.4% 6.1% 7.8% 8.4% - 6.9% 11.2% 16.2% 21.9% 27.6% - - -

the defenders in a white-box setting.
We emphasize that training the de-

fender module is carried out in an un-
supervised setting, meaning that no ad-
versarial sample is included in the train-
ing phase. We believe that leveraging
an unsupervised learning approach is
the key to having a generalizable de-
fense scheme that is applicable to a
wide class of adversarial machine learn-
ing attacks. To the best of our knowl-
edge, our proposed MRR approach1

is the first unsupervised countermea-
sure to withstand the existing adver-
sarial attacks for (deep) ML models
including Fast-Gradient-Sign, Jacobian
Saliency Map Attack, Deepfool, and
Carlini&WagnerL2 in both black-box
and white-box settings. Details about
the robustness of the MRR methodology
against the aforementioned attack meth-
ods are available in our paper.1

Transferability
In the context of adversarial sam-

ples, transferability is defined as the
ability of adversarial samples to deceive
ML models that have not been used by
the attack algorithm, i.e. their parame-
ters and network structures were not re-
vealed to the attacker. In other words,
adversarial samples that are generated
for a certain ML model can potentially
deceive another model that has not been
exposed to the attacker. Our proposed
MRR methodology is robust against

model transferability in a sense that the
adversarial samples generated for the
victim model using the best-known at-
tack methodologies are not transferred
to the defender modules.1 This, in turn,
guarantees the effective performance of
our MRR method against both white-
box and black-box16 attacks.

Our key observation is that the ma-
jority of adversarial samples that can
be easily transferred in between dif-
ferent models are crafted from legiti-
mate samples that are inherently hard-
to-classify due to the closeness to deci-
sion boundaries corresponding to such
classes. For instance, in the MNIST
digit recognition task, such adversarial
samples mostly belong to class 5 that is
misclassified to class 3, or class 4 mis-
classified as 9. These misclassifications
are indeed the model approximation er-
ror which is well-understood due to the
statistical nature of the models.

Figure 5 shows example adversar-
ial samples generated by such hard-
to-classify examples. As demonstrated,
even a human observer might make a
mistake in labeling such images. We be-
lieve that a more precise definition of
adversarial samples is necessary to dis-
tinguish malicious samples form those
that simply lie near the decision bound-
aries. Therefore, the notion of transfer-
ability should be redefined to differen-
tiate between hard-to-classify samples
and adversarial examples.

Figure 5: Example adversarial sam-
ples for which accurate detection is
hard due to the closeness of deci-
sion boundaries for the correspond-
ing data categories.
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