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ABSTRACT
We propose Perform-ML, the first Machine Learning (ML)
framework for analysis of massive and dense data which cus-
tomizes the algorithm to the underlying platform for the
purpose of achieving optimized resource efficiency. Perform-
ML creates a performance model quantifying the computa-
tional cost of iterative analysis algorithms on a pertinent
platform in terms of FLOPs, communication, and memory,
which characterize runtime, storage, and energy. The core
of Perform-ML is a novel parametric data projection algo-
rithm, called Elastic Dictionary (ExD), that enables versa-
tile and sparse representations of the data which can help
in minimizing performance cost. We show that Perform-ML
can achieve the optimal performance objective, according
to our cost model, by platform-aware tuning of the ExD
parameters. An accompanying API ensures automated ap-
plicability of Perform-ML to various algorithms, datasets,
and platforms. Proof-of-concept evaluations of massive and
dense data on different platforms demonstrate more than an
order of magnitude improvements in performance compared
to the state-of-the-art, within guaranteed user-defined error
bounds.

1. INTRODUCTION
Efficient resource utilization plays a key role in achieving

a sustainable and practical computing ecosystem. Learn-
ing and analysis of massive data is a trend that is ubiqui-
tous among the various modern computing platforms in this
ecosystem, ranging from embedded sensors and Internet-of-
things devices, to smart phones, and cloud servers. The most
challenging ML scenarios are the ones that involve iterative
optimization on dense (non-sparse) datasets. Examples of
such scenarios include decent-based algorithms ubiquitously
used for solving regularized regression, deep learning, or sup-
port vector machines that are widely used in various learning
applications [17, 6]. Image and video datasets which encom-
pass the majority of the generated content in modern digital
world are prominent examples of dense data.

Two broad disjoint categories of prior works have ad-
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dressed efficient ML in such challenging scenarios: (i) Con-
tent aware methods in statistics and ML communities which
reduce the computational load by limiting the domain to
a lower-dimensional representation of data [9, 16], or, (ii)
Platform-aware methods in computer engineering that map
a given algorithm to a platform, but do not change anything
at the data projection level [1, 21]. Note that ML accelera-
tion methods such as Pregel [12] or GraphLab [11] that are
built upon the existing sparsity of the correlation matrices
become very inefficient for dense data.

In this paper, we introduce Perform-ML, the first ML
performance optimization framework which is jointly con-
tent and platform aware. Perform-ML’s efficiency is driven
by our (new) observation that data projection has a ma-
jor impact on the way mapping can be done onto modern
many-core and distributed computing machines. We recog-
nize that the degree of freedom in transforming the data
to lower dimensions (for the same approximation error) can
be utilized for performing platform-optimized mapping of
computations. The Perform-ML dimensionality reduction
is built upon a new dictionary learning, called ExD with
tunable parameters that can generate different projection
subspaces, or elastic dictionaries, for a given approximation
error. The dictionary formation and platform aware tuning
of the dictionary parameters are done in a pre-processing
phase by data subsampling. This information is then used
for achieving the best computing cost for processing the en-
tire massive data. The pre-processing overhead is amortized
over several iterations of the resource efficient ML algorithm
on the transformed data.

The explicit contributions of this paper are: (i) Creation
of the Perform-ML end-to-end and resource aware frame-
work that is applicable to a wide-range of ML applications
which rely on iterative optimization over big and dense data
to converge. (ii) Introduction of a quantitative performance
cost for Perform-ML that is utilized to provably optimize the
performance (e.g., in terms of energy, runtime or memory)
of running the ML algorithm on the target platform. (iii)
Development of ExD, the first parametric data projection
method which for a given error bound can generate many
possible lower dimensional dictionaries. The ExD parame-
ters are customized to the underlying platform to minimize
the quantified performance cost. (iv) Inception of a new
mapping method to enable efficient running the big data ML
algorithms on the pertinent computing resources which con-
currently considers communication minimization and load
balancing. Our mapping achieves the theoretical bounds on
communication and storage that are known to be the per-
formance hurdles. (v) Automation of Perform-ML by open-
source APIs built on the MPI message passing interface to



enable fast adaptation of the framework to new platforms
and various iterative ML algorithms. Evaluations of ML ap-
plications including large-scale denoising, super-resolution,
and Principle Component Analysis demonstrate more than
a 10-fold improvement in runtime, memory footprint, and
energy efficiency compared with the prior art.

2. RELATED WORK
To the best of our knowledge, Perform-ML is the first

framework based on platform aware data projection for mak-
ing subsequent ML-based processing more resource efficient.
Nonetheless, prior research are related to Perform-ML both
in terms of the problem and solution.

Dimensionality Reduction Approaches. Traditional
matrix projection methods such as SVD and PCA become
infeasible in large scale as they incur O(M2N) complexities
(with large constant factors) for an M ×N matrix. To ad-
dress this challenge, randomized algorithms known as Col-
umn Subset Selection (CSS) have been developed [2]. CSS
approaches project data into a lower dimensional subspace.
The projection basis, a.k.a., dictionary, is learned by select-
ing a subset of data columns. While the scalability of Ran-
dom CSS (RCSS) techniques make them most appealing for
large data [2, 10], adaptive CSS methods can create more
accurate dictionaries [4, 9, 14, 3]. Farahat [4] and Lever-
age Scores [9] are adaptive methods that aim to minimize
the dictionary size to achieve a given approximation error.
Both methods require creation and storage of the N × N
correlation matrices which is impractical for dense and large
data. oASIS [14] is another adaptive CSS technique that
greedily chooses the most informative columns to add to the
dictionary. oASIS is memory efficient and its runtime scales
linearly with N [14]. We compare the results of our platform
aware method with RCSS and oASIS techniques.

Content Aware Methods for Accelerating ML. Pre-
vious works demonstrate the usability of data transforma-
tion methods for accelerating certain learning/linear algebra
problems, including SVM [7], spectral clustering [8], dimen-
sionality reduction [2], least squares, norm-1 minimization
algorithms [15], and square-root LASSO [20]. However, un-
like Perform-ML, all of the above methods are tailored for
the specific learning/algebraic problem and are not directly
applicable to generic iterative algorithms on the correlation
matrix such as LASSO, Elastic Net (least squares with `1
and `2 regularization), or Power method. Our earlier work,
RankMap, proposes the usability of data transformation to
generic iterative update algorithms [13]. However, RankMap
(unlike Perform-ML) does not perform platform aware op-
timization. In addition, the error-based criteria for select-
ing the transformation basis in RankMap prevents it from
creating versatile and over-complete dictionaries. Stochastic
Gradient Descent (SGD) [22] is another common, greedy ap-
proach for accelerating ML that does not always guarantee
convergence to the actual solution. It also does not provide
memory usage reduction. We also use RankMap and SGD
as our comparison basis.

Platform Aware Techniques for Hardware Mapping.
Prior research extensively addressed efficient mapping of lin-
ear algebra and ML algorithms onto distributed, heteroge-
neous, or reconfigurable architectures [1, 21]. While such
methods effectively optimize the performance with hardware
aware mapping, they do not provide any customization with
respect to hidden data geometry. They instead operate on
the data given by the application which is ubiquitous re-

gardless of the platform.

3. GLOBAL FLOW OF Perform-ML
The Perform-ML framework targets iterative algorithms

that operate on the massive and dense correlation or Gram
matrices. Many contemporary ML algorithms focus on ex-
ploring the correlations between different data samples. Ex-
amples include descent-based solutions to regression prob-
lems such as Ridge and LASSO [17], Power method for find-
ing PCA [6], interior point methods for solving SVM [5],
etc. The major cost of an iterative update arises from mul-
tiplications on the Gram matrix, i.e., G = ATA, where A is
the original data matrix. For large and dense data, an up-
date becomes prohibitively costly due to the huge number
of floating point operations and message passing across the
processing nodes.

The overall flow of Perform-ML is shown in Figure 1.
Perform-ML exploits the well-understood fact that many
ML applications are tolerant to variations in output solu-
tion, offering the opportunity to trade the solution accuracy
with resource efficiency [2, 10]. In Section 4, we introduce
our novel and parametric data projection method, called
ExD. ExD seeks to find a low-dimensional dictionary ma-
trix D and a sparse coefficient matrix C such that:

min ‖C‖0 s.t. ‖A−DC‖F ≤ ε‖A‖F , (1)

where D is M × L, C is L × N , and L � N . Parameter ε
is a user-defined approximation error, ‖C‖0 is the number
of non-zeros in C, and ‖ · ‖F is the Frobenius norm. ExD
is a pre-processing step whose goal is to create a projection
such that iterative updates on the transformed components
i.e., (DC)TDC, become much more efficient than ATA. The
key idea is that dictionary size L can be used to control the
redundancy in D, to create different levels of sparsity in C.
In other words, by elastically tuning the dictionary size, we
can achieve sparser C’s.

In Section 5, we propose an optimal distributed comput-
ing model to perform iterative computations on DC. We
show that L governs the communication cost, thus, there is
a trade-off between the number of non-zeros (or computa-
tion and the memory footprint) of the projected data and the
communication overhead. We propose metrics to quantify
the computing cost for our distributed model, which directly
characterize memory, runtime, and energy. In Section 6, we
demonstrate our approach for tuning ExD to minimize the
quantified costs. In Section 7, we provide our evaluations.

4. Perform-ML TRANSFORMATION
Algorithm 1 outlines ExD, Perform-ML’s projection

method. The first step is to create the dictionary matrix D
by sub-sampling columns of A uniformly at random. Once
D is created, Equation 1 becomes a generic sparse approx-
imation problem. Each column ci of C is a sparse approx-
imation of the column ai of A with respect to D and the
user-specified projection error ε. The second step is to solve
the sparse approximation problem. To do so, we use Or-
thogonal Matching Pursuit (OMP) which is a greedy sparse
coding routine [16]. When the data is sufficiently sampled
such that the span of columns of D is “close” to the span of
columns of A, OMP finds a sparse coefficient matrix C such
that the error tolerance criteria is met. Setting the error
tolerance to zero (ε = 0) guarantees achieving the same pro-
jection error as least-squares approaches. Note that sparse



Figure 1: Global flow of Perform-ML: during pre-processing, dataset A is transformed into a dictionary D and a sparse coefficient matrix
C. The transformation is platform-specific and is tailored to benefit subsequent processing of data.

Algorithm 1 : ExD Transformation

Input: Normalized data matrix A ∈ RM×N , error toler-
ance ε, number of processors NP , and number of columns
to select L.

Output: A sparse matrix C ∈ RL×N and a dictionary
D ∈ RM×L such that ‖A−DC‖F ≤ ε‖A‖F .

0. pid = 01creates a random subset of in dices of size
L (from 1, 2, . . . , N), denoted by IL and broadcasts it to
other processors.
1. pid = i loads D = A(:, IL).

2. pid = i loads Ai = A(:, iN
NP

: (i+1)N
NP

).

3. pid = i applies OMP to solve ai = Dci for the tolerance
error ε:

3.0. Initialize r = ai,φ = ∅
while ‖r‖2 < ε‖ai‖2 do

3.1. k = argmaxj |dj .r|
3.2. φ = (φ, k).
3.3. y = D+

φ ai
3.4. r = ai −Dφy

end while

approximation has never been used for platform-customized
performance optimization.

Selecting enough columns to create D is critical to en-
sure meeting the approximation error criteria and sparsity.
When L > M , with a high probability, matrix D becomes
full rank and thus the OMP algorithm meets the error cri-
teria. Theoretical work in the domain of subspace sampling
has attempted to find bounds for L with respect to the
intrinsic rank of a matrix. Recent work [10] proves that

by sampling L ≤ Ω( k log k
(1−δ)2 ) columns at random, a maxi-

mum (least-squares) error equal to 1
δ

of the nuclear norm
of the best K-dimensional approximation of the data (i.e.,
K-dimensional truncated SVD of A) is guaranteed.

Unlike existing (dimensionality-reduction) CSS-based ap-
proaches that create C by projecting the data using C =
D+A 2, ExD focuses on creating sparse representations in
C. Our key observation is that by increasing the dictionary
size L, one can vary the sparsity level of C. We extensively
use this property to tune ExD in order to optimize the per-
formance in a distributed setting.

Complexity Analysis. The main complexity of Algorithm
1 arises from executing OMP. We implement the efficient
Batch-OMP based on Cholesky factorization updates (Ru-
binstein et al. 2008). The upper bound on the complexity is

1Processor ID’s are denoted by pid. This notation means
processor with pid = i (0 ≤ i < NP ) is in charge of the task.
2The pseudo-inverse is calculated as: D+ = (DTD)−1DT .

Algorithm 2 : Distributing Gram Matrix Update.

Input: Vector xN×1, DM×L, and CL×N .

Output: CTDTDCx.

0.0 pid = i loads Ci = C(:, iN
NP

: (i+1)N
NP

).

0.1 pid = i loads xi = x( iN
NP

: (i+1)N
NP

).

1. pid = i computes v1i = Cixi; v
1
i is an L× 1 vector.

Case 0: L >M
2. pid = i. loads D.
3. pid = i computes v2i = Dv1i ; v2i is an M × 1 vector.
4. Vectors v2i will be reduced in pid = 0.
5. pid = 0 computes v2 =

∑
v2i ; v2 = DCx is an M × 1

vector.
6. pid = 0 broadcasts v2 to all other processors.
7. pid = i computes CTi (DT v2).

Case 1: L ≤M
2. pid = 0 loads D.
3. Vectors v1i will be reduced in pid = 0.
4. pid = 0 computes v2 = D(

∑
v1i ); v2 = DCx is an

M × 1 vector.
5. pid = 0 computes v3 = DT v2; v3 = DTDCx is an
L× 1 vector.
6. pid = 0 broadcasts v3 to all other processors.
7. pid = i computes CTi v

3.

O(LMN +L2nnz(C)), where nnz(C) measures the number
of non-zeros in C. As we show in our experiments for many
datasets nnz(C) � LN . Each column of C is computed
independently. Let NP be the number of parallel processing
cores. In this case the complexity of OMP would reduce to

O( N
NP

(LM + L2 nnz(C)
N

)).

5. DISTRIBUTED COMPUTING MODEL
Algorithm 2 outlines our proposed data partitioning and

distributed computing model to perform an update, i.e.,
(DC)TDCx ' ATAx, where x is the N × 1 solution vec-
tor. Depending on whether L > M (Case 0) or L < M
(Case 1), we propose two different approaches. In Case 0,
we replicate matrix D in all the processors to reduce commu-
nication. However, doing so requires all the processors to do
the redundant multiplication, i.e, DT v2 in Step 7. In Case
1, however, the computation corresponding to DT v2 is done
only by processor 0. As discussed in Section 4, we target
datasets that are in the regime where M, L � N . Thus,
D is a relatively small matrix that can easily fit into the
memory of processor 0. Execution phase in Figure 1 shows
Case 1 where L < M and D is stored only in processor 0.

Bounds on Arithmetics. The cost of arithmetics depends
on the number of floating point operations for executing
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Figure 2: Density function α(L) and approximation error as a
function of dictionary size L.

(DC)TDCx. The number of floating point operations (in

serial) is 2(ML+ nnz(C)
NP

) multiplications and 2MNP addi-

tions, where nnz(C) shows the number of non-zeros in C.
Here, the cost of additions is negligible because in many
cases we have NP � L.

Bounds on Communication. The communication over-
head of Algorithm 2 stems from the reduce and broadcast
activities. In Case 0, Step 4, each processor sends a message
with M words to Processor 0, and in Step 6, Processor 0
sends a message with M words back to other processors. In
a similar fashion in Case 1, at Steps 3 and 5, L words are
communicated. The total number of words that are com-
municated simultaneously is 2×min(L,M).

We exploit the extensive work in applied numerical lin-
ear algebra to show that our computational model achieves
the optimal communication. More exactly, recent work on
communication-optimal parallel recursive rectangular ma-
trix multiplication directly applies to our target problem [1].
In that work, it is shown that for multiplying Z = XY where
dimensions of matrices X, Y , and Z belong to {d1, d2, d3}
such that (d1 ≤ d2 ≤ d3), if 2 d3

d2
> NP (which is the case

in our framework when d3 = N), the communication lower
bound is Ω(d1d2). Substituting the dimensions by those of
matrices D, C, and x we get d1 = 1 and d2 = min(M,L)
which brings the number of transferred words to min(M,L).
Thus, our communication achieves the optimal (minimum)
bound.

Runtime and Energy Performance. The overall ex-
ecution runtime is approximately proportional to: ML +
nnz(C)
NP

+ min(M,L)NPR
time
b2f , where Rtimeb2f is the word-per-

FLOPs ratio that characterizes memory bandwidth per unit
of time. The first two terms show the computational opera-
tions and the third term reflects the adjusted communication
overhead. Although a number of other factors such as mem-
ory hierarchy can affect the runtime/energy, we experimen-
tally show that our model provides a reasonable estimation
of the actual runtime. Similarly, energy performance can be
characterized by replacing Rtimeb2f with Renergyb2f .

Memory Performance. The sparsifying effect of ExD re-
sults in memory savings. In both proposed implementations
(Algorithm 2) the memory footprint per processing node is

bounded by ML+ nnz(C)+N
NP

.

6. AUTOMATED ExD’S CUSTOMIZATION
Perform-ML optimizes the performance of iterative Gram

matrix based algorithms by minimizing the quantified per-
formance cost. To do so, it adaptively finds a platform-
specific L such that the resulting (L, nnz(C)) pair minimizes
the performance costs in terms of runtime, memory, or en-
ergy. We propose a novel scalable method to tune ExD.
Our method estimates nnz(C) as a function of L with pre-
processing only a subset of data matrix A.

Figure 2 shows the normalized error (‖A−DC‖F /‖A‖F )
as a function of L for a sample dataset. 3 The figure also
plots the average per-column number of non-zeros in C as
a function of L. We denote this function as α(L,A, ε) =
nnz(C)/N . The search space for parameter L is limited
to L ≥ Lmin, where Lmin is the minimum number of
columns such that (‖A−DC‖F ≤ ε‖A‖F ). In this example
Lmin ≈ 175. α(L,A, ε) is decreasing for L > Lmin. Since a
larger L would result in a greater ensemble of signals in D, a
higher sparsity in C can be achieved. The bars on the graph
show the result’s variation for 100 different initial ensemble
collection for D. Note that the variations are very negligible
for a fixed L (i.e., less than 4% for this example).

Estimating α(L,A, ε) from Subsets of A. To optimize
the performance cost, α(L,A, ε) needs to be efficiently char-
acterized. We make the following two important observa-
tions. First, let A be a data with a union of subspace signal
model, and As be a random subset of A’s columns such
that |As| = n (|.| denotes cardinality). Then, for n → N :
E[α(L,As, ε)] = E[α(L,A, ε)]. Second, given that dataset A
admits a union of subspace model, columns of A can be rep-
resented as a collection of signals from Ns subspaces where
each subspace Ui is Ki-dimensional (for 1 ≤ i ≤ Ns). In
this case, if ni columns of A lie on subspace Ui, then the
coefficient matrix corresponding to those ni columns have
at most Kini non-zeros. Based on our definition of the den-
sity measure, we have α(L,A, ε) ≤

∑
1≤i≤Ns

Ki
ni
N

. Let us
create As by selecting n columns at random from A. The
expected number of columns in As that belong to subspace
Ui is ni

N
n. If we apply Algorithm 1 to As, the following ex-

pected upper bound is achieved for α(L,As, ε) ≤
∑
Ki

ni
N

,
which is the same bound as if the entire dataset was used.
Thus, one can run ExD for random subsets of A denoted by
Ai, such that |A1| < |A2| < · · · < |A| until the discrepancy
in α(L,Ai, ε) reduces to a pre-specified threshold.

7. EVALUATION
We implement Perform-ML using the standard message

passing system (MPI) in C++. Eigen library is used for
linear algebra computations. Our API’s inputs include:
dataset A, approximation error ε, and the iterative up-
date function on Gram matrix. We experimentally find the
platform-specific relative cost of computation versus com-
munication (e.g., Rtimeb2f ). Our evaluations are done on IBM
iDataPlex (node type: Intel-Xeon-X5660@2.80GHz) cluster.
Within this cluster, we studied several configuration of nodes
and cores (within each node) to emulate various platforms.
Table 1 shows the three datasets used in our evaluations.

Salina [18] Cancer Cell 4 Light Field [19]
203× 54129 1024× 111296 18496× 272320

87.9MB 911.7MB 40.3GB

Table 1: Datasets used for various applications.

Applications and Baselines. We evaluate two appli-
cations: image denoising and image super-resolution. For
these applications, we use gradient-descent method to solve
the widely popular LASSO objective [17]. Note that our
approach is generic and applicable to any regularized or pe-
nalized L2 norm optimization.

We consider two types of comparisons. The first type com-
pares ExD with other state-of-the-art existing scalable trans-

3The dataset is a collection of Hyperspectral signals (Salina
2015) with M = 203, N = 54129.
4This dataset consists of cancer tumor morphologies col-
lected in MD-Anderson cancer center.



formations including RCSS, oASIS, and RankMap. Each
of these transformations can substitute ExD within our
proposed end-to-end framework. The second type, com-
pares our approach with other ML acceleration practices.
More precisely, for the denoising and image super-resolution
applications, we compare Perform-ML’s implementation of
gradient-descent based approach, with SGS. SGD is a pop-
ular but approximate method that circumvents operations
on large kernel matrices by using only a subset (or a batch)
of data in each iteration. In each iteration, a subset, de-
noted by Ab, is randomly selected from a rows of A. The
update is done using ATb Abx instead of ATAx. We imple-
mented a distributed SGD method using Adagrad to update
the gradients. The drawback of SGD is in its sub-optimality,
non-guaranteed, and slow convergence, since only portions
of data is used to update the solution [22]. Perform-ML,
however, runs the provably converging gradient-descent on
the entire (but transformed) data.

7.1 Evaluating Perform-ML’s Pre-processing
We verify the ability of ExD to create versatile sparse

transformations. Figure 3 shows the effect of varying ExD
parameters, namely dictionary size L, and error ε, to achieve
different sparsity levels in C. The y axis demonstrates the
average number of non-zeros per column of C denoted by
α(L) 5. As it can be seen, α(L) can be significantly lower
than the number of non-zeros in the original data. For ex-
ample, for Light Field data, when L = 1000 the average
number of non-zeros per column is reduced from 18496 in A
to approximately 800, 600, and 200 for (ε = 0.1, 0.05, and
0.1 respectively) in C. The following two novel and critical
properties of ExD are evident: (i) by increasing the redun-
dancy in the dictionary (large L), we can achieve sparse co-
efficient matrices. (ii) by increasing the error-tolerance, we
can achieve sparser solutions. Perform-ML takes advantage
of these tunable characteristics to tune the transformation
w.r.t. the platform. Recall that the trade-off is that increas-
ing L would yield a higher communication (Section 5), and
increasing ε might yield to degradation of learning accuracy.
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Figure 3: Tunablity of ExD. Incrementing dictionary’s redun-
dancy and projection error yields to sparser results.

Figure 4, shows that a highly accurate estimation of
α(L) can be achieved by running ExD on subsets of data,
thus, reducing the overhead of tuning ExD during the pre-
processing. For example for L = 1000 using only 10% of data
is sufficient to estimate α(L) within less that 14% error for
all datasets. Once α(L) is characterized for various Ls, it
can be used to reduce our quantified performance model.
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Figure 4: Effective ExD tuning based on subsets of A.

5We abbreviate α(L,A, ε) with α(L).

Table 2 shows the total pre-processing time overhead,
which includes tuning and running ExD for optimal L. The
computations are done on 64 cores (8 nodes each with 8
cores). The overhead of ExD, which is a one-time pre-
processing step is amortized when iterative algorithms are
run on the transformed data.

Salina Cancer Cells Light Field
203× 54129 1024× 111296 18496× 272320

Tuning 1687 120042 175780
Transformation 931 564092 164522

Overall 2618 684134 340302

Table 2: Pre-processing overhead in ms.

7.2 Comparison with Other Transformations
Runtime Analysis. Figure 5 demonstrates the run-

time improvement achieved by using Perform-ML for Gram
matrix updates, over other approaches including the origi-
nal ATA, and the state-of-the-art scalable transformations
RCSS, oASIS, and RankMap. All the transformations are
done for ε = 0.1. We compare the runtime of an itera-
tive update on the Gram matrix, i.e., ATAx, while using
the transformed data ((DC)TDCx) instead. AM×N is the
dataset and xN×1 is a random vector. We measure the run-
time on 4 platforms: 1 × 1, 1 × 4, 2 × 8, and 8 × 8 con-
figurations, where the first number indicates the nodes and
the second indicates the cores per node. We tune ExD to
optimize for runtime on each platform. In comparison, in all
cases ExD yields better or equal runtime. We observe up to
40.78× (runtime) improvement over ATA, 9.12× improve-
ment over RCSS, 6.67× over oASIS, and 2.63× improvement
over RankMap. For Light Field we achieve comparable run-
time with RankMap (Perform-ML achieves 10% runtime im-
provement for NP = 1 and equal runtime for other NP s).
This is because for Light Field, ExD similar to RankMap,
chooses the smallest basis (Figure 6). The relative (over-
all) runtime of each of the methods for completing an ML
solution would be proportional to that of one iteration.

Memory Analysis. Table 3 compares the required mem-
ory for storing matrices C and D for different transfor-
mations. The memory usage of the original matrix A is
also provided. Other than Perform-ML, other methods al-
ways result in the same memory footprint regardless of
the platform. Perform-ML results in up to 77.8× (mem-
ory usage) improvement over ATA, 8.6× improvement over
RCSS, 6.4× improvement over oASIS, and 3.8× improve-
ment over RankMap. The memory efficiency in Perform-
ML is achieved by flexibly creating over-complete, elastic
dictionaries that result in sparse C’s.

Np
1 4 16 64

Im
pr

ov
em

en
t (
#

)

0

2

4

6

8

10
Salina 203#54129

ATA
RCSS
oASIS
RankMap

Np
1 4 16 64

Im
pr

ov
em

en
t (
#

)

0

2

4

6

8
Cancer Cells 1024#111296

ATA
RCSS
oASIS
RankMap

Np
1 4 16 64

Im
pr

ov
em

en
t (
#

)

10-1

100

101

Light Field 18496#272320

ATA
RCSS
oASIS
RankMap

Figure 5: Runtime improvement achieved by Perform-ML.

Original RCSS oASIS RankMap Perform-ML Perform-ML Perform-ML Perform-ML
data Np = 1 Np = 4 Np = 16 Np = 64

Salina 87.9 86.9 65.1 38.2 10.11 10.11 10.11 19.1
Cancer 911.7 898.5 808.7 254.6 172.6 172.6 206.7 254.6
Cells
Light 40294.6 2326.5 1977.5 567.5 517.9 567.5 567.5 567.5
Field

Table 3: Memory comparison (MB).

7.3 Evaluating Performance Model
We evaluate our quantified performance model by com-

paring the predicted runtime trend with the measured one.
Figure 6 shows the results for running one iteration of Gram
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Figure 6: Predicted runtime performance (top row) vs. actual
measured runtile (bottom row).

matrix, i.e., (DC)TDCx. The measured runtimes are av-
eraged over 100 iterations. The tests are done on various
platforms. Recall that the number of distributed processing
cores are denoted by NP ’s (1× 1, 1× 4, 2× 8, 8× 8 config-
urations). As shown, the measured performance (bottom)
is very similar to our estimated performance (top), corrob-
orating that the quantified model can be used to tune ExD.

7.4 Evaluating Learning Applications
Figure 7 compares Perform-ML’s total runtime for denois-

ing and super-resolution applications. Our gradient-descent
approach not only benefits from a guaranteed convergence
(unlike SGD), it also yields faster convergence. Another
advantage is ExD’s ability to reduce the data storage over-
head. In both applications the ε in ExD is set to 0.1. It
can be seen that Perform-ML achieves up to 3.7× (runtime)
improvement for denoising application and up to 10.9× im-
provement for super-resolution application over SGD.
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Figure 7: Runtime comparison of Perform-ML vs. SGD.

To evaluate the quality of reconstruction we use the
Peak Signal to Noise Ratio (PSNR) metric. PSNR is
the ratio between the maximum signal power and noise
(10 log10( MAX

2√
MSE

) (dB)). Recommended PSNR values in vi-

sion applications are 25dB and higher (Aharon et al. 2006).
For denoising application, our output PSNR is 29.39dB
when input SNR of the noisy image is 15.15dB. For super-
resolution application, our output PSNR is 24.69dB.

Our evaluations demonstrate the significant impact of con-
tent and platform aware customization to gain efficiency.
The cost of Perform-ML’s pre-processing is rapidly paid off
over several runs of iterative updates. Moreover, most ML
problems require model selection which translates to run-
ning the algorithms for several modeling parameters. This,
further amortizes the one-time pre-processing overhead. We
also observe that while higher transformation errors can re-
sult in meaningful runtime and memory improvements, they
may not drastically affect the reconstruction error.
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9. CONCLUSION

We propose Perform-ML, an end-to-end solution for
highly efficient execution of iterative ML algorithms on
massive data. We introduce the novel idea of Elastic
Green Dictionary (ExD) which leverages coarse-grained par-
allelism in the data to create tunable sparse transforma-
tions. The transformation is low-overhead and highly scal-
able. Perform-ML reduces the performance cost by adap-
tively customizing the transformation for the underlying
platform. We provide a distributed API that enables ap-
plying Perform-ML to a wide rang of learning problems in
large scale. Our extensive evaluations show that Perform-
ML can achieve significant improvements in execution run-
time, energy, and memory footprint compared to prior art.
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