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Abstract—This paper proposes SSketch, a novel automated
computing framework for FPGA-based online analysis of big data
with dense (non-sparse) correlation matrices. SSketch targets
streaming applications where each data sample can be processed
only once and storage is severely limited. The stream of input
data is used by SSketch for adaptive learning and updating a
corresponding ensemble of lower dimensional data structures,
a.k.a., a sketch matrix. A new sketching methodology is introduced
that tailors the problem of transforming the big data with dense
correlations to an ensemble of lower dimensional subspaces such
that it is suitable for hardware-based acceleration performed by
reconfigurable hardware. The new method is scalable, while it
significantly reduces costly memory interactions and enhances
matrix computation performance by leveraging coarse-grained
parallelism existing in the dataset. To facilitate automation,
SSketch takes advantage of a HW/SW co-design approach: It
provides an Application Programming Interface (API) that can
be customized for rapid prototyping of an arbitrary matrix-
based data analysis algorithm. Proof-of-concept evaluations on
a variety of visual datasets with more than 11 million non-
zeros demonstrates up to 200 folds speedup on our hardware-
accelerated realization of SSketch compared to a software-based
deployment on a general purpose processor.

Keywords-Streaming model; Big data; Dense matrix; FPGA;
Low-rank matrix; HW/SW co-design; Matrix sketching

I. INTRODUCTION

Computers and sensors continually generate data at an
unprecedented rate. Collections of massive data are often
represented as large m × n matrices, where n is the number
of samples and m is the corresponding number of features.
Growth of “big data” is challenging traditional matrix anal-
ysis methods like Singular Value Decomposition (SVD) and
Principal Component Analysis (PCA). Both SVD and PCA
incur a large memory footprint with an O(m2n) computational
complexity which limit their practicability in big data regime.
This disruption of convention changes the way we analyze
modern datasets and makes designing scalable factorization
methods, a.k.a., sketching algorithms, a necessity. With a
properly designed sketch matrix the intended computations can
be performed on an ensemble of lower dimensional structures
rather than the original matrix without a significant loss.

In the big data regime, there are at least two sets of chal-
lenges that should be addressed simultaneously to optimize
the performance. The first challenge class is to minimize the
resource requirements for obtaining the data sketch within
an error threshold in a timely manner. This favors designing
sketching methods with a scalable computational complexity
which can be readily scale up for analyzing a large amount
of data. The second challenge class has to do with map-
ping of computation to increasingly heterogeneous modern

architectures/accelerators. The cost of computing on these
architectures is dominated by message passing for moving the
data to/from the memory and inter-cores. What exacerbates
the cost is the iterative nature of dense matrix calculations
that require multiple rounds of message passing. To optimize
the cost, communication between the processors and memory
hierarchy levels must be minimized. Therefore, the trade-off
between memory communication and redundant local calcula-
tions should be carefully leveraged to improve the performance
of iterative computations.

Several big data analysis applications require real-time and
online processing of streaming data, where storing the original
big matrix becomes superfluous and the data is read at most
once [1]. In these scenarios, the sketch has to be found online.
A large body of earlier work demonstrated the efficiency of
using custom hardware for acceleration of traditional matrix
sketching algorithms such as QR [2], LU [3], Cholesky [4],
and SVD [5]. However, the existing hardware-accelerated
sketching methods either have a higher-than-linear complexity
[6], or are non-adaptive for online sketching [5]. They are thus
unsuitable for streaming applications and big data analysis
with dense correlation matrices. A recent theoretical solution
for scalable sketching of big data matrices is presented in
[1], which also relies on running SVD on the sketch matrix.
Even this method does not scale to larger sketch sizes. To the
best of our knowledge, no hardware acceleration for streaming
sketches has been reported in the literature.

Despite the apparent density and dimensionality of big
data, in many settings, the information may lie on a single
or a union of lower dimensional subspaces [7]. We propose
SSketch, a novel automated framework for efficient analy-
sis and hardware-based acceleration of massive and densely
correlated datasets in streaming applications. It leverages the
hybrid structure of data as an ensemble of lower dimensional
subspaces. SSketch algorithm is a scalable approach for dy-
namic sketching of massive datasets that works by factorizing
the original (densely correlated) large matrix into two new
matrices: (i) a dense but much smaller dictionary matrix which
includes a set of atoms learned from the input data, and (ii)
a large block-sparse matrix where the blocks are organized
such that the subsequent matrix computations incur a minimal
amount of message passings on the target platform.

As the stream of input data arrives, SSketch adaptively
learns from the incoming vectors and updates the sketch of
the collection. An accompanying API is also provided by our
work so designers can utilize the scalable SSketch framework
for rapid prototyping of an arbitrary matrix-based data analysis



algorithm. SSketch and its API target a widely used class of
data analysis algorithms that model the data dependencies by
iteratively updating a set of matrix parameters, including but
not limited to most regression methods, belief propagation,
expectation maximization, and stochastic optimizations [8].

Our framework addresses the big data learning problem
by using the SSketch’s block-sparse matrix and applying an
efficient, greedy routine called Orthogonal Matching Pursuit
(OMP) on each sample independently. Note that OMP is a
key computational kernel that dominates the performance of
many sparse reconstruction algorithms. Given the wide range
of applications, it is thus not surprising that a large number of
OMP implementations on GPUs [9], ASICs [10] and FPGAs
[11] have been reported in the literature. However, the prior
work on FPGA had focused on fixed-point number format. In
addition, most earlier hardware-accelerated OMP designs are
restricted to fixed and small matrix sizes and can handle only a
few number of OMP iterations [21], [11], [12]. Such designs
cannot be readily applied to massive, dynamic datasets. In
contrast, SSketch’s scalable methodology introduces a novel
approach that enables applying OMP on matrices with varying
large sizes and supports arbitrary number of iterations.

SSketch utilizes the abundant hardware resources on current
FPGAs to provide a scalable, floating-point implementation of
OMP for sketching purposes. One may speculate that GPUs
may show a better acceleration performance than FPGAs.
However, the performance of GPU accelerators is limited in
our application because of two main reasons. First, for stream-
ing applications, the memory hierarchy in GPUs increases the
overhead in communication and thus reduces the throughput of
the whole system. Second, in SSketch framework the number
of required operations to compute the sketch of each individual
sample depends on the input data structure and may vary
from one sample to the other. Thus, the GPU’s applicability
is reduced due to its Single Instruction Multiple Data (SIMD)
architecture.

The explicit contributions of this paper are as follows:

• We propose SSketch, a novel communication-minimizing
framework for online (streaming) large matrix computa-
tion. SSketch adaptively learns the hybrid structure of the
input data as an ensemble of lower dimensional subspaces
and efficiently forms the sketch matrix of the ensemble.

• We develop a novel streaming factorization method for
FPGA acceleration. Our sketching algorithm benefits
from a fixed, low memory footprint and an O(mn)
computational complexity.

• We design an API to facilitate automation and adaptation
of SSketch’s scalable and online matrix sketching method
for rapid prototyping of an arbitrary matrix-based data
analysis algorithm.

• We devise SSketch with a scalable, floating-point im-
plementation of Orthogonal Matching Pursuit (OMP)
algorithm on FPGA.

• We evaluate our framework with three different massive
datasets. Our evaluations corroborate SSketch scalability
and practicability. We compare the SSketch runtime to a
software realization on CPU and also report its overhead.

II. BACKGROUND AND PRELIMINARIES

A. Streaming Model

Modern data matrices are often extremely large which
require distribution of computation beyond a single core.
Some prominent examples of such massive datasets include
image acquisition, medical signals, recommendation systems,
wireless communication, and internet user’s activities [13].
The dimensionality of the modern data collections renders
usage of traditional algorithms infeasible. Therefore, matrix
decomposition algorithms should be designed to be scalable
and pass-efficient. In pass-efficient algorithms, data is read at
most a constant number of times. Streaming-based algorithm
refers to a pass-efficient computational model that requires
only one pass through the dataset. By taking advantage of a
streaming model, the sketch of a collection can be obtained
online which makes storing the original matrix superfluous
[14].

B. Orthogonal Matching Pursuit

OMP is a well-known greedy algorithm for solving sparse
approximation problems. It is a key computational kernel
in many compressed sensing algorithms. OMP has wide
applications ranging from classification to structural health
monitoring. As we describe in Alg. 2, OMP takes a dictionary
and a signal as inputs and iteratively approximates the sparse
representation of the signal by adding the best fitting element
in every iteration. More details regarding the OMP algorithm
are presented in Section V.

C. Notation

We write vectors in bold lowercase script, x, and matrices in
bold uppercase script, A. Let At denote the transpose of A. Aj
represents the j th column and Aij represents the entry at the
ith row and jth column of matrix A. Aλ is a subset of matrix
A consisting of the columns defined in the set λ. nnz(A)
defines the number of non-zeros in the matrix A. ‖x‖p =
(
∑n
j=1 |x(j)|p)1/p is used as the p-norm of a vector where

p ≥ 1. The Frobenius norm of matrix A is defined by ‖A‖F =√
(
∑
j,j |A(i, j)|2) and ‖A‖2 = max

x 6=0

‖Ax‖2
‖x‖2 is considered

as spectral norm. The matrix A (domain data) is of size m×n
where m� n for over-complete matrices.

III. RELATED WORK

In settings where the column span of A admits a lower di-
mensional embedding, the optimal low-rank approximation of
the data is obtained by SVD or PCA algorithm [15]. However,
their O(m2n) complexity makes it hard to utilize these well-
known algorithms for massive datasets. Unlike PCA, Sparse
PCA (SPCA) is modified to find principal components with
sparse loadings, which is desirable for interpreting data and
storage reduction [16]. However, the computational complexity
of SPCA is similar to classic SVD. Thus, it is not scalable for
analyzing massive, dense datasets [16], [17].

Recently, the efficiency of random subsampling methods to
compute the lower dimensional embedding of large datasets
has been shown [18], [30]. Random Column Subset Selection
(rCSS) approach has been used to provide scalable strategies



for factorizing large matrices [18]. Authors in [18] propose
a theoretical scalable approach for large matrix factorization,
but the hardware constraints are not considered in their work.
The large memory footprint and non-adaptive structure of their
rCSS approach make it unsuitable for streaming applications.

A recent approach in [7] suggests a distributed framework
based upon a scalable and sparsity-inducing data transforma-
tion algorithm. The framework enables efficient execution of
large-scale iterative learning algorithms on massive and dense
datasets. SSketch framework is developed based upon a novel
extension of the proposed sketching method in [7]. Unlike the
work in [7], our data sketching approach is well-suited for
streaming applications and is amenable to FPGA acceleration.

OMP has been shown to be very effective in inducing
sparsity, although its complexity makes it costly for streaming
applications. A number of implementations on GPU [9], [19],
[20], ASICs [10], and FPGAs [21], [11], [22] are reported
in the literature to speed up this complex reconstruction
algorithm. FPGA implementation of OMP for problems of
dimension 32× 128 and 256× 1024 are developed for signals
with sparseness of 5 and 36 respectively [21], [11]. To the
best of our knowledge, none of the previous implementations
of OMP is devised for streaming applications with large and
densely correlated data matrices. In addition, use of fixed-
point format to compute and store the results limits their
applicability for sketching purposes.

IV. SSKETCH GLOBAL FLOW

The global flow of SSketch is presented in Fig. 1. SSketch
takes the stream of a massive, dynamic dataset in the matrix
form as its input and computes/updates a sketch matrix of
the collection as its output. Our sketch formation algorithm is
devised to minimize the costly message passings to/from the
memory and cores, thereby it reduces the communication delay
and energy. All SSketch’s computations are done in IEEE 754
single precision floating-point format.

SSketch framework is developed based upon a novel sketch-
ing algorithm that we introduce in Section V. As illustrated in
Fig. 1, SSketch consists of two main components to compute
the sketch of dynamic data collections: (i) a dictionary learning
unit, and (ii) a data sketching unit. As the stream of data
comes in, the first component adaptively learns a dictionary
as a subsample of input data such that the hybrid structure
of data is well captured within the learned dictionary. Next,
the data sketching unit solves a sparse approximation problem
using the OMP algorithm to compute a block-sparse matrix.
In the data sketching unit, the representation of each new
arrival sample is computed based on the current values of the
dictionary, and the result is sent back to the host. SSketch’s
accompanying API facilitates automation and adaptation of
our proposed framework for rapid prototyping of an arbitrary
matrix-based data analysis algorithm.

V. SSKETCH METHODOLOGY

Many modern massive datasets are either low-rank or lie
on a union of lower dimensional subspaces. This convenient
property can be leveraged to efficiently map the data to an
ensemble of lower dimensional data structures [7]. The authors

in [7] suggest a distributed framework based upon a scalable
and sparsity-inducing solution to find the sketch of large and
dense datasets such that:

minimize
DεRm×l,VεRl×n

‖A− DV‖F subject to ‖V‖0 ≤ kn, (1)

where Am×n is the input data, Dm×l is the dictionary matrix,
Vl×n is the block-sparse matrix, and l� m� n. ‖V‖0 mea-
sures the total number of non-zeros in V, and k is the target
sparsity level for each input sample. Their approach, however,
is “static” and does not adaptively update the dictionary at
runtime. The only way to update is to redo the dictionary
computation which would incur a higher cost and is unsuitable
for streaming applications with a single pass requirement and
limited memory. We develop SSketch based upon a novel
extension of [7] for streaming applications. SSketch tailors
the solution of (1) according to the underlying platform’s
constraints. Our approach, incurs a lower memory footprint
and is well-suited for scenarios where storage is severely
limited.

A. SSketch Algorithm

Our platform-aware matrix sketching algorithm is summa-
rized in Alg. 1. SSketch algorithm, approximates matrix A as
a product of two other matrices (Am×n ≈ Dm×lVl×n) based
on a streaming model.

Algorithm 1 SSketch algorithm

Inputs: Measurement matrix A, projection threshold
α, sparsity level k, error threshold ε, and dictionary
size l.
Output: Matrix D, and coefficient matrix V.

1: D← empty
2: j ← 0
3: for i = 1,...,n do
4: W (Ai) = ‖D(DtD)−1DtAi−Ai‖2

‖Ai‖2
5: if W (Ai) > α and j < l then
6: Dj = Ai/

√
‖Ai‖2

7: Vij =
√
‖Ai‖2

8: j ← j + 1
9: else

10: Vi ← OMP (D,Ai, k, ε)
end if

end for

For each newly arriving sample, our algorithm first calcu-
lates a projection error, W(Ai), based on the current values
of the dictionary matrix D. Next, it compares the calculated
error with a user-defined projection threshold α and updates
the sketch accordingly. SSketch locally updates the dictionary
matrix D based on each arriving data sample and makes use of
the greedy OMP routine to compute the block-sparse matrix
V. OMP can be used, either by fixing the number of non-
zeros in each column of V (sparsity level k) or by fixing
the total amount of approximation error (error threshold ε)
for each sample. Factorizing the input matrix A as a product
of two matrices with much fewer non-zeros than the original
data, induces an approximation error that can be controlled by
tuning the error threshold (ε), dictionary size (l), and projection



Fig. 1: High level block diagram of SSketch. It takes stream of data as input and adaptively learns a corresponding low-rank
sketch of the collection by doing computation at the level of matrix rank. The resulting sketch is then sent back to the host
for further analysis depending on the application.

threshold (α) in SSketch framework. In our experiments, we
consider Frobenius norm error (Xerr = ‖A−DV‖F

‖A‖F ), as sketch
accuracy metric.

As can be seen, SSketch algorithm requires only one pass
through each arriving sample. This method only requires
storing a single column of the input matrix A and the ma-
trix D at a time. Note that the dictionary matrix Dm×l is
constructed by columns of data matrix Am×n. The column
space of D is contained in the column space of A. Thus,
rank(DD+A) = rank(D) ≤ l ≤ m. It simply implies that
for over-complete datasets OMP computation is required for
n−l columns and the overhead time of copying D is ignorable
due to its small size compared to A.

OMP with QR Decomposition. As we describe in Section
VII, computational complexity of the projection step (line 4
of Alg. 1) is small compared to the O(mnl2) complexity
of the OMP algorithm. Thus, the computational bottleneck
of SSketch algorithm is OMP. To boost the computational
performance of SSketch for analyzing a large amount of data
on FPGA, it is necessary to modify the OMP algorithm such
that it maximally benefits from the available resources and
incurs a scalable computational complexity.

Alg. 2 demonstrates the pseudocode of OMP where ε is
the error threshold, and k is the target sparsity level. The
Least Squares (LS) minimization step (line 5 of Alg. 2)
involves a variety of operations with complex data flows
that introduce an extra hardware complexity. However, proper
use of factorization techniques like QR decomposition or
Cholesky method within the OMP algorithm would reduce its
hardware implementation complexity and make it well-suited
for hardware accelerators [11], [23].

Thus, to efficiently solve the LS optimization problem
in line 5 of Alg. 2, we decide to use QR decomposition
(Alg. 3). QR decomposition returns an orthogonal matrix Q
and an upper-triangular matrix R. It iteratively updates the
decomposition by reusing the Q and R matrices from the
last OMP iteration. In this approach, the residual (line 6 of
Alg. 2) can be updated by ri ← ri−1Qi(Qi)tri−1. The final
solution is calculated by performing back substitution to solve
the inversion of the matrix R in vk = R−1QtAi.

Assuming that matrix A is of size m × n and D is of
size m× l, then the complexity of the OMPQR is O(mnl2).
This complexity is linear in terms of m and n since in many
settings l is much smaller in compared to m and n. This linear

Algorithm 2 OMP algorithm

Inputs: Matrix D, measurement Ai, sparsity level k,
threshold error ε.
Output: Support set Λ and k-dimensional coefficient
vector v.

1: r ← Ai
2: Λ0 ← ∅
3: for i = 1,...,k do
4: Λ← Λ ∪ argmaxj | < ri−1,Dj > | Find best fitting

column
5: vi ← argminv‖ri−1 − DΛiv‖2

2 LS Optimization
6: ri ← ri−1 − DΛivi Residual Update

end for

Algorithm 3 Incremental QR decomposition by modified
Gram-Schmidt

Inputs: New column DΛs , last iteration Qs−1, Rs−1.
Output: Qs and Rs.

1:

Rs ←
(
Rs−1 0

0 0

)
2: ξs ← DΛs

3: for j = 1,...,s-1 do
4: Rjss ← (Qs−1)j

H
ξs

5: ξs ← ξs − RjssQj
s−1

end for
6: Rsss ←

√
‖ξs‖22

7: Qs ← [Qs−1, ξs

Rss
s ]

complexity enables SSketch to readily scale up for processing
a large amount of data based on a streaming model.

B. Blocking SSketch.

Let A = [ A1; A2; A3 ] be a matrix consisting of rows A1,
A2, and A3 that are stacked on the top of one another. Our
key observation is that if we obtain the sketch of each block
independently and combine the resulting sketches (blocking
SSketch) as illustrated in Fig. 2, then the combined sketch
can be as good as sketching A directly (nonblocking SSketch)
in terms of error-performance trade-off. This property can be
generalized to any number of partitions of A. We leverage
this convenient property to increase the performance of our



proposed framework for sketching massive datasets based on
a streaming model. In blocking SSketch, the data matrix A
is divided into more manageable sized blocks such that there
exist enough block RAMs on FPGA to store the corresponding
D and a single column of that block. The blocking SSketch
achieves a significant bandwidth saving, faster load/store, less
communication traffic between kernels, and a fixed memory
requirement on FPGA. The methodology also provides the
capability of factorizing massive, dense datasets in an online
streaming model.

Independent analysis of each block is especially attractive
if the data is distributed across multiple machines. In such
settings, each platform can independently compute a local
sketch. These sketches can then be combined to obtain the
sketch of the original collection. Given a fixed memory budget
for the matrix D, as it is presented in Section VII, blocking
SSketch results in a more accurate approximation compared
with nonblocking SSketch. The blocking SSketch computa-
tions are done on smaller segments of data which confers a
higher system performance. The achieved higher accuracy is
at the cost of a larger number of non-zeros in V. Note that as
our evaluation results imply, designers can reduce number of
non-zeros in the computed block-sparse matrix by increasing
the error threshold ε in SSketch algorithm.

Fig. 2: Schematic depiction of blocking SSketch.

VI. SSKETCH AUTOMATED HARDWARE IMPLEMENTATION

In this section, we discuss the details of SSketch hardware
implementation. After applying preprocessing steps on the
stream of the input data for dictionary learning, SSketch sends
the data to FPGA through a 1Gbps Ethernet port. SSketch
is devised with multiple OMP kernels and a control unit
to efficiently compute the block-sparse matrix V. As the
stream of data arrives, the control unit looks for availability
of OMP kernels and assigns the newly arrived sample to
an idle kernel for further processing. The control unit also
has the responsibility of reading out the outputs and sending
back the results to the host. SSketch API provides designers
with a user-friendly interface for rapid prototyping of arbitrary
matrix-based data analysis algorithms and realizing streaming
applications on FPGAs (Fig. 3). Algorithmic parameters of
SSketch including the projection threshold α, error threshold
ε, dictionary size l, target block-sparsity level k, and block-
size mb, can be easily changed through the SSketch API. The
SSketch API is open source and is freely available on our
website [24].

In OMP hardware implementation, we utilize several tech-
niques to reduce the iteration interval of two successive
operations and exploit the parallelism within the algorithm. We
observe that the OMP algorithm includes multiple dot product
computations which result in frequent appearance of for-loops
requiring an operation similar to a + = b[i] × c[i]. We use

Fig. 3: High level diagram of SSketch API. It takes the stream
of input data in the matrix form as its input. SSketch divides
the input data matrix into more manageable blocks of size mb

and adaptively learns the corresponding sketch of the data.
SSketch gets its algorithmic parameters such as the projection
threshold α, error threshold ε, dictionary size l, block-sparsity
level k, and block-size mb from user and computes the sketch
accordingly. This learned data sketch can then be used for
building a domain-specific architecture that scalably performs
data analysis on an ensemble of lower dimensional structures
rather than the original matrix without a significant loss.

a tree-based reduction module by implementing a tree-based
adder to accelerate the dot product and norm computation
steps that appear frequently in the OMP routine. By means of
the reduction module, SSketch is able to reduce the iteration
interval and handle more operations simultaneously. As such,
SSketch requires multiple concurrent loads and stores from
a particular RAM. To cope with the concurrency, instead of
having a large block RAM for matrices D and Q, we use
multiple smaller sized block memories and fill these block
RAMs by cyclic interleaving. Thus, we can perform a faster
computation by accessing multiple successive elements of the
matrices and removing the dependency in the for-loops.

Using the block RAM is desirable in FPGA implementa-
tions because of its fast access time. The number of block
RAMs on one FPGA is limited, so it is important to reduce
the amount of utilized block memories. We reduce block RAM
utilization in our realization by a factor of 2 compared to the
naive implementation. This reduction is a consequence of our
observation that none of the columns of matrix D would be
selected twice during one call of the OMP algorithm. Thus,
for computing line 4 of Alg. 2 we only use the indices of D
that are not selected during the previous OMP iterations. We
instead use the memory space that was originally assigned to
the selected columns of D to store the matrix Q. By doing so
we reduce the block RAM utilization, which allows SSketch
to employ more OMP kernels in parallel.

VII. EXPERIMENTAL EVALUATIONS

For evaluation purposes, we apply our methodology on
three sets of data: (i) Light field, (ii) Hyperspectral images,



and (iii) Synthetic data. To ensure that dictionary learning is
independent of the data order, for each fixed set of algorithmic
parameters we shuffle the data before each calling of SSketch
algorithm. The mean error value for 10 calls of SSketch
algorithm and its variance are reported in Fig. 4, and 5. In
all cases, we observe that the variance of the error value is
two to three orders of magnitude less than the mean value,
implying that SSketch algorithm has a low dependency on
the data arrival order. This convenient property of SSketch
algorithm is promising for adaptive dictionary learning and
sketching purposes in streaming applications.

A. Light Field Experiments

A light field image is a set of multi-dimensional array of
images that are simultaneously captured from slightly differ-
ent viewpoints. Promising capabilities of light field imaging
include the ability to define the field’s depth, focus or refocus
on a part of image, and reconstruct a 3D model of the scene
[25]. For evaluating SSketch algorithm accuracy, we run our
experiments on a light field data consisting of 2500 samples
each of which constructed of 25 8× 8 patches. The light field
data results in a data matrix with 4 million non-zero elements.
We choose this moderate input matrix size to accommodate the
SVD algorithm for comparison purposes and enable the exact
error measurement especially for correlation matrix (a.k.a.,
Gram matrix) approximation. The Gram matrix of a data
collection consists of the Hamiltonian inner products of data
vectors. The core of several important data analysis algorithms
is the iterative computation on the data Gram matrix. Examples
of Gram matrix usage include but are not limited to kernel-
based learning and classification methods, as well as several
regression and regularized least squares routines [31].

In SSketch, the number of selected columns “l” for the
dictionary has a direct effect on the convergence error rate as
well as speed. Factorization with larger l achieves a smaller
convergence error but decreases the performance due to the
increase in computation. Fig. 4a and 4d report the results
of applying both nonblocking and blocking SSketch on the
data. We define the approximation error for the input data
and its corresponding Gram matrix as Xerr = ‖A−Ã‖F

‖A‖F , and

Gerr = ‖AtA−ÃT Ã‖F
‖AtA‖F , where Ã = DV.

Given a fixed memory budget for the matrix D, Fig. 4a
and 4d illustrate that the blocking SSketch results in a more
accurate sketch compared with the nonblocking one. Num-
ber of rows in each block of input data (block-size) has a
direct effect on SSketch’s performance. Fig. 4b, 4e, and 4c
demonstrate the effect of block-size on the data and Gram
matrix approximation error as well as matrix compression-rate,
where the compression-rate is defined as nnz(D)+nnz(V)

nnz(A) . In
this setting, the higher accuracy of blocking SSketch is at the
cost of a larger number of non-zeros in the block-sparse matrix
V. As illustrated in Fig. 4b, 4e, and 4c designers can easily
reduce the number of non-zeros in the matrix V by increasing
the SSketch error threshold ε. In SSketch algorithm, there is a
trade-off between the sketch accuracy and the number of non-
zeros in the block-sparse matrix V. The optimal performance
of SSketch methodology is determined based on the error

threshold and the hardware constraints.
Considering the spectral norm error (ek = ‖A−Ã‖2

‖A‖2 ) instead
of Frobenius norm error, the theoretical minimal error can be
expressed as σk+1 = min(‖A − Ak‖2 : Ak has rank k),
where σk is the exact k’th singular value of A and Ak is
obtained by SVD [26]. Fig. 4f compares ek and the theoretical
minimal error for the light field dataset.

B. Hyperspectral Experiments

A hyperspectral image is a sequence of images generated by
hundreds of detectors that capture the information from across
the electromagnetic spectrum. With this collected information,
one would obtain a spectrum signature for each pixel of the
image that can be used for identifying or detecting the material
[27]. Hyperspectral imaging is a new type of high-dimensional
image data and a promising tool for applications in earth-based
and planetary exploration, geo-sensing, and beyond. This fast
and non-destructive technique provides a large amount of
spectral and spatial information on a wide number of samples.
However, the large size of hyperspectral datasets limits the
applicability of this technique, especially for scenarios where
online evaluation of a large number of samples is required.

We adapt SSketch framework to capture the sketch of
each pixel for the purpose of enhancing the computational
performance and reducing the total storage requirement for
hyperspectral images. In this experiment, the SSketch algo-
rithm is applied on two different hyperspectral datasets. The
first dataset [28] is 148 × 691614 and the second one [29]
is of size 220 × 21025. Our experiments show that SSketch
algorithm results in the same trend as in 4a and 4d for both
hyperspectral datasets. As Fig. 5 illustrates, the Gram matrix
factorization error reaches to less than 0.2× 10−6 for l ≥ 10
in both datasets.
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Fig. 5: Factorization error (Gerr) vs. l for two different
hyperspectral datasets. The SSketch algorithmic parameters
are set to α = 0.1 and ε = 0.01, where α is the projection
threshold and ε is the error threshold.

C. Scalability

We provide a comparison between the complexity of differ-
ent implementations of the OMP routine in Fig. 6. Batch OMP
(BOMP) is a variation of OMP that is especially optimized
for sparse-coding of large sets of samples over the same
dictionary. BOMP requires more memory space compared
with the conventional OMP, since it needs to store DTD along
with the matrix D. BOMPQR and the OMPQR both have near
linear computational complexity. We use OMPQR method in
our target architecture as it is more memory-efficient.
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(a) Factorization error (Xerr) vs. l with
α = 0.1, block-size = 200 and ε = 0.01.
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(b) Factorization error (Xerr) vs. block-
size with α = 0.1 and l = 128.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Block-size (m
b
)

C
om

pr
es

si
on

-r
at

e

 

 

 = 0.01

 = 0.4

 = 0.75

(c) Compression-rate vs. block-size with α
= 0.1 and l = 128.
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(d) Factorization error (Gerr) vs. l with α
= 0.1, block-size = 200 and ε = 0.01.

0 500 1000 1500
0

2

4

6

8

x 10
-3

Block-size(m
b
)

G
er

r

 

 

 = 0.01

 = 0.4

 = 0.75

(e) Factorization error (Gerr) vs. block-
size with α = 0.1 and l = 128.
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Fig. 4: Experimental evaluations of SSketch. α and ε represent the user-defined projection threshold, and the error threshold
respectively. l is the number of samples in the dictionary matrix, and mb is the block-size.
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Fig. 6: Computational complexity comparison of different
OMP implementations. Using QR decomposition significantly
improves OMP’s runtime.

The complexity of our OMP algorithm is linear both in
terms of m and n, so dividing Am×n into several blocks along
the dimension of m and processing each block independently
does not add to the total computational complexity of the
algorithm. However, it shrinks the data size to fit into the
FPGA block RAMs and improves the performance.

Let TOMP (m, l, k) stand for the number of operations
required to obtain the sketch of a vector of length m with target
sparsity level k. Then the runtime of the system is a linear
function of TOMP which makes the proposed architecture
scalable for factorizing large matrices. The complexity of
projection step in SSketch algorithm (line 4 of Alg. 1) is
(l3 + 2lm + 2l2m). However, if we decompose Dm×l to
Qm×m × Rm×l and replace DD+ with QItQt, then the
projection step’s computational complexity would be reduced
to (2lm+l2m). Assuming D = QR then the projection matrix
can be written as:

D(DtD)−1Dt = QR(RtQtQR)−1RtQt

= Q(RR−1)(Rt−1Rt)Qt = QItQt, (2)

which we use to decrease the projection step’s complexity.
Table I compares different factorization methods with re-

spect to their complexity. The SSketch’s complexity indicates
a linear relationship with n and m. In SSketch, computations
can be parallelized as the sparse representation can be inde-
pendently computed for each column of the sub-blocks of A.

TABLE I: Complexity of different factorization methods.

Algorithm Complexity
SVD m2n+m3

SPCA lmn+m2n+m3

SSketch (this paper) n(lm+ l2m) +mnl2 ≈ 2mnl2

D. Hardware Settings and Results
We use Xilinx Virtex-6-XC6VLX240T FPGA ML605 Eval-

uation Kit as our hardware platform. An Intel core i7-2600K
processor with SSE4 architecture running on the Windows OS
is utilized as our general purpose processing unit hosting the
FPGA. In this work, we employ Xilinx standard IP cores for
single precision floating-point operations. We used Xilinx ISE
14.6 to synthesize, place, route, and program the FPGA.

Table II shows Virtex-6 resource utilization for our hetero-
geneous architecture. SSketch includes four OMP cores plus
an Ethernet interface. For factorizing matrix Am×n, there is
no specific limitation on the size n due to the streaming nature
of SSketch. However, the FPGA block RAM’s size is limited.
To fit into the RAM, we decide to divide input matrix A to
blocks of size mb×n where mb and k are set to be less than
256. Note that these parameters are changeable in SSketch
API. So, if a designer decides to choose a higher mb or k for
any reasons, she can easily modify the parameters according
to the application.

To corroborate the scalability and practicability of our
framework, we use synthetic data with dense (non-sparse)



TABLE II: Virtex-6 resource utilization.
Used Available Utilization

Slice Registers 50888 301440 16%
Slice LUTs 81585 150720 54%
RAM B36E1 382 416 91%
DSP 48E1s 356 768 46%

correlations of different sizes as well as a hyperspectral image
dataset [29]. The runtime of SSketch for the different-sized
synthetic datasets is reported in Table III, where the total delay
of SSketch (TSSketch) can be expressed as:

TSSketch ≈ Tdictionary
learning

+ TCommunication
Overhead

+ TFPGA
Computation

. (3)

As it is shown in Table III, the total delay of SSketch is
a linear function of the number of processed samples, which
experimentally confirms the scalability of our proposed archi-
tecture. According to Table III, the whole system including
the dictionary learning process takes 21.029s to process 5K
samples where each of them has 256 elements. 4872 of these
samples pass through OMP kernels and each of them requires
89 iterations on average to complete the process. In this
experiment, an average throughput of 169Mbps is achieved
by SSketch.

For both hyperspectral dataset [29] of size 204 × 54129
and synthetic dense data, our HW/SW co-design approach
(with target sparsity level (k) of 128) achieves up to 200 folds
speedup compared to the software-only realization on a 3.40
GHz CPU. The average overhead delay for communicating
between the processor (host) and accelerator contributes less
than 4% to the total delay.

TABLE III: SSketch total processing time is linear in terms
of the number of processed samples.

Size of n TSSketch (l = 128) TSSketch (l = 64)
n = 1K 3.635sec 2.31sec
n = 5K 21.029sec 12.01sec
n = 10K 43.446sec 24.32sec
n = 20K 90.761sec 48.52sec

VIII. CONCLUSION

This paper presents SSketch, an automated computing
framework for FPGA-based online analysis of big and densely
correlated data matrices. SSketch utilizes a novel streaming
and communication-minimizing methodology to efficiently
capture the sketch of the collection. It adaptively learns and
leverages the hybrid structure of the streaming input data to
effectively improve the performance. To boost the compu-
tational efficiency, SSketch is devised with a novel scalable
implementation of OMP on FPGA. Our framework provides
designers with a user-friendly API for rapid prototyping and
evaluation of an arbitrary matrix-based big data analysis
algorithm. We evaluate the method on three different large
contemporary datasets. In particular, we compare SSketch
runtime to the software realization on a CPU and also report
the delay overhead for communicating between the processor
(host) and the accelerator. Our evaluations corroborate SSketch
scalability and practicability.
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