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ABSTRACT the system encounters natural changes, rendering much of the

This paper proposes CausaLearn, the first automated framework
that enables real-time and scalable approximation of Probability
Density Function (PDF) in the context of causal Bayesian graphical
models. CausaLearn targets complex streaming scenarios in which
the input data evolves over time and independence cannot be as-
sumed between data samples (e.g., continuous time-varying data
analysis). Our framework is devised using a HW/SW co-design ap-
proach. We provide the first implementation of Hamiltonian Markov
Chain Monte Carlo on FPGA that can efficiently sample from the
steady state probability distribution at scales while considering the
correlation between the observed data. CausaLearn is customizable
to the limits of the underlying resource provisioning in order to
maximize the effective system throughput. It uses physical profiling
to abstract high-level hardware characteristics. These characteris-
tics are integrated into our automated customization unit in order
to tile, schedule, and batch the PDF approximation workload corre-
sponding to the pertinent platform resources and constraints. We
benchmark the design performance for analyzing various massive
time-series data on three FPGA platforms with different computa-
tional budgets. Our extensive evaluations demonstrate up to two
orders-of-magnitude runtime and energy improvements compared
to the best-known prior solution. We provide an accompanying
API that can be leveraged by data scientists and practitioners to
automate and abstract hardware design optimization.
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1 INTRODUCTION

Probabilistic learning and graphical modeling of time-series data
with causal structure is a challenging task in various scientific fields,
ranging from machine learning [1] and stochastic optimization [2]
to economics [3] and medical imaging [4]. Bayesian networks are an
important class of directed graph analytics used to model dynamic
systems. Unlike undirected graphical networks such as Markov
Random Field, Bayesian networks are capable of learning causal
structure in time-series data. In a Bayesian network, the posterior
Probability Density Function (PDF) over the model parameters
should be continuously updated to accommodate for the newly
added structural trends as data evolves over time. Dynamic (a.k.a.,
streaming) learning of random variables is particularly important in
time-series data analysis to enable effective decision making before
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collected data irrelevant to the current decision space.

Energy and runtime efficiency play a key role in building viable
computing systems for analyzing massive and densely correlated
data. Several recent theoretical works have shown the importance
of data and model parallelism in analyzing Bayesian graphical net-
works [5-8]. These set of works, however, are designed at the
algorithmic and data abstraction level and are oblivious to the hard-
ware characteristics. Given the diminishing benefits of technology
scaling, it is important to devise specialized hardware accelerators
for efficient realization of different learning models [9, 10]. A num-
ber of prior research works have provided FPGA accelerators for
Bayesian networks, e.g., [11, 12]. Although these works demon-
strate significant improvement for deployment of specific Bayesian
models, their predominant assumption is that data samples are
independently and identically drawn from a certain distribution.
As such, they cannot effectively capture dynamic data correlation
in causal streaming applications (e.g., correlated time-series data).

We propose CausaLearn, the first scalable FPGA framework to
compute on and update continuous random variables and their asso-
ciated PDFs for streaming-based causal Bayesian analysis. Our key
observation is that without simultaneous optimization of hardware
resource allocation and algorithmic solution, the best performance
efficiency cannot be achieved. To fulfill this objective, CausaLearn
incorporates hardware characteristics into the higher-level hierar-
chy of the algorithmic solution and enables automated customiza-
tion per application data and/or physical constraints. In particular,
CausaLearn performs a one-time hardware physical profiling to
find the pertinent resource constraints (e.g., memory bandwidth,
computing power, and available energy). This information is auto-
matically integrated into CausaLearn’s resource-aware customiza-
tion unit to tile, schedule, and batch the pertinent computational
workload such that it best fits the platform. CausaLearn’s automated
compilation disengages users from hardware resource optimization
task while providing synthesizable solutions that are co-optimized
for the underlying hardware architecture and execution schedule.

CausaLearn leverages Gaussian processes (GP) to capture data
dynamics in streaming settings. GP form a core methodology in
probabilistic machine learning [13, 13, 14] to model the causality
structure of time-series data. Markov Chain Monte Carlo (MCMC)
is the mainstream method that is used in practice to explore the
state space of probabilistic models such as GP. Given the wide range
of MCMC applications, it is thus not surprising that a number of
implementations on CPUs [15], GPUs [16-20], and FPGAs [11, 12,
21, 22] have been reported in the literature. MCMC incurs a complex
data flow consisting of various sequential computing kernels to
construct the pertinent Markov chain. As such, FPGAs provide
a more flexible programmable substrate for MCMC acceleration
compared to GPU accelerators that are particularly designed for
Single Instruction Multiple Data (SIMD) operations. The existing
works on FPGA, however, have mainly focused on the acceleration
of MCMC for analyzing independent and identically distributed
(i.i.d.) samples that are drawn from a simple multivariate Gaussian
distribution, e.g., [11, 12]. Such assumption, however, does not
hold for dynamic Bayesian analytics with causal structure as we
illustrate in our practical design experiments. Perhaps, the only
prior works on FPGA that have considered causal data dependency
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Table 1: Common MCMC methodologies for analyzing Bayesian networks.

MCMC Methods

Description

Population-based

Population-based MCMC is a method designed to address the issue of multi-modality using a population of Markov
chains. This method is particularly inefficient for analyzing high-dimensional data, due to the high cost of unnecessary
space exploration.

State Space Model

State Space Model (SSM) MCMC targets Bayesian applications in which evaluating the closed-form PDF is not feasible.
SSMs assumes the availability of unbiased estimators to compute the acceptance ratio in each MCMC step. This
assumption does not often hold in practice.

Gibbs Sampling

Gibbs sampling decomposes the proposal distribution into its individual components by computing the full conditional
distribution of the variable 6; conditional on all the remaining ones. Gibbs sampling encounters serious computational
inefficiency in solving high-dimensional tasks with highly correlated variables.

Slice sampling method uniformly samples from the area under the p(6) graph as an equivalent to sampling from

Slice Sampling the probability distribution. This technique improves mixing performance in learning tasks with highly correlated
variables. The complexity of Slice sampling scales exponentially with the data dimensionality.

Hamiltonian Hamiltonian MCMC method uses the gradient of the target probability distribution to select better movements in each
iteration. This method is particularly of interest as it can handle both strong correlations and high-dimensionality of the
probability distribution.

Adaptive Adaptive MCMC method adjusts the proposal distribution in the execution time to achieve a better sampling efficiency.

The adaptive kernel might converge to a non-stationary distribution if not designed carefully.

in the context of Bayesian networks are [21, 22]. Authors in [21, 22]
have used Dirichlet processes in discrete space to facilitate human
T-cell analysis. We emphasize that due to the discrete nature of
Dirichlet processes these works are inapplicable to the analysis of
dynamic continuous random variables.

Causalearn adopts Hamiltonian Markov Chain Monte Carlo
(H_MCMC) to effectively explore the state space of GP parameters
by moving toward the gradient of the associated PDF given the
observed data samples. The prior MCMC acceleration works on
FPGA, e.g., [11, 12, 21, 22] leverage random walks to sample from
the target density function. Exploration of the parameters’ space
using random walks is particularly inefficient in analyzing high-
dimensional streaming data due to the high cost of mitigating the
impact of an unnecessary movement in constructing the Markov
chain. CausaLearn overcomes this inefficiency by moving toward
the gradient of the model using Hamiltonian dynamics. Computing
the gradient of the target density function involves a variety of
operations with complex data flows. CausaLearn provides a set
of novel algorithmic and hardware optimization techniques to en-
able real-time execution of H_MCMC algorithm using FPGAs. In
particular, our optimization includes: (i) Revising the conventional
H_MCMC routine to iteratively update the corresponding gradients
of the probability function using incremental data decomposition.
Our algorithmic modification effectively reduces the hardware im-
plementation complexity of computing the inverse of large matrices
with no drops in the output’s accuracy. (ii) Devising an automated
tree-based memory management system that facilitates multiple
concurrent loads/stores in order to effectively increase the system
throughput by enabling data parallelism to the limits of the hard-
ware resources. (iii) Designing an automated compilation tool to
tile and schedules matrix-based computations to best fits the data
dimensionality and the available resource provisioning.

We provide an accompanying API to make CausaLearn available
to a broader community who rely on probabilistic data analysis and
often have a limited hardware design expertise. Our API libraries
can be leveraged for deployment of widely used classes of data
analytics such as various regression and classification methods,
belief propagation, expectation maximization, and neural networks.
In summary, our explicit contributions are as follows:

e Introducing CausaLearn, the first scalable framework that
enables automated real-time multi-dimensional PDF approx-
imation for causal Bayesian analysis. CausaLearn provides
support for streaming settings where the latent variables
should be adaptively updated as data evolves over time.

o Developing a resource-aware customization tool to optimize
system performance. Our automated optimization attains a
balance between parallel operations and data reuse by slicing

the computation and configuring the design to best fit the
intrinsic physical resources and constraints.

o Devising the first scalable floating-point realization of causal
Gaussian processes on FPGA by adopting stochastic Hamil-
tonian Markov Chain Monte Carlo (H_MCMC).

e Designing an accompanying API to facilitate automation
and adaptation of CausaLearn for rapid prototyping of an ar-
bitrary causal Bayesian data analysis. Our API minimizes the
required user interaction while providing high performance
and efficiency gains for FPGA acceleration.

e Providing proof-of-concept evaluations by analyzing large
time-series data on three FPGA platforms with different com-
putational budgets. Our evaluations demonstrate up to 320-
fold runtime and 770-fold energy improvement compared to
a highly-optimized software deployment.

2 PRELIMINARIES

Decomposition of time-series data into estimated latent variables
provides an important alternative view from the time domain per-
spective [1, 2]. Let us denote the input data samples D as the pair
of (x, y) values, where x = {x; = [xj1, ...,xid]};’=1 includes the
input data features and y = [y1, ..., yn] are the observation values.
Here, d is the feature space size and n specifies the number of data
measurements that may grow over time. Each output observation
y; can be either continuous as in most regression tasks, or discrete
as in classification applications. The key to performing Bayesian
graph analytics is to find a probabilistic likelihood function that maps
each input feature x; to its corresponding observation y; such that:

yi = flxi) + €. (1)
The variable ¢; is an additive observation noise that determines how
different the observation vector y; can be from the latent function
value f(x;). The observation noise is usually modeled as a Gaussian
distribution variable with zero mean and a variance of 2.

2.1 Gaussian Processes

In probabilistic graphical models, all parameters should be repre-
sented as random variables. Gaussian processes are commonly used
as the prior density over the set of latent functions {f(x;)}}_, for
analyzing time-series data. In Gaussian processes, each data point
x; is associated with a Normally distributed random variable f;.
Every finite collection of those random variables has a multivariate
Gaussian distribution. GP is represented as:

f(x) ~ GP(m(x), K(x, x")), @)

where m(x) and K(x, x’) are the mean and covariance kernels that
capture the correlation between data samples. With a GP prior, the
observations y = [y, ..., yn] can be assumed to be conditionally
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Figure 1: CausaLearn Global Flow: CausaLearn takes the stream of data samples as its input and learns the hyper-parameters
of the corresponding posterior probability density function P(6|D) using Hamiltonian MCMC. Our proposed Hamiltonian
MCMC template is adaptively customized to the limits of the underlying platform and data structure. The updated hyper-
parameters are used to perform a particular user-defined Bayesian learning task (e.g., regression or classification).

independent given the latent function f(.). Therefore, the likelihood
p(y|f) can be factorized over data samples as Hﬁl p(yil fi), where
f=[f(x1), ..., f(xn)]. Note that the observations themselves are not
independent (e.g., p(y) # Hi.\i 1 P(¥i))- The mean and covariance ker-
nel of a GP are also random variables with certain hyper-parameters
(y) that should be tuned with respect to the input data. The choice
of the mean and covariance kernels determines the smoothness and
variability of the latent function f(.) to be estimated.

2.2 Bayesian Graphical Analysis

To make our notation explicit, we write the likelihood as p(y|f, 52)
where o2 is the parameter of the observation noise, and p(fly) is
the GP prior. The quantities § = [y, 53] are the hyper-parameters
of the underlying probabilistic model. The posterior distribution
p(0|D) must be computed to make predictions for the incoming
data samples in different learning tasks including various regression
and classification techniques, stochastic optimizations, and neural
networks. Let us denote the function of interest to be evaluated
with g(0). Thereby, the underlying learning task can be expressed
as the evaluation of the following integral:

Epop)[9(0)] = 19(9)P(9|D)d9- ®)

For instance, by setting g(0) = p(y*|0), one can predict the proba-
bility of a future observation y* based on the previously observed
data per p(y*|D) = [ p(y*|0)p(6|D)de.

Given the large cardinality of the hyper-parameter set |6], and
the high dimensionality of input data in real-world applications, it
is computationally impractical to analytically evaluate the integral
in Eq. (3). Thus, estimation algorithms such as MCMC are often
the methods of choice [23]. Table 1 summarizes different MCMC
algorithms. MCMC methods work sequentially by constructing a
Markov chain with each state of the chain corresponding to a new
random sample from the posterior distribution p(6|D). The samples
are then used to approximate Eq. (3) as follows:

Epom[90)] = 1,90 @

3 CAUSALEARN GLOBAL FLOW

Figure 1 illustrates the high-level block diagram of CausalLearn
framework. CausaLearn leverages Hamiltonian MCMC to devise a

generic scalable framework that can be directly applied to differ-
ent Bayesian applications. Hamiltonian technique is particularly
of interest due to two main reasons: (i) It can handle both strong
correlation and high-dimensionality in real-world applications by
stochastically computing the gradient of the posterior distribution.
(ii) It evades the requirement to compute the costly Metropolis-
Hastings ratio commonly used in the alternative MCMC methods.
This is because the acceptance rate tends to be high in the Hamil-
tonian method by moving toward the gradient of the target density
function at each MCMC iteration as opposed to the use of ran-
dom walks. CausaLearn involves two automated steps to schedule
and customize the underlying data flow (Section 6). An AP is also
devised (Section 6.3) to ensure ease of use by users who do not
necessarily possess a certain level of hardware-design knowledge.

(i) Design Planner. The design planner takes the high-level de-
scription of data from the user as its input. This description includes
the rate of data arrival and feature space size in the target applica-
tion. CausaLearn adopts platform profiling to abstract the physi-
cal characteristic of the target FPGA. The platform characteristics
include the Block-RAM (BRAM) budget, available Digital Signal
Processing (DSP) units, and memory bandwidth. The acquired phys-
ical characteristics along with the data description are fed into the
design planner unit to find the optimal execution schedule and
resource allocation (Section 6.1).

(ii) Design Integrator. The design integrator employs our core
Hamiltonian MCMC (Section 5) as a template and customizes it
according to the data schedule and resource allocation provided by
the design planner. The integrator converters the acquired execu-
tion schedule into state machines and microcodes embedded in the
target hardware design. CausaLearn tiles, batches, and pipelines the
subsequent computational workload such that it best fits the target
platform and application data (Section 6.2). The final synthesizable
code is created after adding the memory interface to the design.

Causalearn leverages a HW/SW co-design methodology.
Bayesian analysis of streaming data involves: (i) Fine-tuning the
pertinent hyper-parameters priors, and (ii) Performing a particular
inference task (e.g., regression or classification) using the updated
hyper-parameters. CausaLearn leverages FPGA as the primary hard-
ware accelerator to enable real-time updating of the corresponding
random variables and their associated PDFs inline with the data ar-
rival. The FPGA is programmed with the Verilog code automatically
generated as the output of the design integrator unit. The inference



phase is performed on the general purpose processor that hosts the
FPGA board. This is because data inference is a one-time process
per input data sample and incurs a much lower computational over-
head compared to that of updating the posterior distribution [6].
We use Peripheral Component Interconnect Express (PCle) port to
load the data to the FPGA and write back the updated parameters
to the host. All computations are performed using IEEE 754 single
precision floating-point format. Floating-point representation en-
ables CausaLearn to be readily adopted in different learning tasks
without requiring the user to modify the core implementation. It is
worth noting that the fixed-point solutions are of limited applica-
bility due to the variant nature of ultimate learning tasks and the
unpredictability of data range in different applications.

4 CAUSALEARN FRAMEWORK

CausaLearn leverages a three-level model hierarchy to capture
the causality structure of time-series data. It solves the following
objective function to model the complex correlation of data samples:

N
Observation model : y|f, o2 ~ l_[p(y,-|fi,(r,21),
i=1

GP prior : f(x)|y ~ GP(m(x), K(x,x’|y)), ©

Hyper parameters prior : 0 = [y, 0',2,] ~ p(y)p(o,zl),

where 62 is the variance of the observation noise per Eq. (1) and y
is the hyper-parameter set of the predictive function f(.) defined
as GP. All hyper-parameters 0 = [02,y] are iteratively updated in
CausaLearn framework as data evolves over time to dynamically
approximate the posterior distribution p(6|D).

A GP model is fully defined by its second order statistics (i.e.,
mean and covariance). A common prior density choice for the GP
covariance kernel is the squared-exponential function [14]:

2 (= Y(xi=x) T Y xi—x;

Kij(x) = O'ke( 2(x xj) (x x]))' (6)
Here, 0']3 is the variance of the kernel function and ¥ is a diagonal
positive definite matrix, ¥ = diag[Lz, s L(zi], in which each diago-
nal element is the length-scale parameter indicating the importance

of a particular input dimension in deriving the ultimate output.
Algorithm 1 outlines the pseudocode of CausaLearn framework.
The hyper-parameter set includes the variances of the observation
noise and covariance kernel along with the length-scales variables
6= [0,21, 0/‘3, L1, ..., Lg]). We further assume a log-uniform prior
for the variance parameter O'/i and a multivariate Gaussian prior for
the length-scale parameters. Algorithm 1 involves four main steps:

[ 1) Platform Profiling: CausaLearn provides a set of automated
subroutine that characterize the available resource provisioning.
Our subroutines measure the performance of the following four ba-
sic operations involved in the H_MCMC algorithm: matrix-matrix
multiplication, dot-product, back-substitution, and random num-
ber generation. Our subroutines run the operations with varying
sizes to find the target platform constraints. Note that the real-
ization of each operation can be highly diverse depending on the
target platform. For instance, based on the sizes of the matrices
being multiplied, a matrix multiplication can be compute-bound,
bandwidth-bound, or occupancy-bound on a specific platform.

2] Automated Customization: CausaLearn design customiza-
tion uses the output of physical profiling along with a set of user-
defined constraints to schedule and balance the computational
workload. The user-defined physical constraints can be expressed
in terms of runtime (T,), memory (M), and power consumption
(Py). The building blocks of the customization unit are design plan-
ner and design integrator. The details of these blocks are discussed
in Section 6.

Algorithm 1 Causal.earn Pseudocode

Inputs: Stream of input data (D = [X,Y]), Initial
parameters #(!), Desired Markov Chain length (Clen)s
discretization factor dt, number of discretization steps
Nstep, Updating frequency n,,, Mass matrix (1), Constant
friction term (F'), Portion of newly arrived data in each
data batch 7, Physical constraints C\, = [Ty, M., P,].

Outputs: Posterior Distribution Samples 0@, and output
decision set O.

1: [HW spee < Plat formProfiling() ol

2 |bs, HWeoae] < Customization(HWgpec, Cly) 9|
3: ProgramingFPGA(HW .oqe)

4: for i =1,2,...,Cj.p, do

5: if (i mod n,) == 0 then

6: [X,Y] « DataPartitioning(X,Y,bs,n)

7: Transferring Data Batch D to FPGA

g [r® ~ N0, M) ©

9: (61,71) + (8D, (D)

10: B=1lcldt

11: E = \/2|F — B|dt

12: for t = 2,....,ngep do

13: 9/ %9/,,] +17\f]717’/,,1df

14: U (0;) < gradient(D, 6,)

15: rt =11 — U (0:)dt — FM v dt+N(0, E)
end for

16: (e(H»l)’ MH’”) — (97'»:”'7 Tﬂst,cp)
17: Sending Back 6UFY to the Host

18: 0 = HyperParameter Prunning(0) 6‘
)

19: O = UserDefinedDatalnference(
end for

© Dynamic Parameter Updating on FPGA: CausaLearn takes
the stream of data as its input and adaptively updates the pertinent
PDF model using H_ MCMC. We discuss the template H_ MCMC
accelerator architecture and its detailed hardware implementation
in Section 5. Note that our proposed accelerator architecture is the
first realization of Hamiltonian MCMC on the FPGA platform.

o Parameter Pruning and Data Inference: CausaLearn lever-
ages the hyper-parameter samples drawn form the posterior distri-
bution p(0|D) to perform a user-defined data inference task (e.g.,
Eq. (4)). We use autocorrelation metric p(.) to evaluate the mixing
property of the generated samples:

) EN=KO; - 0)(0i4k — 0)
k= =
=N©; - 0)

; (7)

where 6 is the running average of the previous hyper-parameter
samples and k is a user-defined constant that denotes the desired
lag in computing the autocorrelation. CausaLearn prunes the corre-
lated hyper-parameter samples to further reduce the computational
overhead of the inference phase while providing an effective explo-
ration of the parameters’ space. We provide extensive evaluations
for both regression and classification tasks in Section 8.



5 ACCELERATOR ARCHITECTURE

CausaLearn leverages batch data processing to update the hyper-
parameters of the probability density function. The size of data
batch to be evaluated at each MCMC iteration explicitly governs
the computational workload of the underlying task. As we will
discuss in Section 6, CausaLearn performs physical profiling and
resource-aware customization to adjust the data batch size (bs) and
schedule the subsequent computations such that it best fits the
target platform and application data requirements.

Data Stream
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Figure 2: High-level block diagram of Hamiltonian MCMC.

Figure 2 illustrates the high-level block diagram of the H_ MCMC
methodology. At each H_MCMC iteration, a data batch consisting
of both newly arrived data samples and a random subset of previous
samples are loaded into the FPGA through PCle to be processed
using Hamiltonian dynamics (Lines 5-7 in Algorithm I). We use
to denote the portion of new data in each data batch (0 < n < 1).
Performing Hamiltonian MCMC includes three main steps:

(i) Computing the gradient of posterior distribution given the prior
density function of each hyper-parameter (Line 14 of Algorithm 1).
In H_ MCMC, the posterior distribution of 6 given a set of indepen-

dent observations y € D is represented as p(6|D) eCU®) where
the energy function U is:

U = ~Zyep In plylx. 0) - In p(0). ®)

(ii) Updating the auxiliary momentum variable r. CausaLearn adds
a friction term to the momentum updating step as suggested in [6]
to minimize the impact of injected noise as a result of bypassing
the Metropolis-Hastings correction step in conventional MCMC.
CausalLearn includes a scaled Pseudo Random Number Generator
(PRNG) to sample from N(0, E) (Line 15 of Algorithm 1).

(iii) Drawing new hyper-parameter samples based on the currently
computed gradients and momentum values. The Mass matrix, M, in
Line 13 of Algorithm 1 is used to precondition the MCMC sampler
when specific information about the target PDF is available. In
many applications, the matrix M is set to the identity matrix I.
The main computational workload in Algorithm 1 is associated
with computing the gradient of density function. Algorithm 2 out-

lines the process of computing the gradient vector VU (6;) to per-
form H_MCMC with GP prior. Evaluating the %’é‘xe» term

in Line 11 of Algorithm 2 requires computing the inverse of the co-
variance kernel (Kp_yp. ). Computing the inverse of a dense bs X b
matrix with bg > 2 involves a variety of operations with complex
data flow. As such, we suggest adopting QR decomposition in the
MCMC routine to reduce the hardware implementation complexity
and make the algorithm well-suited for FPGA acceleration.

Algorithm 3 details the incremental QR decomposition by mod-
ified Gram-Schmitt technique. QR decomposition returns an or-
thogonal matrix Q and an upper-triangular matrix R. Utilizing QR
decomposition facilitates the gradient computing step by transform-
ing the inversion of the dense kernel matrix into the inversion of
an upper-triangular matrix (K1 = R~10T), which is performed
using simple back substitution (Section 5.1.3).

Algorithm 2 GP Gradient Computing

Inputs: Batch of input data (D = [X,Y]), Hyper-
parameter set § = [02,0%, L1, ...L4)]
Outputs: Gradient of energy function 70U ().

QU ]

. RO []

: H +10,0,...,0/T,,.

. fori=1,2,...,b5 do

for j =1,2,...,bs do_ )
02— zgzli“'k;fm

IRV R S

7. Hj + oZexp( ’;" )
end for
8: H; + H7 + U%
9; [QW, RO «— QR_Update(QU~1, RG—1 H)
end for )
10: Z; + R1QTEK
11: n@X0) o L(Tr(Z) + YT ZRT'QTY)

12 7O(6) 2D — Gin(p(6:)

Algorithm 3 Incremental QR decomposition

Inputs: New column H, Last iteration Q*~! and R*~!.
Output: QQ° and R®.

. Rs—lo
1:R<—<0 0)

2. for j = 1,...,s-1 do

. s s—1\T

4  H+ H-R,Q"
end for

50 RS, ¢ |[H|2

6 Q° <« [Q°" 4]

5.1 Hardware Implementation

In this section, we explain the realization of H_MCMC module step
by step. We leverage both algorithmic and hardware optimization
techniques to provide an efficient implementation of H_MCMC.

5.1.1 Memory Management

To effectively pipeline the data flow in Algorithm 1 and opti-
mize the system throughput, it is necessary to perform multiple
concurrent loads and stores from a particular RAM. To cope with
the concurrency, we suggest having multiple smaller-sized block
memories to store particular data matrices instead of using a uni-
fied large BRAM. We devise and automate a memory management
system to tile and schedule the matrix computations such that it
best fits the data geometry and the physical hardware resources.

Figure 3: CausaLearn uses cyclic interleaving to facilitate
concurrent load/store in performing matrix computations.

Figure 3 illustrates the schematic depiction of the memory man-
agement unit in CausaLearn framework. The block memories cor-
responding to a specific data matrix share the same address signal
(addr) generated by the memory controller. The block identification



index (B_id) is used in conjunction with the address signal to locate
a certain element of the pertinent data matrix. To perform a matrix-
based operation, one requires having access to sequential matrix
indexes. CausaLearn’s memory controller fills the corresponding
memory blocks using cyclic interleaving. Employing cyclic inter-
leaving enables accessing multiple successive elements of a matrix
simultaneously which, in turn, facilitates parallelizing matrix-vector
and matrix-matrix multiplications.

For a given data batch size (bs), the number of concurrent
floating-point adders/multipliers used to perform a matrix oper-
ation is directly controlled by the unrolling factor by which the
data matrices are partitioned into smaller blocks. Let us denote
the pertinent unroll factor with a. CausaLearn provides a set of
subroutines that characterize the impact of unrolling factor « on
the subsequent resource consumption. Our automated subroutines
take the available resource provisioning into account and provide
guidelines for an efficient hardware mapping. These guidelines
are leveraged to customize the matrix-based computational work-
loads to the resource limits of the target platform while avoiding
mapping of the data matrices into registers due to an excessive
array partitioning. For instance, in Xilinx vendor libraries, every 10
floating-point numbers or less will be mapped to registers during
the design synthesis. As such, @ should take an integer value less

than or equal to & < % to avoid excessive data partitioning. Note
that mapping of large data matrices into the registers exhausts the
LUT units on the target FPGA resulting in a complex control logic.
This, in turn, translates to a larger critical path to accommodate for
the underlying computations.

5.1.2 Tree-based Reduction

Performing matrix-vector and matrix-matrix multiplication re-
sults in frequent appearance of dot product operations similar to
¢ += A[i] X B[i]. Due to the sequential nature of dot products (Fig-
ure 4a), simple use of pipelining/unrolling does not significantly
reduce the Initiation Interval (I) between two successive operations.
As such, we suggest to transform such sequential operations (¢ +=
A[i] x B[i]) into a series of operations that can be independently
run in parallel (e.g., W[i] = A[i] X B[i]). In particular, we implement
a tree-based adder to find the final sum value ¢ by adding up the
values stored in a BRAM called W. We use cyclic interleaving for
storing all the involving arrays including A, B, and W to facilitate
pipelining the subsequent multiplications and additions (Figure 4b).
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Figure 4: Facilitating matrix multiplication and dot prod-
uct. (a) Conventional sequential approach. (b) Proposed tree-

based model. Our approach reduces the II of dot product op-
erations to 1. (c) The inner structure of tree-based adder.

Figure 4c illustrates the inner structure of CausaLearn tree-based
adder. We utilize a temporary array T within the tree adder module
to store the intermediate results. In our tree adder module, the
number of additions performed at each stage is halved and the
result is stored in the other array. E.g., in the even stages, the val-
ues in the array W are summed up and the results are stored in
the array T. CausaLearn’s memory controller generates the ap-
propriate source/destination addresses to load/store the intermedi-
ate results at each stage of the tree. The number of floating-point
adders/multipliers in the tree-based reduction module is equivalent
to the unrolling factor « used to partition data matrices (assuming
dual port memory blocks). Let us index the elements of arrays W
and T with variable k. Each sub-block W; and T; in Figure 4c is filled
such that k =i mod « where k € {0, 1, ..., bs}. In the tree adder
structure, the multiplexer denoted by “MUXO0" is necessary for per-
forming the last bs/a additions on the remaining values in W,.
The final result (c) is stored in the address 0 of memory assigned to
array W. As will be discussed in Section 5.1.4, CausaLearn attains a
balance between parallel operations and data reuse by scheduling
a slice of operations to be performed at each clock cycle.

5.1.3 Matrix Inverse Computation

Computing the inverse of the covariance kernel K is a key step
in finding the gradient direction in the H_MCMC routine. Em-
ploying QR decomposition within the H_ MCMC routine facilitates
such operations given that K~! can be computed as R™'Q7 . For
instance, to solve an equation similar to V = K ~1B. one needs to
find the vector V such that RV = QT B. Given the upper-triangular
structure of matrix R, the latter equation can be solved using back-
substitution [24-26] in which (starting from the last row index)
each element of the vector V can be uniquely recovered by solving
alinear equation as illustrated in Figure 5. Let us denote the product
of QT B with vector C. The Processing Element (PE) in Figure 5 is a
multiply-add accumulator that computes:

Ci—3b R 4

Vizf—”1 (9)

Figure 5: Schematic depiction of back-substitution.

CausaLearn performs back-substitution by parallelizing the com-
putations as shown in Figure 6. Cyclic interleaving along the second
dimension (matrix columns) is used to store the Q and R matrices.
This enables us to pipeline the design and reduce the II between
two successive operations into only 1 clock cycle. Indices of vec-
tors and the second dimension of matrices in Figure 6 correspond
to their actual values modulo a. We batch the operations in the
back-substitution module to parallelize computations that share the
same variables. E.g., in computing Line 10 of Algorithm 2, multiple
columns of matrix Zj_yp may be batched together to facilitate
computations given that the columns of matrix Z can be computed
independently using the same set of Q and R values.

5.14 Data Parallelism
Causalearn gains a balance between parallel operations and
data reuse by partitioning matrix-based computations into smaller
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Figure 6: CausaLearn architecture for computing back-substitution. The operations in the right and left side of the equation,

Ry b, Vb xb, = QZSX hstsX b,» are parallelized to optimized system throughput per iteration. We use cyclic interleaving along

the second dimension to store the Q and R matrices. Each column of matrix B?) is partitioned into smaller blocks to further
accommodate parallelism. In this figure, we used dash lines to indicate the control signals.

slices of operations that best match the available computational
resources such as DSP units. Figure 7a shows an example where
multiple columns of matrix V are scheduled as a slice of oper-
ations to be evaluated in parallel in the matrix inversion unit

(Rp xb, Vb xb, = QZsts Bp,xb, ). As shown in Figure 7b, there is

a trade-off between the number of samples per slice of computa-
tions and resource utilization. CausaLearn leverages this trade-off
to optimize the template design such that the throughput per re-
source unit is maximized. The effective throughput per resource
unit decreases for large values of slice factor p. This performance
drop is due to the saturation of the pertinent resource provisioning
which, in turn, makes it infeasible to perform more operations in
parallel. We leverage batch data parallelism within different parts of
the framework (e.g., tree-based reduction module, matrix inversion
unit, etc.) to improve the efficiency of the system.

6 CAUSALEARN CUSTOMIZATION

The architecture discussed in Section 5 serves as a template for
the accelerator’s micro-architecture. Here, we outline our design
customization methodology to adapt the H_MCMC routine to the
resource boundaries of the target platform.

6.1 Design Planner

Table 2 details the memory footprint and runtime cost in
CausaLearn framework. Memory constraint on computing plat-
forms is one of the main limitations in big data regime. CausaLearn
updates the posterior distribution samples of a dynamic data col-
lection by breaking down the input data into data batches that best
fit the memory budget. CausaLearn’s memory footprint outlined in
Table 2 specifies the storage requirement for the gradient matrices
corresponding to each GP hyper-parameter, the covariance kernel
K = QR, and the intermediate matrices Z; (Line 10 in Algorithm 2).

The runtime requirement for data analysis in CausaLearn frame-
work can be approximated as:

Teomm TComp_ (10)
The T™™ term denotes the communication overhead of sending
a data batch of size bs X d from host to the FPGA platform and
reading back the updated posterior distribution parameters 6. The
TCO™MP term represents the runtime cost of updating the covariance
matrix K and computing the gradients as outlined in Algorithms 1,
2, and 3. The computation and communication costs in CausaLearn
framework are detailed in Table 2. As we demonstrate in Section 8,

TcausaLearn

CausaLearn’s overall runtime is mainly dominated by the compu-
tational workload while the communication cost contributes to a
small fraction of the overall runtime (e.g., < 0.03%).

Table 2: CausaLearn memory and runtime characterization.

\ Physical Performance of CausaLearn Framework |

Memory McausaLearn ~ Npipsng(4+ d)b?

Footprint Npirs: Number of signal representation bits
ny: Number of H_MCMC units working in parallel
bs: Number of samples per data batch-size
d: Feature space size of the incoming data samples

Computation TeOmp ~ ﬁflopclen”step(ﬁbgd + bsd)

Runtime Bfiop: Computational cost per floating-point operation
Clen: Desired Markov chain’s length
nstep: Number of discretization steps in H MCMC

Communication || TM™™ ~ B0 + 7Nbi'cl“’g€;d+(d+2)]

Runtime Pnet: Constant network latency

BW: Operational communication bandwidth

There is a trade-off between the selected data batch size bg and
the required runtime to reach the Markov chain steady state distri-
bution, a.k.a., mixing time [6, 27]. On the one hand, a high value of
bs reduces the number of iterations to reach the steady state distri-
bution. However, it also reduces the throughput of the system as
data can no longer fit in the fast BRAM of the target board. On the
other hand, a low value of bs may degrade the overall performance
due to the significant increase in the number of required posterior
samples to compute a steady approximation of Eq. (3). CausaLearn
carefully leverages this trade-off to customize computations to the
limits of the physical resources and constraints while minimally
affecting the mixing time in the target application.

To deliver the most accurate approximation within the given re-
source provisioning, CausaLearn solves the optimization objective
described in Eq. (11). CausaLearn’s constraint-driven optimization

can be expressed as:
minimize (MC mixing time),
bs, n

subject to: TO™M + TCOMP < T,
nnibs < faaraTu,
McausaLearn < Mu,

PcausaLearn < Pu,
ng € N,

(11)

where Ty, Py, and M, are a set of user-defined parameters that
imply the application constraints in terms of runtime, power, and
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Figure 7: Example data parallelism in CausaLearn matrix in-
version unit: (a) Partitioning of matrix computations into
slices of operation. (b) Resource utilization divided by the
pertinent initiation interval as a function of the number of
samples per operation slice on Virtex-7-XC7VX485T FPGA.

memory respectively. The maximum number of newly arrived sam-
ples that should be processed in each time unit is either dictated
by the arriving rate of data samples (f;4;4) or the buffer size for
storing incoming samples (My,). Here, 1 is the proportion of newly
arrived samples versus the old ones in each data batch. For a fixed
set of parameters, power consumption (PcgysaLearn) has a linear
correlation with the number of MCMC modules that are run in par-
allel. CausaLearn tunes the number of concurrent MCMC modules
accordingly to adapt to possible power limitations imposed by the
target setting.

CausaLearn approximates the solution of Eq. (11) by fixing the
number of parallel H_MCMC units (ng) and solving for data batch
size (bs) using the Karush-Kuhn-Tucker (KKT) conditions. To facili-
tate automation, we provide a solver for our optimization approach.
The solver gets the constraints from the user as inputs and uses
our Mathematica-based computational software program to solve
the optimization. Note that the constraint-driven optimization is a
one-time process and incurs a constant, negligible overhead.

6.2 Design Integrator

The design integrator unit in CausaLearn framework takes the ac-
quired execution schedule into consideration and generates the
corresponding state machines and microcodes to manage the mem-
ory controller and data parallelisms discussed in Section 5.1. The
customized synthesizable code is generated after embedding the
microcodes within the template H_MCMC architecture. In our pro-
totype designs, we leverage PCle to transfer data back and forth
between the FPGA and the general purpose processor hosting the
FPGA. The PCle interface can be replaced by any other data transfer
link such as Ethernet depending on the application.

6.3 Causalearn API

CausaLearn API consists of a set of high-level automated subrou-
tines which perform the subsequent steps outlined in Figure 1. Pro-
grammers interact with our API only through providing the input
data stream and pertinent physical constraints in terms of the avail-
able memory, runtime, and/or power inside a bash file. CausaLearn
finds the optimal batch size (bs) using our Mathematica-based opti-
mizer as discussed in Section 6.1. The API then calls Vivado-HLS to
search for optimal values of various design directives including un-
roll factor, slice factor, and pipeline depth that yield the maximum
throughput while complying with the user-defined constraints.
Eventually, the customized H_MCMC core along with the required
I/O interface modules are generated to be implemented on FPGA.

In CausaLearn, API follows specific steps to find the optimal
values for each HLS directive in an automated manner. For instance,
the optimal value of slice factor is obtained by synthesizing the
design using different values of slice factor and collecting utilization
and initiation interval from the synthesis report. The optimal value

is either the local optima of the effective throughput per resource
unit as depicted in Figure 7b or the maximum value that allows the
design to fit user-specific constraints (when using the local optima
exceeds the user constraints). After setting the slice factor, unroll
factor is determined to increase data parallelism while maintaining
the design metrics below the specific physical constraints. It is
noteworthy that the whole customization process is automated so
that data practitioners with different scientific backgrounds that do
not necessarily possess any particular hardware design knowledge
can benefit from CausaLearn end-to-end design.

Depending on the synthesis speed on the host machine and data
dimensionality, profiling can take 5 to 30 minutes on commodity
personal computers. Note that profiling is performed once per
application/platform and its cost is amortized over-time as the
system is used for processing data streams.

7 HARDWARE SETTING AND RESULTS

We evaluate CausaLearn using three off-the-shelf FPGA evaluation
boards namely Zynq ZC702 (XC7Z020), Virtex VC707 (XC7VX485T),
and Virtex UltraScale VCU108 (XCVU095) as the primary hardware
accelerator. We use an Intel core-i5 CPU with 8GB memory running
on the Windows OS at 2.40GHz as the general purpose processor
hosting the FPGA. The software realization of CausaLearn is em-
ployed for comparison purposes. We leverage PCle library provided
by [28] to interconnect the host and FPGA platforms. Vivado HLS
2016.4 is used to synthesize and simulate our MCMC units. All
FPGA platforms work at 100MHz frequency.
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Figure 8: Resource utilization on different platforms assum-
ing a hyper-parameter set of size |0|= 10. The output of our
automated customization characterizes the hardware accel-
erator which, in turn, helps us to fully exploit the avail-
able on-chip memory. As shown, the resource utilization is
mainly dominated by the Gradient update unit.

Figure 8 shows the breakdown resource utilization of CausaLearn
deployed on three FPGAs. Each FPGA platform has a different com-
putational budget. The total resource utilization accounts for both
the H_MCMC unit (including the gradient update, momentum and
parameter update, and PRNG modules) as well as the PCle con-
troller. Table 3 details CausalLearn performance per iteration of
H_MCMC for processing different number of data samples (n). The
earlier MCMC hardware accelerators are developed based on the
assumption that input data samples are independent and identi-
cally distributed. These works cannot handle time-series data with
causal structure as shown in Figure 9. As such, we opt to compare
CausaLearn runtime (with nj = 1) and energy consumption against
a highly optimized C++ software solution. The software baseline is
optimized using Eigen and OpenMP libraries. Eigen library exploits
Intel Stream SIMD Extension (SSE) instructions to enhance the per-
formance of intensive matrix computation. All the available cores
on the Intel Core-i5 CPU (with 8GB memory running at 2.40GHz)
were used to execute the H_ MCMC routine.

FPGA power is simulated using Vivado power analyzer which
accounts for both static and dynamic power. We use Intel Power
Gadget 3.0.7. to measure CPU execution power. The power con-
sumption for the H_MCMC unit is 0.95, 3.74, and 3.84 Watts for



Table 3: Relative runtime/energy improvement per H_MCMC iteration achieved by CausaLearn on different platforms com-
pared to the optimized software implementation for [0|= 10 and ngs;ep = 100. The conventional H_MCMC algorithm incurs

O(n?) runtime complexity, whereas, our batch optimization approach scales linearly with [ﬁ-‘

Communication | Runtime per Iteration | CausalLearn Runtime per Iteration

Runtime Improvement Energy Improvement

n Overhead SW ZC702 VC707 VCU108 | ZC702 VC707 VCU108 | ZC702 VC707 VCU108
256 16.92 msec 113.01 sec 96.18 sec 47.10 sec 76.71 sec 1.2% 2.4X 1.5% 8.1X 4.1x 2.4X
512 33.65 msec 902.98 sec 192.37 sec  94.23 sec  153.42 sec 4.7X 9.6X 5.9% 31.8X 16.5% 9.8X
1024 67.18 msec 8601.37 sec 384.72 sec  188.61sec 230.13 sec | 22.4X  42.7X 37.4% 136.3X  65.9% 56.3%
2048 134.19 msec 33.52 hr 769.44 sec  376.81 sec 460.26 sec | 156.8X 320.2X  262.2X | 769.1x 398.9x  318.2X

ZC702, VC707, and VCU108, respectively. As illustrated, the com-
putational time in CausaLearn grows linearly with respect to the
number of data samples. In this experiment, the optimal batch size
for each platform is used to maximize the on-chip memory us-
age as shown in Figure 8. The optimal data batch sizes (output of
Causalearn customization) are 88, 256, and 360 on ZC702, VC707,
and VCU108, respectively. In cases where the number of data sam-

s

ples is not divisible by the data batch, [bl-l iterations are performed
to analyze all data samples.

8 PRACTICAL DESIGN EXPERIENCES

We use CausaLearn to analyze three large time-series data with
strong causal structure. In particular, we analyze:

(i) Dow Jones Index stock’s change over time. This data [29] in-
cludes daily stock data of 30 different companies collected over 6
months. Each data sample x; contains 8 features including differ-
ent statistics of the stock price during the previous week (e.g., the
highest and lowest price). The task is to predict the percentage of
return for each stock in the following week.

(ii) Sensor data to classify different daily human activities. The
dataset [30] comprises body motion and vital signs recordings for
ten volunteers while performing different activities. Each data sam-
ple x; includes 23 features. In this experiment, we use the data
collected for two subjects to distinguish jogging and running activ-
ities. Each activity is recorded for 1 minute with a sampling rate of
50Hz resulting in more than 6K samples per subject.

(iii) Time-variant data for regression purposes [31]. The data is
generated using a time-variant (unknown) function where the task
is to predict the function’s output given the previously observed
samples. Figure 9a shows the regression’s output using the posterior
distribution samples learned by CausaLearn (Figure 11c). In Figure 9,
we compare the regression’s output using MCMC samples learned
by assuming a causal GP prior versus ii.d. data measurements with
multivariate Gaussian prior (e.g., [11, 32]). The data points denoted
by star signs are the training observations y.

Data Regression Using Causal GP Data Regression Using Multivariate Gaussian

() (b)
Figure 9: Time-variant data analysis using MCMC samples
by assuming (a) causal GP prior (CausaLearn), vs. (b) i.i.d. as-
sumption with multivariate Gaussian prior (e.g., [11, 32]).

Data batch size, bs, is a key tunable parameter that characterizes
CausaLearn’s resource utilization and runtime performance as out-
lined in Table 2. Figure 10 demonstrates the impact of data batch size
bs on the subsequent resource utilization and system throughput
per H_MCMC unit in each application. Multiple H_MCMC units

can work in parallel within the confine of the resource provisioning
to further boost the system throughput for smaller data batch sizes.

Figure 11 shows Causalearn’s posterior distribution samples
obtained with a batch size of bs = 128 in each application. The red
cross sign on each graph demonstrates the maximum a posterior
(MAP) estimate obtained by solving:

argmax In(p(y|x, 0)) + In(p(9)). (12)
%

Due to the space limit and high dimensionality of the target datasets,
Figure 11 selectively shows the MCMC samples obtained for the

observation noise variance (c2). The same trend is observed for the
other hyper-parameters (e.g., Uli and £;).

9 RELATED WORK

Bayesian network is a key method to model dynamic systems in var-
ious statistical and machine learning tasks. Significant theoretical
strides have been made to design Bayesian graphical analytics that
can be used at scales by exploiting task and data level parallelism [5-
8, 33]. Available Bayesian inference tools on CPUs [15], GPUs [16-
18, 34], and FPGAs [21, 22], however, are either application specific
or include direct mappings of algorithms to hardware. As such,
the idea of customizing the Bayesian networks to make them well-
suited for the underlying platform is unexplored. Recently, authors
in [19, 20] have introduced a generic GPU-accelerated framework
for Bayesian inference. Even these works are built based the as-
sumption that input data samples are i.i.d; thus lack the capability to
capture the inherent causal structure of time series data. To the best
of our knowledge, CausalLearn is the first automated framework
that enables end-to-end prototyping of complex causal Bayesian
analytics with continuous random variables. Causalearn is capable
of handling both strong correlation and high-dimensionality in
streaming scenarios with severe resource constraints.

FPGAs have been used to accelerate computationally expen-
sive MCMC methods. Recent works in [11, 32, 35] have proposed
reconfigurable architectures with custom precision for efficient
realization of population-based MCMC routine applied to Bayesian
graphical models. Authors in [11, 32, 35] targets simple multivari-
ate Gaussian densities where observations are assumed to be in-
dependent and identically distributed. Thus, these works cannot
be readily employed in more sophisticated streaming scenarios
where independence cannot be assumed between data samples.
To the best of our knowledge, CausaLearn is the first to provide
a scalable FPGA realization of generic H_MCMC routine applied
to streaming applications with large and densely correlated data
samples. We emphasize that the use of data precision optimization
technique proposed in [32, 36] provide an orthogonal means to
our resource-aware customization for performance improvement.
Therefore, CausaLearn can achieve even greater improvement by
leveraging such optimizations.

10 CONCLUSION

This paper presents CausaLearn, the first automated reconfig-
urable framework to compute on and continuously update time-
varying probability density functions for causal Bayesian analysis.
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ples. The red cross sign on each graph demonstrates the max-
imum a posterior estimate in each experiment.

CausaLearn targets probabilistic learning in streaming scenarios
in which the number of data samples grows over time and com-
putational resources are severely limited. To boost the computa-
tional efficiency, CausaLearn provides a scalable implementation
of Hamiltonian MCMC on FPGA. We modify the conventional
MCMC algorithm using QR decomposition to make it amenable for
hardware-based acceleration performed by FPGA platforms. We
further provide novel memory management, tree-based reduction,
and data parallelism techniques to effectively pipeline and balance
the underlying matrix computations on FPGA. CausaLearn is de-
vised with an automated constraint-driven optimization unit to
customize H_MCMC workload to the limits of the resource provi-
sioning while minimally affecting the MC mixing time. An accom-
panying API ensures automated applicability of CausaLearn for an
end-to-end realization of complex Bayesian graphical analysis on
massive datasets with densely correlated samples.
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