
1

RISE: An Automated Framework for Real-Time Intelligent Video
Surveillance on FPGA

BITA DARVISH ROUHANI, University of California San Diego
AZALIA MIRHOSEINI, Google Brain
FARINAZ KOUSHANFAR, University of California San Diego

�is paper proposes RISE, an automated Recon�gurable framework for real-time background subtraction
applied to Intelligent video SurveillancE. RISE is devised with a new streaming-based methodology that
adaptively learns/updates a corresponding dictionary matrix from background pixels as new video frames
are captured over time. �is dictionary is used to highlight the foreground information in each video frame.
A key characteristic of RISE is that it adaptively adjusts its dictionary for diverse lighting conditions and
varying camera distances by continuously updating the corresponding dictionary. We evaluate RISE on
natural-scene vehicle images of di�erent backgrounds and ambient illuminations. To facilitate automation, we
provide an accompanying API that can be used to deploy RISE on FPGA-based system-on-chip platforms. We
prototype RISE for end-to-end deployment of three widely-adopted image processing tasks used in intelligent
transportation systems: License Plate Recognition (LPR), image denoising/reconstruction, and principal
component analysis. Our evaluations demonstrate up to 87-fold higher throughput per energy unit compared
to the prior-art so�ware solution executed on ARM Cortex-A15 embedded platform.

CCS Concepts: •Computing methodologies →Machine learning; •Computer systems organization
→Embedded systems; Real-time systems;

Additional Key Words and Phrases: Intelligent video surveillance, Data streaming, Background subtraction,
License plate recognition, Recon�gurable computing.

ACM Reference format:
Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar. 2017. RISE: An Automated Framework
for Real-Time Intelligent Video Surveillance on FPGA. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1
(January 2017), 18 pages.
DOI: h�ps://doi.org/10.1145/3126549

1 INTRODUCTION
Background subtraction is a challenging task in various video surveillance applications including
but not limited to tra�c monitoring, vandalism deterrence, and suspicious object detection [1].
In background subtraction algorithms, the primary step is to learn a reference model (a.k.a., a
dictionary matrix) to e�ectively represent the background scene in a video stream. Several factors
might a�ect the background scene in a real-world se�ing, making it necessary to design dynamic
streaming algorithms/tools in order to handle new structural trends that might appear in the input
�is work was supported in parts by the O�ce of Naval Research grant (ONR N00014-17-1-2500) and National Science

Foundation TrustHub grant (1649423).
�is article was presented in the International Conference on Hardware/So�ware Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM. 1539-9087/2017/1-ART1 $15.00
DOI: h�ps://doi.org/10.1145/3126549

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:2 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

data. Examples of such e�ects include sudden or gradual illumination changes, the presence of
shadows, background repetitive movements (e.g., waving trees), and moving objects.

A number of background subtraction realization on GPUs [2], ASICs [3], and FPGAs [4, 5] have
been reported in the literature. �e existing solutions, however, either (i) have adopted a static
approach in a sense that they require having access to a pre-de�ned set of referenced background
images [4, 5]; thereby, they cannot adapt to the changing geometry of the data due to the varying
backgrounds and ambient illuminations. Or (ii) require learning a large over-complete dictionary
matrix to comply with the uncontrolled environments in the background pixels, e.g., [1, 6]. �e
use of over-complete dictionaries, in turn, bounds the applicability of these works on constrained
System-on-Chip (SoC) platforms due to the high memory footprint and the computational budget
requirement for online processing using large data matrices.

We propose RISE, a novel automated computing framework for FPGA-based real-time background
subtraction applied to intelligent video surveillance. RISE is devised with a new adaptive, and
streaming-based methodology that enables real-time monitoring of persistent and transient objects
in uncontrolled environments. �e new method is scalable and well-suited for embedded se�ings
with severe resource constraints. �e resource limitation can be categorized in terms of the available
memory, processing time, and/or energy (e.g., ba�ery life). RISE takes the stream of video frames
captured by surveillance cameras as its input and highlights the foreground content existing in
each frame to subsequently reduce the objection detection/tracking workload such that it complies
with the pertinent resource provisioning/constraints.

As the stream of surveillance video frames comes in, RISE learns/updates a �xed-size dictionary
matrix as a subsample of the input pixels. �e dictionary samples are carefully selected inline with
the data arrival such that it captures the varying background pixels. Our framework uses a greedy
sparse-coding routine called Orthogonal Matching Pursuit (OMP) to adaptively transform the
original video frames to a new set of frames (images) by eliminating the background pixels based
on the learned dictionary. Note that processing the foreground content restrict the computations to
the most informative regions of the input images. As we empirically corroborate in this paper, this
computational reduction, in turn, makes it practical to realize object detection/tracking applications
on resource-constrained SoC platforms available on today’s surveillance cameras. As such, it evades
the need to transfer large video collections to a control station for further processing by enabling
on-chip data analysis.

RISE is designed based on a HW/SW co-design approach. To facilitate automation and adaptation
of the proposed framework, we provide a set of open-source libraries/tools that can be used for
automated deployment of an arbitrary surveillance application using FPGA platforms. �e explicit
contributions of this paper are as follows:

• Developing RISE, an automated and customized set of algorithms and hardware-accelerated
tools that enable real-time background subtraction on generic images applied to intelligent
video surveillance applications.
• Enabling adaptivity to various data se�ings. RISE maintains a �xed-size dictionary which

is formed by scalably sub-sampling the input data. As the background varies over time, the
dictionary samples are dynamically updated to account for evolving data structure.
• Facilitating hardware customization. RISE takes physical limitations such as memory

budget, and real-time processing requirement into consideration and creates the best
dictionary that meets the aforementioned constraints.
• Performing extensive evaluations on various types of images and video frames. �e re-

sults demonstrate both algorithmic practicality and system performance e�ciency of the
proposed framework.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA 1:3

2 PRELIMINARIES
In this section, we brie�y discuss the streaming data modeling in constrained embedded se�ings
(Section 2.1), and the Orthogonal Matching Pursuit algorithm (Section 2.2).

2.1 Streaming Data Analysis
Streaming data analysis refers to a set of algorithms and tools that enable online processing of data
streams in se�ings with severe physical constraints (e.g., available memory, energy, and/or compu-
tational budget). To deal with the resource constraints, in streaming scenarios, the computation
is performed using a sketch (approximate summary) of the input data. �e data sketch should be
acquired inline with the data arrival in a pass-e�cient manner (usually through only one pass).
It is worth noting that the use of streaming algorithms/tools enables on-chip real-time reasoning
from data content collected on sensor nodes without having to transfer the raw data to an o�-site
processing unit.

2.2 Orthogonal Matching Pursuit
Orthogonal Matching Pursuit (OMP) is a greedy algorithm for solving compressed sensing and
sparse approximation problems [7, 8]. For a given dictionary matrix (D), OMP algorithm aims
to sparsely reconstruct (approximate) the input data measurement (Y) based on the pertinent
dictionary. Let us denote the maximum desired sparsity level with k and the target error threshold to
ϵ . Algorithm 1 outlines the pseudocode of OMP routine [8]. As shown, performing the OMP routine
for a given signal requires iterative execution of three main steps: (i) �nding the best matching
sample in the dictionary matrix D (Line 4 of Algorithm 1), (ii) least-square (LS) optimization (Line 5
of Algorithm 1), and (iii) residual update (Line 6 of Algorithm 1). In our pseudocode, D j represents
the jth column of matrix D and DΛ is the subset of D consisting of the columns de�ned in the set
Λ. �e OMP algorithm terminates when the number of non-zero elements in the output coe�cient
vector is more than the sparsity level k or the L2-norm of the residual vector (‖r ‖2) is less than the
user-de�ned threshold ϵ .

Algorithm 1 OMP Algorithm
Inputs: Dictionary D, input sample Y , maximum sparsity level k , and desired error threshold
ϵ .
Output: Coe�cient vector V .

1: Λ0 ← []
2: i ← 0
3: r 0 ← Y

4: while (i ≤ k and ‖r i ‖2 > ϵ) do
5: Λ← Λ ∪ arдmax j | < r i−1,D j > |
6: V i ← arдminv ‖r i−1 − DΛiV ‖2

2

7: r i ← r i−1 − DΛiV
i

8: i ← i + 1
end while

As shown, OMP is an iterative computationally expensive algorithm with a complex data �ow.
RISE is devised with a scalable hardware-accelerated realization of OMP routine using FPGA

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

platform. �e implementation of OMP routine on FPGA, in turn, enables low-power and real-time
computation in embedded se�ings with limited energy and resource provisioning (e.g., memory
capacity).

3 RISE FRAMEWORK
Figure 1 demonstrates the high-level block diagram of RISE framework. As shown, RISE consists
of three main building blocks for on-chip realization of object detection/tracking applications: (i)
dictionary learning unit (Section 3.1), (ii) background subtraction unit (Section 3.2), and (iii) user-
de�ned post-processing unit (Section 3.3). RISE is devised with an streaming-based data analysis
methodology to enable real-time image processing for intelligent surveillance applications. �e
proposed method computes the sketch of a video stream by learning a set of dynamic dictionaries
to best represent the input data. �e data sketch is then used in RISE framework to perform a
user-speci�c learning application such as object tracking/localization.

Y

Frequency Counter Memory

Replacement?

Dictionary Learning (SW) Background Substraction (HW)

Input
Sample

Yi

Dict.
Matrix

D

LS
Optimization

Find Best
Fitting Column

Residual
Update

FIFO

User-Defined
Processing Task

Image Post-processing
(SW)

OMP Reconstruction

YES

NO

YES

NO

Computing Projection Error

1 2 3

C
o

efficien
t V

ecto
r

Output

Fig. 1. High-level block diagram of RISE framework. RISE takes the stream of input data as its input and
gradually learns the underlying data structure to perform background subtraction. The framework consists of
three main building blocks for real-time on-chip analysis of streaming data: dictionary learning performed in
so�ware, background subtraction accelerated by hardware, and user-defined image post-processing executed
in so�ware.

3.1 Adaptive Dictionary Learning
Many modern data collections are either low-rank or lie on a union of lower dimensional subspaces
[9, 10]. RISE leverages this data property to e�ectively identify the foreground outliers in a video
stream data by learning a low-rank dictionary matrix that is continuously updated as data evolves
over time. For a given stream of video data, RISE �rst converts each frame into a series of patches
that contain the values of neighboring pixels as illustrated in Figure 2. �e size of each data patch
and the desired overlap between two successive patches are algorithmic parameters that are tuned
with respect to the pertinent memory availability and runtime budget in RISE framework.

np

nf

H

w

sh

sv

Fig. 2. Image to patch conversion: each input image is mapped to a series of overlapping data patches to be
processed in the dictionary learning and background subtraction units. A similar approach is performed to
transform the processed data patches back to the input image size a�er object detection.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA 1:5

In RISE framework, the dictionary matrix is initiated as an empty set. �e dictionary is then
gradually �lled up with the input data patches that best presents the background content. To do so,
for each arriving data patch, RISE computes a projection error based on the current values of the
dictionary matrix (D) as follows:

W(Yi) =
‖D(DTD)−1DTYi − Yi‖2

‖Yi‖2
, (1)

where the term D(DTD)−1
DT indicates the projection space spanned by the column space of

dictionary matrix D.
�e projection errorW (.) is an indicator that shows whether the existing content in the input

data patch can be well represented within a user-de�ned approximation error (β) or not. If the
newly arrived data patch does not deviate signi�cantly from the model spanned by the selected
dictionary samples, it proceeds to the next step for background subtraction (Section 3.2). Otherwise,
the input data patch is temporarily added to the end of a �xed-sized queue to be included in the
dictionary matrix. Let us denote the maximum size of the pertinent dictionary matrix with sd . If
the number of current samples in D is less than sd , the input data patch will be normalized and
added to the dictionary. Else way, a copy of the input data is stored in the queue to be later replaced
with a non-frequently used sample in the dictionary and the patch is redirected to the background
subtraction unit (See Figure 1 for the data �ow in the dictionary learning unit).

To bound the memory footprint of the learned dictionary and adjust for varying ambient back-
grounds, RISE carefully selects and replaces old dictionary samples that are inadequate to represent
the background contents appeared in the newly added video frames. To do so, RISE keeps track
of the number of times each dictionary sample is used in the background subtraction unit over
a certain period of time. �is parameter is indicated by fd , where d is the index number of each
dictionary sample. If fd is less than a threshold α (e.g., α = 100) for a dictionary sample, RISE
replaces that sample with a new patch of data retrieved from the queue. �is is because, if a
dictionary sample is not used frequently in the system it either belongs to the background samples
in previous video frames that are not applicable anymore due to the change of background scene or
ambient conditions, or it is mixed with the foreground pixels. Algorithm 2 shows the pseudocode
of RISE framework. �e “while loop” continues until the system is interrupted by the user. �e
indicated boxes in Algorithm 2 corresponds to the building blocks illustrated in Figure 1.

3.2 Background Subtraction
Background subtraction can be cast as a sparse signal reconstruction problem. In this step, pixels
that signi�cantly di�er from the model spanned by the selected dictionary samples are regarded
as foreground. In other words, the background patches in each video frame Ynf can be sparsely
represented as the linear combination of a few samples in the learned dictionary. RISE solves the
following objective function using orthogonal matching pursuit to �nd the sparse representation
of the data (Vnf) with respect to the dictionary matrix (D):

minimizeV ∗nf ‖Ynf − DVnf ‖2 s .t . ‖V
∗
nf ‖0 ≤ k . (2)

Here, ‖.‖0 denotes the number of non-zeros in the pertinent vector, and ‖.‖2 indicates the L2-norm.
In particular, the p-norm of a vector x with p ≥ 1 is computed as:

‖x ‖p = (
n∑
j=1
|x(j)|p)1/p . (3)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

OMP is a well-known routine for solving compressed sensing and sparse approximation problems
[8]. It takes a dictionary D and a sample Ynf as inputs and iteratively approximates the sparse
representation of the sample by adding the best ��ing element in every iteration (Section 2).
Parameter k controls the total number of non-zeros per column ofV (a.k.a., sparsity level). Suppose
the dictionary matrix D contains a set of background patches, thus the background in each frame
Ynf can be reconstructed using DV ∗nf , where V ∗nf is the optimal solution per Eq. (2). As such, the
foreground information can be represented as a sparse matrix by computing

Ynf − DV ∗nf . (4)

Depending on the user-speci�c learning task, RISE either uses the foreground information
(Ynf −DV ∗nf) or the sparse image reconstruction (DV ∗nf) for post-processing of the input data stream.
For instance, in object detection applications such as license plate recognition, the foreground
information should be used for localization of the items of interest. However, in a particular
classi�cation task such as hyper-spectral imaging, analyzing the background dynamic content is of
special importance.

3.3 Image Post-Processing
In this step, the sparse representation of each image (the foreground/background information
extracted through previous steps) are analyzed to perform a user speci�c learning task. For
instance, to implement an image classi�cation experiment using principal component analysis
the user can replace the original dense input image with its projected representative (DV ∗) and
do the computations on the projected data. Note that unlike the original input data stream, the
transformed data (V ∗) possesses a sparse structure which, in turn, translates to a fewer number of
required �oating-point operations (FLOPs) and less memory footprint.

In another scenario, a user might leverage the extracted foreground content for object local-
ization/tracking purposes. To do so, a locally adaptive thresholding method can be performed to
transform the gray-scale background subtracted image (Ynf − DV ∗nf) into a binary image based on
the local statistics of the neighborhood pixels such as range and variance [11]. In our evaluation for
licence plate recognition, we used the following criteria to compute the threshold corresponding to

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA 1:7

each patch of data:

T (x ,y) =m(x ,y) + [1 + γ (σ (x ,y)
R
− 1)], (5)

wherem(x ,y) and σ (x ,y) are the local sample mean and variance respectively. R = 256, and γ = 0.5
are used in our practical design experiment in Section 7.

Following the image binarization, Connected Component Analysis (CCA) might be applied
(depending on the user-de�ned task) to determine the group of pixels that are probably related to
one another. CCA is developed based on the assumption that pixels in a connected component
(object) share similar pixel intensity values and are connected with their adjacent pixels. Once all
groups have been determined, each pixel is labeled with a value according to the component to
which it was assigned. To detect/track a particular object in the newly labeled set of images, one
can make use of simple morphological statistics (StatM) such as the aspect ratio (a.k.a., eccentricity),
and object orientation. For instance, to locate license plates in a surveillance video our evaluations
shows that using 1.5 ≤ aspectratio ≤ 4.5 and 10° ≤ orientation ≤ 60° are e�ective criteria to
successfully locate license plate regions in an image. We emphasize that our proposed framework
is generic and can be used for a variety of surveillance applications other than ones evaluated in
this paper.

4 HARDWARE IMPLEMENTATION
Execution of OMP algorithm is the key computational bo�leneck in RISE framework. RISE is
devised based on a HW/SW co-design approach. �e dictionary learning and data post-processing
analysis are performed using an embedded general purpose processor while background subtraction
is accelerated with FPGA. We provide a scalable implementation of OMP routine on FPGA to
enable low-power and real-time analysis of streaming data. Figure 3 illustrates the high-level
schematic depiction of RISE’s OMP kernel. In our experiments, we leverage Peripheral Component
Interconnect Express (PCIe) port to load the data to the FPGA board and write back the results to the
general purpose processor hosting the FPGA. All computations in RISE framework are performed
using IEEE 754 single precision �oating-point format. Floating-point representation enables RISE
to be readily adapted in the realization of di�erent learning tasks without requiring the user to
�ne-tune the implementation corresponding to the target application.

Input
sample Y

Dictionary
Matrix D

R
esid

u
al R

Memory
Controller

Dot Product <R, D>

Find Maximum Index

Gram-Schmidt
Orthogonalization

Update Residual R

 Update Support Set
Update

Dictionary
Flag

Back
Substitution

C
o

efficien
t V

ecto
r V

Fig. 3. Block diagram of RISE OMP kernel. The computational blocks surrounded by the dashed box
iteratively work for k (target sparsity level) epochs and the result is passed to the back substitution unit to
compute the coe�icient vector V .

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

Solving the LS optimization within OMP algorithm involves a variety of operations (e.g., matrix
inversion) with complex data �ow. RISE leverages Gram-Schmidt orthogonalization to reduce the
hardware complexity of OMP algorithm by gradually forming an orthogonal matrixU and an upper
triangular matrix Z as suggested in [12]. Algorithm 3 outlines the Gram-Schmidt orthogonalization
method [13, 14]. Using the Gram-Schmidt methodology, the residual (line 6 of Algorithm 1) is
computed as:

Ri ← RiUiU
T
i Ri , (6)

where Ri is the residual in iteration i , Ui denotes the current values of matrix U , and UT
i is the

transpose of matrix Ui . �e �nal solution (V) is calculated by performing back substitution to �nd
the inversion of the matrix Z and compute:

V = Z−1UTYnf . (7)
To make our notation explicit, for a patch of input data (Ynf) of size (m × 1) and a dictionary matrix
(D) of size (sd ×m), the reconstruction vector V is of size sd × 1 and the square matrices U and
Z are of size sd × sd . �e user-speci�c sparsity level k should be less than or equal to number of
dictionary samples k ≤ sd .

Algorithm 3 Incremental Gram-Schmidt orthogonalization
Inputs: New column DΛi , last iteration U i−1, Z i−1.
Output: U i and Z i .

1: Z i ←
(
Z i−1 0
0 0

)
2: Ei ← DΛi

3: for j = 1,…,i-1 do
4: Z i

ji ← (U i−1)Tj Ei

5: Ei ← Ei − Z i
jiU

i−1
j

end for

6: Z i
ii ←

√
‖Ei ‖22

7: U i ← [U i−1, Ei
Zii i
]

Figure 4 illustrates the structure of the back substitution unit in the OMP kernel. Starting
from the last row index of the upper-triangular matrix Z , each element of the vector V can be
uniquely recovered by solving a set of linear equations. �e Processing Element (PE) in Figure 4 is
a multiply-add accumulator in which each element of vector V is computed as follows:

Vi =
Ci − Σkj=i+1Zi jVj

Zii
. (8)

Here, k is the desired maximum sparsity level, and C denotes the matrix product of UT and Ynf .
RISE leverages two sets of optimization for implementation of the OMP kernel by exploiting the

data and algorithmic level parallelism: (i) �e OMP algorithm mainly consists of matrix-vector
and matrix-matrix multiplications. Such operations, require e�cient execution of dot product
between two vectors. RISE is devised with a tree-based scheduler to pipeline the design and perform

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA 1:9

Fig. 4. Back substitution unit in RISE framework. The processing element corresponds to a recursive multiply-
add accumulator used to find vector V in equation V = Z−1C without explicitly computing the inverse of the
upper-triangular matrix Z .

matrix-based computations. �e proposed approach reduces the Initiation Interval (II) in computing
matrix-vector multiplication to only 1 clock cycle. We use cyclic interleaving to store the input
data and the intermediate variables in OMP routine. �e use of cyclic interleaving enables multiple
load/store access to the memory block in each clock cycle. Assuming dual-port memory blocks,
the unrolling memory factor in RISE framework is equivalent to the number of �oating-point
adders/multipliers that can be instantiated within the con�ne of the Digital Signal Processing (DSP)
resources of the target FPGA. Figure 5 demonstrates the use of tree-based reduction for computing
the sum value of a vector. Here, a temporary vector B is employed to store the intermediate results.

A(0) A(1) A(2) A(3) A(4) A(5) A(6) A(7)

B(0) B(1) B(2) B(3)

A(0) A(1)

B(0)

Fig. 5. Tree-based vector reduction. The use of tree-based adder enables e�ective pipelining of the design
and reducing the II of dot product operations to only one clock cycle.

(ii) �e use of block RAM is desirable on FPGA platforms due to their fast access time. However,
the number of block memories on FPGAs is highly limited; thereby, it is necessary to optimize
the number of utilized block RAMs in the design. �e memory footprint of OMP algorithm is
dominated by the memory requirement for storing the dictionary matrix D and the intermediate
matrix U . RISE reuses the same set of block memories initially assigned to dictionary matrix D to
store the newly added columns of matrix U at each OMP iteration. �is memory reuse is possible
due to the fact that the updated residual at the end of each iteration is made orthogonal to the
selected dictionary samples. As such, none of the columns of matrix D would be selected twice
during one call of the OMP algorithm. RISE keeps track of the already selected dictionary samples
in a binary vector of size sd . In evaluating line 4 of Algorithm 1, the binary �ag is used to mask the
indexes of matrix D that have been selected through the previous OMP iteration.

Figure 6 illustrates the inner structure of the OMP realization in RISE framework. In RISE
framework, multiple OMP kernels can work in parallel to increase the throughput of the underlying
application. RISE is devised with a global coordinator unit that includes the memory interface and
a control module to manage the pertinent OMP kernels. For each newly arrived data patch, the

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

coordinator in RISE framework looks for the availability of the OMP kernels to assign the input
data patch to an idle kernel for further processing. �e control unit has also the responsibility of
reading out and sending back the results to the general purpose processor hosting the FPGA.

Fig. 6. OMP architecture in RISE framework. Cyclic interleaving is used to store data matrices. RISE leverages
a tree-based reduction module to e�ectively batch the computations and pipeline the design accordingly. The
same set of block memories is reused to store matrices D and U . This memory reuse reduces the underlying
memory footprint by almost a factor of 2 compared to the direct mapping of OMP algorithm to FPGA without
any drop in the accuracy.

5 HARDWARE SETTING AND RESULTS
We use Xilinx Virtex-6-XC6VLX240T FPGA as our primary hardware accelerator. �e FPGA is
programmed with a speed grade of −1 and works at the 100MHz clock frequency. A quad-core
2.3GHz ARM Cortex-A15 CPU running on the Linux 4 Tegra OS is employed for the so�ware-based
realization of RISE (used for comparison purposes). We adopt Xilinx standard IP cores for single
precision �oating-point operations and leverage PCIe library provided by [15] to transfer data
between the host and FPGA. Xilinx ISE 14.6 is used to synthesize, place, and route the pertinent
Verilog code to program the FPGA. In our prototype, four OMP kernels can be run in parallel within
the con�ne of the pertinent resource provisioning to evaluate data patches containing less than or
equal to 256 pixels.

50 100 150 200 250

Number of dictionary samples (s
d
)

0

500

1000

1500

2000

2500

3000

T
h

ro
u

g
h

p
u

t
(P

a
tc

h
/J

o
u

le
) 4 OMP units

3 OMP units

2 OMP units

1 OMP unit

Fig. 7. RISE’s worst-case throughput per energy unit as a function of dictionary size sd . In this experiment,
the data patch size is 32 × 8 and k is set equal to the value of sd .

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA 1:11

50 100 150 200 250

Number of dictionary samples (s
d
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
u

n
ti

m
e

 (
m

s
)

4 OMP units

3 OMP units

2 OMP units

1 OMP unit

Fig. 8. RISE’s average runtime per data patch as a function of dictionary size sd . In this experiment, the data
patch size is 32 × 8 and k is set equal to the value of sd .

Figure 7 shows RISE’s throughput per energy unit as a function of dictionary size (sd). In this
experiment, the patch size is (32 × 8), ϵ is 10−20, and k is equal to sd . We set k = sd to let k be as
large as the dictionary size in order to evaluate the worst-case throughput. �e FPGA power is
simulated by Xpower analyzer tools in Xilinx ISE which accounts for both leakage and dynamic
power [16]. �e corresponding average runtime per input data patch in the same experimental
se�ing is illustrated in the Figure 8. As shown in Figures 7 and 8, there is a trade-o� between the
system throughput and the underlying dictionary size sd . RISE tunes the pertinent dictionary size
accordingly to �t the target application runtime requirement.

�e main resource bo�leneck in the realization of RISE framework is the available on-chip block
RAM memories on FPGA. Figure 9 shows the BRAM resource utilization for deployment of one
OMP kernel with respect to various sizes of the dictionary matrix D. �e DSP, Sliced Register, and
Look-Up-Table (LUT) utilization remain almost the same for di�erent values of sd . �is is because,
RISE is designed to fully leverage the available computational budget (e.g., DSP units) to parallelize
the underlying computations and maximize system throughput.

16 32 64 128 256

Number of dictionary samples (s
d
)

0

50

100

150

200

N
u

m
b

e
r

o
f

u
ti

li
z
e
d

 B
R

A
M

1
8
K

b

Fig. 9. BRAM resource utilization per OMP kernel for di�erent dictionary sizes (sd). The total available block
RAM memory is 14.97Mb on the target FPGA platform.

Sparsity level k is a key tunable parameter in RISE framework. On the one hand, a large value of
k enables the representation of the image content with more details (accuracy). �is accuracy is
at the cost of a higher computational workload since more OMP iterations should be performed
to process each data patch. On the other hand, a very small value of k can degrade the system
performance by eliminating most of the images’ foreground content. Figure 10 illustrates RISE
throughput per energy unit versus the target sparsity level k . In this experiment, the dictionary

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

size is set to sd = 128 and each input data patch includes 32 × 8 pixels. �e reported throughput
corresponds to using four OMP kernels in parallel. RISE hardware implementation results in a
milder slope for the larger values of the sparsity level k . �is is because at each iteration of the
OMP algorithm RISE restricts its search space (Line 5 of Algorithm 1) to those columns of the
dictionary matrix that have not been selected during the previous OMP epochs. As such, the last
OMP iterations incur less computational workload compared to the preliminary ones.

0 20 40 60 80 100 120

Sparsity level (k)

0

100

200

300

400

500

600

T
h

ro
u

g
h

p
u

t
(P

a
tc

h
/J

o
u

le
)

Fig. 10. RISE’s throughput per energy unit as a function of sparsity level k . In this experiment, the dictionary
size is sd = 128, the data patch size is 32 × 8, and 4 OMP kernels are used in parallel.

�e processing time in RISE framework is dominated by the OMP computation. Figure 11 shows
the total runtime of RISE as a function of input patch size. In this experiment, the sparsity level k is
set to be 50% of the data patch size and the number of samples in the dictionary is set to sd = 128.
�e reported runtime in Figure 11 is the averaged time over 1000 samples in RISE framework.

8 16 32 64 128 256

Patch size (m)

0

0.5

1

1.5

2

2.5

3

3.5

R
u

n
ti

m
e

 (
m

s
)

Fig. 11. RISE’s total processing time as a function of data patch size. In this experiment, the dictionary size
(sd) is 128 and k is set to half of the patch size at each data point.

Video data streams are o�en represented as am × np matrices, where np is the number of data
patches andm is the corresponding patch size. In streaming scenarios,m is assumed to be constant
within each application while np can be arbitrarily large as data evolves over time. As shown in
Figure 12, the total latency in RISE framework is a linear function of the number of processed input
data patches (np) which empirically collaborate the scalability of RISE HW/SW co-design approach.
In this experiment, each input data patch includes 32 × 8 pixels and the dictionary size is set to two
di�erent values of 64 and 128.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA 1:13

1 5 10 20 50

Number of data patches (n
p
)

0

50

100

150

200

250

R
u

n
ti

m
e
 (

S
e
c
)

s
d
 = 64

s
d
 = 128

10
3

Fig. 12. RISE total processing time is linear in terms of the number of processed samples. In this experiment,
the input patch size is 32 × 8 and the dictionary size (sd) takes two di�erent values of 64 and 128.

6 RISE LIBRARY
To accelerate computations and enable analyzing live video streams in a timely manner, RISE takes
advantage of a HW/SW co-design approach. It leverages the high computing power of FPGAs to
provide a high-throughput and low-power system. �e interface of RISE framework is embedded
in C++. Users can use a common C++ Integrated Development Environment (IDE) such as Visual
Studio to interact with RISE framework. RISE’s interface enables users to easily set their desired
algorithmic parameters such as morphological statistics (StatM), and pertinent thresholds (α and β)
to locate di�erent objects in the video frames. In our prototype design, we leverage PCIe to transfer
data back and forth between the FPGA and the general purpose processor hosting the FPGA. �e
PCIe interface can be replaced by any other data transfer link such as Ethernet depending on the
application. Our realization of RISE framework is available on [17].

7 PRACTICAL DESIGN EXPERIENCE
To corroborate RISE’s practicability and e�ciency, we have considered three benchmark applica-
tions:
(i) License Plate Recognition (LPR): LPR is an image processing technique used to identify, track,
and monitor vehicles by their license plates. �is technology is used in various security and tra�c
applications, such as the access control, automatic congestion charge systems, or identi�cation of
dangerous drivers [18–21].
(ii) Image reconstruction/denoising: Image reconstruction/denoising is a key pre-processing
step in deployment of various computer vision task [22]. We consider image denoising using
dynamic dictionaries as one of the potential practical design experiences of RISE framework. In
this experiment, we use a set of light-�led data acquired from [23] consisting of 2500 samples each
of which includes 1600 pixels. We then solve Eq. (2) to �nd the best representative (DV ∗) for the
input data patches. In our evaluations, a Gaussian noise is added to a random subset of input data
and the dictionary samples are selected by sequential streaming of input patches.
(iii) Principal Component Analysis (PCA): We have considered PCA analysis of hyperspectral
images as our third practical design experiment. A hyperspectral image is a sequence of images
from across the electromagnetic spectrum that is captured by hundreds of detectors embedded
on satellites to classifying di�erent materials such as soil, oil, or water included in an image.
Hyperspectral imaging has a wide range of applications in earth-based and planetary explorations,
geo-sensing, and beyond. However, the large size of hyperspectral datasets limits the applicability

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

Table 1. RISE throughput per energy unit (f rame
sec×watt) as a function of sparsity level k . In this experiment, the

dictionary size sd is 256 and data patch size is set to (32 × 8) with an overlap of (8 × 2) pixels.

Frame Size k = 8 k = 16 k = 32 k = 64 k = 128
SW [9] RISE SW [9] RISE SW [9] RISE SW [9] RISE SW [9] RISE

64 × 64 28.24 31.74 12.98 31.12 4.49 31.11 0.98 20.88 0.23 12.80
128 × 128 5.37 8.49 2.47 8.31 0.85 8.27 0.19 5.59 0.04 3.42
256 × 256 1.34 2.15 0.62 2.13 0.21 2.11 0.04 1.42 0.01 0.87

of this technique, especially for scenarios where online evaluation of a large number of samples
should be performed using limited resources. In this experience, we demonstrate how RISE can be
used for on-chip real-time analysis of hyperspectral data (e.g., [24]) using principal component
analysis. Such analysis, in turn, enables local classi�cation of these images using SoC components
of the satellites while evading the requirements to transfer large amounts of data to the earth
stations.

Table 1 details the physical performance of processing di�erent-sized images as a function of
sparsity level k . RISE streams time-series video frames and processes them sequentially. As such, the
overall runtime of our framework is a linear function of the number of processed frames per video.
RISE achieves up to 87-fold higher throughput per energy unit compared to a highly-optimized
so�ware solution for the OMP algorithm [9]. In this experiment, the dictionary size sd is 256 and
the patch size is set to (32 × 8) with an overlap of (8 × 2) pixels. We emphasize that the patch size,
number of overlap pixels, and sparsity level are all tunable parameters that can be easily changed
through RISE API to meet di�erent runtime budget or memory constraint.

8 16 32 64 128

Sparsity level (k)

10
0

10
1

10
2

T
h

ro
u

g
h

p
u

t
Im

p
ro

v
e
m

e
n

t
(

)

 64 64 frame size

128 128 frame size

256 256 frame size

Fig. 13. The throughput per energy unit (f rame
sec×watt) improvement as a function of sparsity level for di�erent

input frame sizes. The y axis is shown in logarithmic scale. The patch size, in this experiment, is set to (32× 8)
with an overlap of (8 × 2) pixels. The dictionary size sd is equal to 256.

Figure 13 summarizes the performance improvement achieved by RISE framework compared to
the platform-customized state-of-the-art OMP deployment on an embedded CPU processor [9].
�e improvement is reported in terms of the number of image frames that can be processed in each
energy unit (f rame

sec×watt). �e y axis in Figure 13 is shown in logarithmic scale. As illustrated, RISE
gains a higher improvement for larger values of sparsity level k . �is improvement is due to the
domain-speci�c optimization of our hardware-accelerated solution (e.g., tree-based adder, memory
management, etc.) as discussed in Section 4.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA 1:15

7.1 Error Analysis
Figure 14 shows the impact of data projection error threshold (ϵ) on the ultimate learning error
in each application. As shown, although higher data projection error (lower k values) can result
in meaningful performance improvements, they may not signi�cantly a�ect the learning error.
�e reported error for image reconstruction/denoising and PCA analysis is computed as ‖Y−DV

∗ ‖22
‖Y ‖2 ,

where Y is the original noiseless ground-truth data and DV ∗ is the approximated solution of Eq. (2).
�e reported error for the LPR benchmark corresponds to the localization error for license plate
detection within an image.

License plate recognition

0.01 0.05 0.1

Projection error

0

0.05

0.1

0.15

0.2

L
e

a
rn

in
g

 e
rr

o
r

(a)

Light-field image denoising

0.01 0.4 0.75

Projection error

0

0.05

0.1

0.15

L
e

a
rn

in
g

 e
rr

o
r

(b)

Principal component analysis

0.01 0.05 0.1

Projection error

0

0.5

1

1.5

2

L
e

a
rn

in
g

 e
rr

o
r

10
-3

(c)
Fig. 14. The impact of data transformation error (ϵ) on the latent learning error in (a) license plate recognition,
(b) image denoising/reconstruction, and (c) principal component analysis. In this experiment, the number
of dictionary samples sd is 256 and the sparsity level k is set to the value of sd to let the projection error
threshold ϵ determine the termination of OMP algorithm.

Figure 15 shows the output of RISE’s background subtraction unit for an example image in which
multiple cars are located near one the other in a parking lot. �e dataset is acquired from [25].
�e use of RISE framework evades the requirement to send over the raw RGB images to a control
station. �erefore, it signi�cantly reduces the communication delay and enables e�cient execution
of various object detection algorithms on a binary image. �e binary image only contains the
foreground information that has been highlighted using RISE’s adaptive background subtraction
technique.

We emphasize that RISE is a generic computing framework for adaptive background subtraction
in uncontrolled environments. It simpli�es feature extraction with custom codes, enabling users to
hand o� a lot of those decisions to the dictionary learning process. RISE throughput (up to 20f ps)
is su�cient enough to perform real-time video processing as most of the commercial surveillance
cameras (> 70%) are operating at the rate of 10f ps or less [26]. �e high throughput of RISE
framework, in turn, evades the requirement to bu�er the video streams on-chip or transfer (send)
the high volume of the original dense data to a control station.

(a) Input image frame [25] (b) Background subtraction output (c) Localized objects from image b

Fig. 15. Example output of RISE’s framework for the deployment of an LPR system. In this experiment, the
sparsity level k is set to 16, dictionary size (sd) is 256, and input patch size is 32 × 8.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

8 RELATEDWORK

Compressive Sensing Background Subtraction. Several research studies have been focused on
the use of compressive sensing and sparse-coding techniques such as the greedy OMP routine to
perform background subtraction for video data collections [1, 6]. �ese works mainly rely on the
use of a large over-complete dictionary matrix which bounds their applicability to be employed on
constrained SoC platforms. RISE overcomes this limitation by proposing an adaptive dictionary
learning approach that incurs a �xed low memory footprint while adapting to the dynamic nature
of the underlying surveillance task. �e proposed approach is computationally less expensive due
to its �xed low memory footprint and is more amenable to on-chip hardware accelerators such as
FPGAs.
Streaming Data Sketching on FPGA. A recent work [27] has suggested a streaming-based
data transformation to adaptively learn a dictionary matrix as a subsample of incoming data
measurements. �eir approach is pass-e�cient in a sense that they require processing each newly
added data only once. �e proposed framework keeps adding independent data samples to the
pertinent dictionary matrix without replacing those data samples that are not frequently in use over
the course of time. As such, once the dictionary matrix becomes full-rank it remains unchanged
regardless of new structures that might appear in the incoming data, making the system ina�entive
to the changing geometry of the data due to the varying backgrounds and ambient illuminations.
Hardware-Accelerated OMP Realization. OMP is a key computational methodology to address
compressing sensing and sparse approximation problems. A number of OMP implementations
on CPUs [9], GPUs [28–30], ASICs [31], and FPGAs [32–34] have been reported in the literature
to accelerate this computationally expensive task. �e prior work on FPGA, however, have been
mainly optimized for scenarios with a static pre-de�ned dictionary in which a limited number of
OMP iterations (e.g., up to 32) su�ces to perform the underlying data reconstruction task [32, 33, 35].
As such, these designs are not well-suited for dynamic streaming applications (e.g., background
subtraction) to handle varying content of the input signals.
Object Detection Using FPGA. Object detection algorithms can be classi�ed into three categories:
(i) background subtraction [36], (ii) supervised learning [37], and (iii) point detection schemes [38].
�e existing background subtraction implementations on FPGA mainly rely on static dictionary
matrix to represent the background content ,e.g., [4, 5]. To the best of our knowledge, RISE is the
�rst automated framework that enables real-time background subtraction and object detection in
dynamic uncontrolled se�ings with varying background content.

9 CONCLUSION
�is paper presents RISE, an automated framework for real-time background subtraction on SoC
platforms which suits intelligent video surveillance applications. RISE takes the stream of a
surveillance video as its input and learns/updates a �xed-size dictionary matrix as a subsample of
the input pixels. �e dictionary samples are carefully selected to capture the varying background
pixels in the input video. Our framework uses the greedy OMP routine to adaptively transform the
original video frames to a new set of frames in which the background pixels are eliminated based
on the learned dictionary. RISE and its accompanying API provides designers with a user-friendly
interface that can be used for rapid prototyping and deployment of di�erent video surveillance
applications using FPGA. Our evaluations demonstrate up to 87-fold higher throughput per energy
unit achieved by RISE compared to a highly-optimized so�ware solution on an embedded general
purpose processor.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA 1:17

10 ACKNOWLEDGMENTS
�is work was supported in parts by the O�ce of Naval Research grant (ONR N00014-17-1-2500)
and National Science Foundation TrustHub grant (1649423).

REFERENCES
[1] V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for

background subtraction,” pp. 155–168, 2008.
[2] D. Schreiber and M. Rauter, “GPU-based non-parametric background subtraction for a practical surveillance system,”

pp. 870–877, 2009.
[3] F. Porikli, “Achieving real-time object detection and tracking under extreme conditions,” Journal of Real-Time Image

Processing, vol. 1, no. 1, pp. 33–40, 2006.
[4] J. Oliveira, A. Printes, R. Freire, E. Melcher, and I. S. Silva, “FPGA architecture for static background subtraction in real

time,” pp. 26–31, 2006.
[5] C. Sanchez-Ferreira, J. Mori, and C. Llanos, “Background subtraction algorithm for moving object detection in FPGA,”

pp. 1–6, 2012.
[6] C. Lu, J. Shi, and J. Jia, “Online robust dictionary learning,” pp. 415–422, 2013.
[7] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE signal processing magazine, vol. 25,

no. 2, pp. 21–30, 2008.
[8] J. Tropp, A. C. Gilbert et al., “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE

Transactions on Information �eory, vol. 53, no. 12, pp. 4655–4666, 2007.
[9] A. Mirhoseini, E. Dyer, E. Songhori, R. Baraniuk, and F. Koushanfar, “Rankmap: A platform-aware framework for

distributed learning from dense datasets,” arXiv preprint arXiv:1503.08169, 2015.
[10] A. Mirhoseini, B. D. Rouhani, E. M. Songhori, and F. Koushanfar, “Perform-ml: Performance optimized machine

learning by platform and content aware customization,” p. 20, 2016.
[11] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pa�ern recognition, vol. 33, no. 2, pp. 225–236,

2000.
[12] M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA implementation of matrix inversion using qrd-rls algorithm,” 2005.
[13] Å. Björck, “Solving linear least squares problems by gram-schmidt orthogonalization,” BIT Numerical Mathematics,

vol. 7, no. 1, pp. 1–21, 1967.
[14] W. Ho�mann, “Iterative algorithms for gram-schmidt orthogonalization,” Computing, vol. 41, no. 4, pp. 335–348, 1989.
[15] XILLYBUS, “h�p://xillybus.com/,” 2017.
[16] XPower, 2012. [Online]. Available: h�p://www.xilinx.com/support/documentation/user guides/ug440.pdf
[17] h�ps://github.com/Bitadr/RISE, “Rise source codes.”
[18] Y. Wen, Y. Lu, J. Yan, Z. Zhou, K. M. Von Deneen, and P. Shi, “An algorithm for license plate recognition applied to

intelligent transportation system,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 3, pp. 830–845,
2011.

[19] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos, and E. Kayafas, “A license plate-recognition algorithm
for intelligent transportation system applications,” Intelligent Transportation Systems, IEEE Transactions on, vol. 7, no. 3,
pp. 377–392, 2006.

[20] C. Arth, H. Bischof, and C. Leistner, “Tricam-an embedded platform for remote tra�c surveillance,” pp. 125–125, 2006.
[21] C.-N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos, and E. Kayafas, “License plate recognition

from still images and video sequences: A survey,” IEEE Transactions on intelligent transportation systems, vol. 9, no. 3,
pp. 377–391, 2008.

[22] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE
Transactions on Image processing, vol. 15, no. 12, pp. 3736–3745, 2006.

[23] S. D. A. LightField, 2014. [Online]. Available: h�p://light�eld.stanford.edu/
[24] H. R. S. D. Salina, 2014. [Online]. Available: h�p://www.ehu.es/ccwintco/index.php/Hyperspectral Remote Sensing

Scenes
[25] h�p://www.medialab.ntua.gr/research/LPRdatabase/Still images/di�cult cases/, “LPR database,” 2017.
[26] h�p://ipvm.com/reports/, “Video surveillance frame rate,” 2016.
[27] B. Rouhani, E. Songhori, A. Mirhoseini, and F. Koushanfar, “Ssketch: An automated framework for streaming sketch-

based analysis of big data on FPGA,” 23rd International Symposium on Field-Programmable Custom Computing Machines
conference (FCCM), 2015.

[28] M. Andrecut, “Fast GPU implementation of sparse signal recovery from random projections,” arXiv preprint
arXiv:0809.1833, 2008.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://xillybus.com/
http://www.xilinx.com/support/documentation/user_guides/ug440.pdf
https://github.com/Bitadr/RISE
http://lightfield.stanford.edu/
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.medialab.ntua.gr/research/LPRdatabase/Still_images/difficult_cases/
http://ipvm.com/reports/

1:18 Bita Darvish Rouhani, Azalia Mirhoseini, and Farinaz Koushanfar

[29] J. D. Blanchard and J. Tanner, “GPU accelerated greedy algorithms for compressed sensing,” Mathematical Programming
Computation, vol. 5, no. 3, pp. 267–304, 2013.

[30] Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU implementation of orthogonal matching pursuit for compressive sensing,”
pp. 1044–1047, 2011.

[31] P. Maechler, P. Greisen, N. Felber, and A. Burg, “Matching pursuit: Evaluation and implementatio for LTE channel
estimation,” pp. 589–592, 2010.

[32] A. Septimus and R. Steinberg, “Compressive sampling hardware reconstruction,” pp. 3316–3319, 2010.
[33] L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, “High-speed compressed sensing reconstruction on FPGA

using OMP and AMP,” pp. 53–56, 2012.
[34] J. L. Stanislaus and T. Mohsenin, “Low-complexity FPGA implementation of compressive sensing reconstruction,” pp.

671–675, 2013.
[35] A. M. Kulkarni, H. Homayoun, and T. Mohsenin, “A parallel and recon�gurable architecture for e�cient OMP

compressive sensing reconstruction,” pp. 299–304, 2014.
[36] T. Hosaka, T. Kobayashi, and N. Otsu, “Object detection using background subtraction and foreground motion

estimation,” IPSJ Transactions on Computer Vision and Applications, vol. 3, pp. 9–20, 2011.
[37] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using pa�erns of motion and appearance,” International

Journal of Computer Vision, vol. 63, no. 2, pp. 153–161, 2005.
[38] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE transactions on pa�ern analysis

and machine intelligence, vol. 27, no. 10, pp. 1615–1630, 2005.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Streaming Data Analysis
	2.2 Orthogonal Matching Pursuit

	3 RISE Framework
	3.1 Adaptive Dictionary Learning
	3.2 Background Subtraction
	3.3 Image Post-Processing

	4 Hardware Implementation
	5 Hardware Setting and Results
	6 RISE Library
	7 Practical Design Experience
	7.1 Error Analysis

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

