
AHEC: End-to-end Compiler Framework for
Privacy-preserving Machine Learning Acceleration

Huili Chen
UC San Diego
San Diego, USA

huc044@ucsd.edu

Rosario Cammarota
Intel Lab

San Diego, USA
rosario.cammarota@intel.com

Felipe Valencia, Francesco Regazzoni
ALaRI

Lugano, Switzerland
valena@usi.ch, regazzoni@alari.ch

Farinaz Koushanfar
UC San Diego
San Diego, USA

farinaz@ucsd.edu

Abstract—Privacy-preserving machine learning (PPML) is
driven by the emerging adoption of Machine Learning as a
Service (MLaaS). In a typical MLaaS system, the end-user
sends his personal data to the service provider and receives
the corresponding prediction output. However, such interaction
raises severe privacy concerns about both the user’s proprietary
data and the server’s ML model. PPML integrates cryptographic
primitives such as Multi-Party Computation (MPC) and/or Ho-
momorphic Encryption (HE) into ML services to resolve the
privacy issue. However, existing PPML solutions have not been
widely deployed in practice since: (i) Privacy protection comes
at the cost of additional computation and/or communication
overhead; (ii) Adapting PPML to different front-end frameworks
and back-end hardware incurs prohibitive engineering cost.

We propose AHEC, the first automated, end-to-end HE com-
piler for efficient PPML inference. Leveraging the capability of
Domain Specific Languages (DSLs), AHEC enables automated
generation and optimization of HE kernels across diverse types of
hardware platforms and ML frameworks. We perform extensive
experiments to investigate the performance of AHEC from differ-
ent abstraction levels: HE operations, HE-based ML kernels, and
neural network layers. Empirical results corroborate that AHEC
achieves superior runtime reduction compared to the state-of-the-
art solutions built from static HE libraries.

I. INTRODUCTION
Machine Learning (ML) models are empowering the

fourth industrial revolution due to their unprecedented per-
formance. However, training highly accurate ML models is
both time and resource consuming, thus is intractable for
resource-constrained customers. Machine Learning as a Ser-
vice (MLaaS) is a popular solution of ML deployment where
the end-user sends his personal data to the ML service provider
and receives the final output. The mechanism of MLaaS raises
fundamental data privacy concerns since: the user’s data is
sensitive in the healthcare domain and the user has no control
over the usage of his data delivered to the server. This suggests
that the ML service provider is required to be a trusted entity,
limiting MLaaS’s applicability.

To address the privacy concerns in MLaaS, Privacy-
Preserving Machine Learning (PPML) has been proposed as
a promising solution. PPML techniques can be categorized
into three types based on the underlying primitives: Homo-
morphic Encryption (HE), Yao’s Garbled Circuit (GC), and
hybrid protocols. Note that HE schemes is non-interactive and
computation-bounded, while GC solutions requires multiple
rounds of interaction and is communication-bounded. Cryp-

toNets [1] demonstrates the first HE-based ML inference that
performs computation on encrypted data. DeepSecure [2] is an
innovative framework that provides a GC-optimized realization
of diverse components used in MLaaS. Gazelle [3] presents a
hybrid solution which combines HE and GC to achieve a good
balance between computation and communication overhead.

In this paper, we focus on accelerating HE-based PPML
scheme. We identify the following constraints of existing HE-
based solutions: (i) The implementation is inflexible and bound
to three factors: the ML framework (PyTorch, TensorFlow,
MXNet, etc.), the HE library, and the hardware platform. This
suggests that the engineering overhead of developing a PPML
solution is proportional with respect to the number of front-end
framework, the HE library, and the hardware back-ends. (ii)
The generation of HE kernels is not automated nor optimized.
In particular, current techniques such as CryptoNet [1] and
nGraph-HE [4], [5] mainly run on CPUs because of their
dependency on underlying HE libraries. Directly mapping HE
computation to a new hardware requires manually writing
kernels for the target platform and the specific HE library.
This means that the direct mapping approach is not flexible
nor scalable.

There are three possible approaches to realize a HE-based
PPML system: (i) Direct implementation of the HE library
on the target hardware. This method incurs high engineering
cost and is not flexible; (ii) Extending the Instruction Set
Architecture (ISA) of the hardware to support HE opera-
tions. Such an approach has better flexibility than the first
one, but does not automate/optimize HE kernel generation
across different architectures; (iii) End-to-end compilation-
based technique. The computation flow of the HE-based ML
model inference is described in the domain-specific language
(DSL). The program is then compiled and optimized given the
hardware knowledge. The third approach features the highest
degree of design automation and optimization.

This paper aims to develop an end-to-end framework to
enable HE-based PPML inference, with various ML front-
end frameworks and diverse hardware platforms. To this end,
we adapt the compiler-based approach and present AHEC
as a holistic solution. By introducing AHEC, we make the
following explicit contributions:

• Presenting the first end-to-end HE framework: AHEC
leverages domain specific language to describe the ML



workload, thus is compatible with arbitrary ML front-end
framework and various hardware. Such an agnostic prop-
erty facilitates the integration of AHEC within concurrent
MLaaS paradigms with minimal engineering cost.

• Enabling automated kernel generation and optimiza-
tion: AHEC deploys a DSL to describe the computation
flow of the ML model, which can be lowered and
optimized to the hardware using hardware abstraction
layer automatically.

• Leveraging Algorithm/Software/Hardware co-design:
To minimize the computation latency, we explore the
intrinsic data independence within the HE-integrated
ML workloads and optimize the required kernels while
conforming to the hardware constraints.

• Performing extensive performance evaluations and
comparison: We investigate AHEC’s performance of
various ML-related workloads. Empirical results show
that AHEC outperforms the standard implementation by
a large margin in terms of latency.

II. PRELIMINARIES
A. Homomorphic Encryption

Homomorphic encryption is a promising solution to PPML
since this primitive allows to perform computation (e.g., ML
Inference), on the encrypted data without decrypting it [6].
The data used in HE evaluation is represented as element on a
ring R. Note that HE supports two types of computation, i.e.,
homomorphic addition (denoted by ⊕) and homomorphic mul-
tiplication (denoted by ⊗). These two properties are described
in the following equations:

E(x1)⊕ E(x2) = E(x1 + x2), (1)
E(x1)⊗ E(x2) = E(x1 × x2). (2)

In Eq. (1) and (2) above, E denotes the homomorphic
encryption function. The two operators + and × on the
right-hand side are regular arithmetic operators. Note that
HE primitives can be used to compute arbitrary polynomial
functions given the properties of homomorphic addition and
multiplication. Considering the PPML paradigm, HE-based
protocols allow the user to send the encrypted data to the
service provider and receives the corresponding encrypted
output. In this way, we can ensure that the user’s data, the
final prediction output, and the server’s ML model remain
confidential during the computation task. ‘Level’ is another key
concept in the standard implementation of HE schemes [7].
Particularly, the two operands of HE addition and multiplica-
tion shall have the same level in the modulus switching chain.
If their level values are not consistent, the operand with the
higher level needs to be transformed into the target lower level.

We focus on the levelled, approximate HE scheme in this
paper. A leveled HE scheme [8] supports HE evaluation
within the pre-defined depth. Levelled homomorphic encryp-
tion (LHE) can be augmented with bootstrapping to achieve
full homomorphic encryption (FHE) [9]. An Approximate
HE scheme (e.g., CKKS [10]) allows HE computation with
real-valued inputs while the decryption is only approximate.

Since ML models are inherently tolerant to the perturbation
of intermediate results (this property has been explored by
model quantization and pruning), approximate HE is a suitable
candidate for PPML.
B. Compilers for ML Workload

There has been a line of research on developing compilers
to automate and optimize ML applications. TVM [11] is
an end-to-end compiler stack for deep learning systems. It
explores graph-level and operator-level optimization across
various hardware back-ends. In particular, TVM introduces
an innovative tensor expression language that can be used to
build operators for the target ML workload. To explore optimal
code in the large search space, TVM provisions program
transformation primitives that generate different variants of
the program with diverse optimizations. nGraph [12] is an
open-source compiler stack from Intel that aims to accelerate
the deployment of ML workloads developed with popular
programming frameworks. nGraph optimizes the execution of
the ML model by describing the task as a computation graph
and performing various graph-level transformations.
C. Privacy-preserving Machine Learning

We categorize existing works on PPML into three types
based on the underlying cryptography primitives.

HE-based. CryptoNets [1] takes the first step to integrate HE
primitive into ML inference. Since HE only supports addition
and multiplication operations, CryptoNets approximates the
non-linear activation function in the given neural network
(NN) with a quadratic function. As a result, the accuracy of
the estimated model is lower than the original one. nGraph-
HE [5] extends nGraph with HE primitives by treating HE
as an additional hardware target. CHET [13] is an optimizing
compiler for homomorphic neural network inference. It intro-
duces Homomorphic Instruction Set Architecture (HISA) as
the intermediate representation to construct the data flow.

GC-based. DeepSecure [2] is a scalable and provably secure
framework based on Yao’s GC protocol. To reduce the com-
putation and communication overhead, DeepSecure proposes
both data and neural network transformation as pre-processing
steps as well as various GC optimization techniques.

Hybrid Protocols. Gazelle [3] combines GC and Packed
Additively Homomorphic Encryption (PAHE) for secure NN
evaluation. The linear layers are computed via optimized
PAHE kernels and the non-linear layers are processed us-
ing GC. Chemaleon is a hybrid framework that uses GC,
Goldreich-Micali-Wigderson (GMW), and additive secret shar-
ing protocol for secure two-party computation.

III. AHEC FRAMEWORK

The system overview of AHEC is shown in Figure 1.
AHEC is a holistic, end-to-end framework for PPML as a
service with the goal of bridging the gap between diverse
ML front-ends (e.g., TensorFlow, PyTorch, Caffe) and various
hardware back-ends (e.g., CPUs, and GPUs, emerging NN
accelerators). AHEC is the first framework that takes an
Algorithm/Software/Hardware co-design approach to achieve



Fig. 1: Overview of AHEC framework. AHEC closes the gap between front-end programming frameworks and hardware
back-ends. It uses a new DSL to integrate HE primitives and characterizes the target device with hardware abstraction layer.

automation and optimization of kernel generation for HE-
based PPML inference across different hardware platforms.

A. HE-based PPML Protocol

Figure 2 illustrates the global flow of our HE-based secure
evaluation protocol. To enable PPML service, AHEC consists
of the following four steps:
(I) Key Generation. Given the pre-defined security level,
AHEC first generates the public and secret keys that are used
in later operations. The user and the MLaaS provider holds
the secret key and the public key, respectively.
(II) Data Encoding and Encryption. After key generation,
the user first encodes the raw data into a polynomial ring,
which is the corresponding plaintext. The plaintext is then
encrypted with the public key and the resulting ciphertext is
sent to the ML service provider.
(III) HE Evaluation of ML model. The server performs
a series of HE operations on the ciphertext data received
from the end user. In particular, linear layers including fully
connected (FC) layers, convolutional (conv) layers, and mean
pooling layers are implemented as the combination of HE
addition and HE multiplication with the public evaluation
keys. AHEC handles non-linear activation functions with two
alternative approaches: (i) Approximating with polynomial
functions (similar to CHET [13] and CryptoNets [1]); (ii)
Delegating the computation to the end user. More specifically,
the intermediate ciphertext is sent back from the server to
the client, decrypted, used to perform non-linear computation
in the plaintext domain. The updated ciphertext is then re-
encrypted and sent to the server to proceed ML inference.
(IV) Output Decryption and Decoding. The server obtains
the final encrypted result and sends it to the end user. The user
decrypts the ciphertext using the secret key and decodes the
plaintext to the desired (raw) output.

B. Domain Specific Language for HE

A domain specific language is a specialized computer pro-
gramming language that is used to express statements in a par-
ticular problem space. Compared to general-purpose languages
that are applicable in various domains, DSL generates program
codes with superior performance in the domain it targets at.
AHEC aims to automate and optimize code generation of HE
kernels for the target hardware. As such, DSL is a suitable
candidate for our objective.

AHEC extends the Tile DSL in PlaidML [14] to support
efficient HE-based ML inference. In particular, AHEC de-
scribes HE operators (including HE addition, HE multipli-
cation, and rescaling) using Tile language to fully leverage
its optimization potential and hardware awareness. Let us
first take a look at PlaidML framework. PlaidML [14] is a
tensor compiler that leverages domain specific language and
polyhedral optimization to accelerate deep learning workloads
across different hardware. Tile language is amenable to gen-
erate efficient kernels since it has an intriguing feature called
‘contraction’. Particularly, Tile represents the index space of a
tensor operation by specifying bounding polyhedron instead of
using nested loops. Take matrix multiplication as an example,
the formula of computing C = AB is shown in Eq. (3).

C[i, j] =
∑
k

(A[i, k] ·B[k, j]), (3)

In Tile, the same operation is expressed as Eq. (4). Here, M
is the first dimension of matrix A and N is the last dimension
of matrix B. The contraction operator ‘= +’ means that when
multiple values are computed for the same output location,
they are added up.

C[i, j : M,N ] = +(A[i, k] ∗B[k, j]), (4)
The main advantage of writing the computation as in Eq. (4) is
that the element-wise multiplication can be done in parallel,
thus reducing the runtime of the operation. We make a key
observation that Tile DSL is particularly suitable for HE
workloads since the operation between two ciphertexts and/or
the operation between one ciphertext and one plaintext mainly
consists of element-wise computation (e.g., multiplication,
modulus arithmetic). As such, AHEC leverages the contrac-
tion property of Tile language to accelerate HE-based neural
network inference.
C. Hardware-aware Optimization

AHEC is developed with Algorithm/Software/Hardware co-
design principle. Besides the domain specific language that
facilitates kernel generation (Sec. III-B), AHEC integrates
the hardware knowledge into the design loop by explicitly
modeling the target device. In particular, AHEC characterizes
the target hardware with a set of constraints (e.g., number of
threads, number of registers, memory architecture) that are
used in the cost model-based, hardware-aware optimization.
Using pre-defined fixed passes, AHEC’s optimization is locally
optimal and configuration-driven.



Fig. 2: Privacy-preserving inference protocol of AHEC framework. HE encryption and decryption is locally performed by the
end user. AHEC targets to optimize the HE evaluation step performed by the service provider.

Fig. 3: Workflow of AHEC end-to-end HE compiler framework.

We deploy a diverse set of optimization techniques to reduce
the latency of the HE-based PPML inference:

• Vectorization. AHEC rewrites loops such that the same
operation is performed on multiple vector elements si-
multaneously while considering the memory constraints.

• Tiling. For each index, we use hill climb and a cost model
to maximize the reuse while ensuring that the operands
can fit into the cache and registers.

• Data Layout Selection. AHEC transforms ciphertext and
plaintext data layouts into hardware-friendly forms. We
leverage the domain-specific knowledge of HE and pre-
specify the preferred data layout for each operator. Layout
transformation is performed to match the

• Threading. AHEC unrolls inner loops into hardware
threads given the knowledge of hardware constraints.

Leveraging Algorithm /Software /Hardware co-design, AHEC
yields superior advantage over the existing PPML techniques
that are oblivious of the underlying hardware back-ends.
D. AHEC Workflow

The overall workflow of AHEC is shown in Figure 3,
consisting of three main stages. AHEC requires two types of
inputs: the program description of the ML model inference
written in Tile language; and the hardware constraints of the
target device. The output of AHEC is the optimized executable
(kernels) for the pertinent hardware. We detail each step of
AHEC as follows:
(Stage I) Describing ML workload in Tile DSL. In the first
stage, AHEC incorporates HE primitives into the inference
data flow of the ML model and describes the program in
Tile language. Note that linear layers (e.g., fully connected
layer, convolutional layer, average pooling layer) and quadratic
activation layers in the neural network consist of addition and
multiplication operations that are inherently supported by HE
primitives. As such, AHEC implements the homomorphic vari-
ant of these layers using HE addition and HE multiplication
as the basic building blocks. The Tile code is sent to the Tile
compiler, which flattens the contraction in the Tile program
and generates the corresponding kernel description.

(Stage II) Kernel Optimization and Code Generation. In the
second stage, AHEC deploys the Tile optimizer to rewrite the
compiled kernel from Stage I and generate the functionality-
equivalent kernels with better efficiency. In particular, the
Tile optimizer simulates the execution of kernel on the target
device with varying tile sizes, thus facilitating the automated
conversion of the flat contractions into performant kernels.
AHEC’s optimizer generates kernel information objects that
describes the input-output relation for each kernel using the
semantic tree (‘semtree’) as the intermediate representation.
The semantic trees of HE kernels are then transformed to
produce equivalent output via more efficient code.
(Stage III) Runtime HAL-based Execution of Tile Code. In
the third stage, the hardware abstraction layer (HAL) of the tar-
get device is used as an interface to generate machine code and
schedule the execution of HE operations. AHEC explores the
data layout of ciphertexts and plaintexts, tensorizes their rep-
resentations, and pipelining the computation by tiling nested
loops using the polyhedral optimization framework [15]. Note
that our co-optimization approach also explores the memory
hierarchy of the underlying hardware (Sec. III-C).
E. HE Evaluation Supports

AHEC is general and agnostic to the choice of HE scheme.
We select CKKS scheme [10] as the HE primitive since it
features fast HE arithmetic and supports fixed-point numbers
as well as full RNS optimizations. AHEC identifies the key
building blocks of HE evaluation in the CKKS scheme and
provisions automated and optimized implementation of these
operators for the target device using domain specific lan-
guage and Algorithm/Software/Hardware co-design. We use
the open-sourced HE library named SEAL [7] as the baseline
implementation and explain how AHEC improves over SEAL.

Let us consider three integers N, k, q (all larger than 1)
where N = 2k, t is a prime number, and a ring R =
Z[X]/(XN +1). The ciphertext space and the plaintext space
are denoted as Rq = R/qR and Rt = R/tR, respectively.
Given two ciphertexts c1 = (c0,1, c1,1) and c2 = (c0,2, c1,2),
AHEC supports the following three types of HE operations:



HE Addition. HE addition is performed element-wise:
cout = HE.Add (c1, c2)

= (c0,1 + c0,2, c1,1 + c1,2)

Note that each component ci,j is represented as a polynomial
of degree N . AHEC’s DSL vectorizes the above element-wise
addition to reduce the runtime overhead.

HE Multiplication. Homomorphic multiplication between
two ciphertexts c1 and c2 are computed as follows:

cout = HE.Mult (c1, c2)
= (c0,1c0,2, c0,1c1,2 + c1,1c0,2, c1,1c1,2).

Similar to the analysis of HE addition, each component of
cout is computed element-wise between the corresponding
polynomials, thus can be tiled by AHEC’s optimization. Note
that SEAL library implements the HE addition and multi-
plication kernels using nested for loops, thus incurring high
computation latency. AHEC deploys various hardware-aware
optimizations (Sec. III-C) to ensure minimize the runtime of
HE-based inference.

Rescaling. To support fixed-point data input, CKKS
schemes need to scale the data with a proper factor. However,
the scaling factor of the output ciphertext grows larger than
the one of the input ciphertexts after HE multiplication. As
such, rescaling is indispensable for CKKS schemes to control
the precision of HE evaluation. To further reduce the latency
of rescaling, AHEC implements Number Theoretic Transform
(NTT) and its inverse transformation in the rescaling operation
using the non-inplace version. This allows AHEC to tile the
computationally expensive NTT operations.

IV. EVALUATIONS
A. Experimental Setup

AHEC is a generic privacy-preserving inference framework
that is agnostic to the front-end ML programming as well as
the underlying hardware back-ends. To investigate the perfor-
mance of AHEC, we test on two types of hardware platforms:
CPU and GPU. Particularly, we use Intel(R) Xeon(R) Platinum
8180 CPU @ 2.50GHz as our CPU device and Nvidia Titan Xp
with 11.91 GiB memory as the GPU platform. To emulate the
MLaaS paradigm, we assume the data residing on the client’s
side is encrypted as ciphertext and the weight parameters resid-
ing on the service provider’s side is encoded as plaintext. This
assumption is consistent with the setting of CrypoNets [1].
All experiments are run with single core and single thread.
To demonstrate the performance improvement of AHEC, we
use SEAL library [7] as the baseline standard implementation.
We choose the security parameters recommended by SEAL to
ensure 128-bit security. The coefficient count (which is also
the polynomial degree) is set to N = 8192. We repeat the
measurement of each benchmark with different data for 1000
runs and report the average runtime for comparison.

B. Results
We investigate the performance of AHEC on various bench-

marks. In particular, we characterize the workloads from
three levels: HE operation-level, ML kernel-level, and neural

network layers. We detail each type of benchmarks in the
following sections.

1) HE Operation-Level: Figure 4 visualizes the relative
speedup of AHEC-CPU compared to SEAL baseline on the
HE-operator level. The three operators on the horizontal
direction denotes HE addition between a ciphertext and a
plaintext (Add CP ), HE addition between two ciphertexts
(Add CC), HE multiplication between a ciphertext and a
plaintext (Mult CP ). One can see from the comparison that
AHEC demonstrates superior latency reduction on basic HE
operators compared to SEAL baseline.

Fig. 4: HE Operation-level runtime comparison on CPU.
2) ML Kernel-level: Figure 5 shows the kernel-level run-

time performance of AHEC. We evaluated three types of
kernels that are typical in ML applications: dot product
(DotProd), general matrix multiplication (GEMM), and con-
volution (Conv). To corroborate the scalability of AHEC,
we vary the dimensionality of the inputs and measure the
corresponding runtime. More specifically, we test four vector
dimensions for DotProd: 32, 64, 128, 256. For GEMM, we
evaluate four input sizes: [32,32] with [32,16], [64,64] with
[64,16], [128,128] with [128,16], and [256,256] with [256,16].
As for Conv, we fix the filter size to [3, 3] and set the stride
to 1. No input padding is used here. The input to Conv is
a 2D matrix with size [28,28], [32,32], [64,64], or [256,256].
The above specified four input sizes are denoted with different
colors respectively in Figure 5.

Figure 5a illustrates the relative speedup of AHEC running
on CPU compared to the SEAL baseline. We take the natural
logarithm (ln) of the speedup for better visualization. It
can be seen that AHEC greatly outperforms SEAL in terms
of runtime overhead. This is because AHEC leverages the
Algorithm/Software/Hardware co-design principle to optimize
the execution of the Tile kernels on the pertinent device. The
Tile DSL enables polyhedral optimization that fully explores
data independence and achieves computation parallelism. Fur-
thermore, we can see that AHEC scales approximately linearly
on DotProd and GEMM kernels, while its scalability degrades
on Conv operations with large inputs.

To study the impact of hardware architecture on AHEC’s
performance, we run the same benchmarks on both CPU and
GPU platform. Figure 5b shows the relative speedup of AHEC-
GPU with respect to AHEC-CPU on HE kernels with different
data sizes. One can see that the architecture of GPUs is not uni-
formly better than CPU for HE operations. We emphasize that,
as an end-to-end framework, AHEC succeeds in providing a
portable HE solution on GPUs without prohibitive manual re-
design efforts. It will be interesting as the future work to study



(a)

(b)
Fig. 5: Runtime comparison between AHEC-CPU/GPU and
SEAL with different input sizes (denoted by different colors).
how to determine the optimal hardware component for running
a specific HE kernel in a heterogeneous computing system.

3) Neural Network Layers: Table I shows the topology of
the neural network we evaluate in our experiment. Compared
to CryptoNets [1], AHEC achieves 750x, 3.9x, 6350x, 1.2x,
and 400x runtime speedup on each of these five layers,
respectively. Note that AHEC also automatically performs the
rescaling operation following each layer outlined in the table
to control the output precision.

TABLE I: Architecture of the evaluated neural network.
Layer Description

Conv1 Kernel size 5x5, stride is (2, 2),
and number of output channels is 5

Square1 Element-wise squaring of the input tensor
Pooling Weighted sum layer with kernel size 3x3
Square2 Element-wise squaring of the input tensor

FC (Output) Weighted sum that generates 10 outputs
for each class

C. Discussion
We discuss the architectural impact of the hardware on

AHEC’s performance here. Comparing the relative runtime of
AHEC on CPU and GPU shown in Figure 5b, We can see that
these two architectures are suitable at different tasks. GPUs are
believed to be more powerful than CPUs due to their capability
of processing massive streams of data in parallel with multiple
cores, while an individual GPU core runs slower than a CPU
core. In our experiments, we evaluate the runtime using single-
core and single-thread. As such, AHEC runs faster on GPU
particularly on GEMM kernels, since in this case the amount
of data being processed in parallel is much larger than the
ones in DotProd and Conv kernels. It is worth noticing that
the hardware back-end is desired to feature sufficient memory
and support 64-bit unsigned integer data type to fully explore
the optimization capability of AHEC for realizing the CKKS
scheme. AHEC can be extended with efficient bootstrapping

techniques to achieve fully homomorphic encryption. This will
allow AHEC to execute inference on deep neural networks
with many layers.

V. CONCLUSION

We present AHEC as the first end-to-end homomorphic
encryption compiler framework for privacy-preserving ma-
chine learning. AHEC is agnostic to both the front-end
machine learning programming frameworks as well as vari-
ous hardware back-ends, provisioning a holistic HE solution
for different application scenarios. The core of AHEC is
the Algorithm/Software/Hardware co-design principle. More
specifically, we leverage Tile domain specific language to
describe the computation flow of the ML model and in-
corporates the hardware constraints as an abstraction layer
while automatically generating optimized kernels. We perform
extensive experiments to investigate the performance of AHEC
on HE operators and common ML kernels and compare it
with the standard HE implementation. Empirical results show
that AHEC reduces the inference latency by a large margin
compared to the baseline implementation and features superior
scalability when the data size becomes large.

REFERENCES

[1] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International Conference on
Machine Learning, 2016, pp. 201–210.

[2] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” in Proceedings of the 55th Annual
Design Automation Conference. ACM, 2018, p. 2.

[3] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A
low latency framework for secure neural network inference,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
1651–1669.

[4] F. Boemer, Y. Lao, and C. Wierzynski, “ngraph-he: A graph compiler
for deep learning on homomorphically encrypted data,” arXiv preprint
arXiv:1810.10121, 2018.

[5] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “ngraph-
he2: A high-throughput framework for neural network inference on
encrypted data,” arXiv preprint arXiv:1908.04172, 2019.

[6] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.”
in Stoc, vol. 9, no. 2009, 2009, pp. 169–178.

[7] Microsoft, “Microsoft seal library.” https://github.com/microsoft/SEAL,
2019.

[8] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter,
and M. Strand, “A guide to fully homomorphic encryption.” IACR
Cryptology ePrint Archive, vol. 2015, p. 1192, 2015.

[9] C. Gentry, S. Halevi, and N. P. Smart, “Better bootstrapping in fully
homomorphic encryption,” in International Workshop on Public Key
Cryptography. Springer, 2012, pp. 1–16.

[10] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns variant
of approximate homomorphic encryption,” in International Conference
on Selected Areas in Cryptography. Springer, 2018, pp. 347–368.

[11] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: end-to-end opti-
mization stack for deep learning,” arXiv preprint arXiv:1802.04799, pp.
1–15, 2018.

[12] I. AI, “ngraph - open source c++ library, compiler and runtime for deep
learning .” https://github.com/NervanaSystems/ngraph, 2019.

[13] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “Chet: an optimizing compiler for
fully-homomorphic neural-network inferencing,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2019, pp. 142–156.

[14] PlaidML, “Plaidml: A platform for making deep learning work every-
where.” https://github.com/plaidml/plaidml, 2019.

[15] “Polyhedral compilation,” https://polyhedral.info, accessed: 2019-09-16.


