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ABSTRACT 

Error modeling is a procedure of quantitatively characterizing 

the likelihood that a particular value of error is associated with 

a particular measured value. Error modeling directly affects 

accuracy and effectiveness of many tasks in sensor-based 

systems including calibration, sensor fusion and power 

management. We developed a system of statistical techniques 

that calculate the likelihood that error of a particular value is 

part of a measurement.  The error modeling approach has three 

steps: (i) data set partitioning; (ii) constructing the error density 

model; and (iii) learn-and-test and resubstitution-based 

procedures for validating the models. The data set partitioning 

identifies a specified percentage of measurements that have the 

highest negative discrepancy between sensor and standard 

measurements. The partitioning step employs data fitting 

models to identify compact curves that represent the partitioned 

subsets. The error density modeling uses the compact curves to 

build the probability density function (PDF) of the error. For 

validation purposes, we use a resubstitution-based paradigm. 

1. INTRODUCTION 

We developed a new approach for derivation of error models. 

While the standard procedure is to use error models to enable 

calibration, in a variant of our approach, we use calibration-

based techniques to obtain error models. We demonstrate our 

procedure on a set of measurement pairs from uncalibrated light 

sensors vs. an exact light meter sensor at the same position. All 

of the error model-building techniques are demonstrated on a set 

of light sensors. Neverthless, the techniques are general and can 

be easily retargeted to sensors of different modalities. 

Calibration is the process of mapping the individual sensor 

response to a desired standardized response. In general, 

individual sensor calibration (micro-calibration) is a type-

specific task, where the type of the sensor involved and the 

accuracy requirements change the calibration problem. In an ad-

hoc sensor networks consisting of a set of inexpensive, energy 

and storage constrained sensor nodes, the calibration method 

should satisfy the application constraints before optimizing for 

the accuracy of the calibration map. Most calibration methods in 

sensor networks have addressed calibration of the devices used 

in location discovery. Whitehouse and Culler [7] propose 

iterative use of linear least square regression to fit the 

experimental data from the location sensors for individual 

sensors and for a system of location discovery sensors. 

Bychkovskiy et al [1] attempt to calibrate the sensors locally. 

Their assumption is that physically close sensors have high 

temporal correlations. They start by calibrating pairs of close 

sensors and then formulate a global problem to find the best way 

to satisfy all pair-wise relationships simultaneously. Ihler and 

Fisher [4] use graphical models to formulate the self-calibration 

model assuming that the calibration information is spatially 

local. Aside from calibration, error models are also useful in a 

number of tasks in sensor networks such as sensor fusion [6]. 

2. PRELIMINARIES 

Our experiment concerns two different light sensors. The first 

sensor is a photovoltaic light detector. A photovoltaic light 

detector is a miniature silicon solar cell that converts light 

impulses directly into electrical charges that can easily be 

amplified, using a transistor, to activate a control mechanism. 

Unlike a conventional photo diode or transistor, it generates its 

own power and does not require any external bias. The silicon 

cell is mounted on a 0.31" x 0.23" x 0.07" thick plastic carrier 

and has pc leads on 0.2" centers. The second sensor is a light 

meter. The light meter has a resistance of 20W in the light and 

5kW in the dark. It is mounted on a 1" x 0.85" x 0.07" thick 

plastic encapsulated ceramic package with 0.57" long leads on 

0.75" centers. The accuracy of the light meter is within +/- 1%. 

The photovoltaic light sensor is widely used in a number of 

wireless networked systems, especially in sensor platforms that 

are based on MICA-I and MICA-II nodes [8].  

We positioned the photovoltaic sensor and the meter sensor in 

close proximity to each other and with the same angle in a dark 

room. We positioned a point light source at a far distance from 

the sensors. This point light source was moved at slow speed in 

an arbitrary direction. Since the distance from the source was 

changed during this movement, both light sensors were 

recording a pairs of measurements of different intensities. We 

conducted these measurements on six photovoltaic sensors. 

Figure 1 shows the overall flow of our approach. The input to 

our error modeling system is a set of measurements that consist 

of pairs of data recorded by the photovoltaic sensor and the light 

meter at identical time instances. The primary goal during this 

step is to obtain pairs of measurements that cover as uniformly 

as possible the complete dynamic range of both sensors. Once 

the data is available, the first step of our procedure is to identify 

subsets that consists of exactly k points. These points, according 

to a measure specified by the user, have the largest negative 

discrepancy between the values at the light meter and at the 

photovoltaic sensor. For this task, we implement and 
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experiment with measures that are based on the relative value of 

the residuals and the level of consistency in terms of both 

weighted and rank-based criteria.  

Once we have a dataset, we use either parametric or 

nonparametric data fitting schemes to provide a compact 

representation of the subset of the points in a two dimensional 

space. The photovoltaic and light meter sensor readings form the 

two axes. We experimented with a number of techniques, 

including linear fit, linear fit after transformation and several 

non-parametric schemes.  The last step of our approach is 

derivation of the quality of the proposed models using 

resubstitution techniques. For the sake of brevity, the details are 

presented only in our technical report [5].  
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Figure 1 - Global flow of the error modeling procedure 

3. SUBSET IDENTIFICATION AND 
MODEL BUILDING 

In this section, we show techniques for partitioning the data into 

subsets. These subsets are used in later sections for building the 

error density models.  In the first subsection, we introduce a 

number of subset identification methods.  After that, we show a 

detail analysis and experimental results for model-based subset 

identification. 

3.1 Subset Identification Methods  

The first step of our procedure for building of an error model is 

the identification of the subsets of data where each subset 

contains 2K% of data (where K is user-defined) in such a way 

that the points in the subsets correspond to points that have the 

lowest predicted values with respect to developed error models. 

More specifically, the input to this step is a set of points placed 

in a two dimensional space. The y-coordinate of each point 

corresponds to the measured value in a specific sensor 

measurement, while the x-coordinate indicates the correct 

corresponding value measured by the meter. The final goal is to 

produce a curve that partitions data into two subsets in such a 

way that 2K% of data is below the curve and the reminder is 

above. We start by identifying 2K% of the data points and 

remove them from the dataset. If we perform the procedure 

again, we can iteratively identify all the subsets, where each 

contains 2K% of original points. The strategic objective is to 

place a curve in such a way as to maximize the likelihood that 

the future measurements correspond to points that would be 

placed exactly in that proportion above and below the curve, 

regardless of the amplitude of the actual measurement. To 

address the partitioning problem, we have developed three 

generic methods: (a) residuals-of-calibration method, (b) 

consistency-based method, and (c) rank-based method.  For the 

sake of brevity, we present only the first method. The two other 

models are described in our technical report [5]. 

The first method employs the residuals of the calibration curve 

in order to identify the subsets. The intuition behind the method 

is that the points that could not be fit well by calibration curve 

and have high residuals are most likely the ones that are below 

the specified 2K% points. Therefore, this procedure first 

establishes a calibration curve and consequently sorts all points 

in an increasing order with respect to their residuals of the 

calibration model. Note that before sorting, we can apply 

preprocessing steps depending on the intuition provided by the 

exploratory data analysis. For example, one can analyze all the 

residuals vs. the measured or the predicted value. In Figure 2, 

we show the partitions generated by two data fitting models, 

where the partitions divide the space into 10 subsets, each 

containing 10% of data. We also superimpose the data fitting 

lines on the partitions as an intermediate step toward obtaining 

the PDF. The figure shows data fitting lines by linear model 

(left) and by linear model with logarithmical transform (right). 

Figure 2 – Calibration lines are dividing the dataset into subsets 

each with 10% of the original data: Linear model (left), linear 

model+logarithmic transform (right).   

3.2 Modeling of Sensor Readings vs. the Meter 

In this subsection, we analyze a system of parametric and non-

parametric statistical modeling techniques to find a model of the 

readings from the photovoltaic sensors vs. the meter. 

Analysis of linear model is shown in [5]. We also examined 

several different transformations and partitioning on the data in 

conjunction with the linear model. In Figure 3, we show the 

fitted model for three different such methods on one of the 

sensors in the experiment. The leftmost plot shows the case 

where we use two partial linear models to describe the data. A 

vertical line on the plot shows the breakdown point for the two 

linear models. The middle plot shows the linear model after we 

get the square root of the meter data. The rightmost plot shows 

the linear model after we apply a logarithmic transform on the 

meter data. Among all transforms, the logarithmic transform 

yielded the best results for all sensors in terms of the R2 value of 

the linear model and the summary statistics of the resulting 
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errors. The R2 value of the linear model using all the available 

data was in the range of [83%, 95%] for all of our sensors. 

Figure 3 – Advanced linear models: two partial linear 

fits (left), linear fit with square root transform (middle), 

linear fit with logarithmic transform (right). 

We use two non-parametric modeling approaches. The first 

method for building a non-parametric model starts with 

obtaining the estimates of the conditional probabilities of the 

signal that we are trying to predict (response variable) vs. the 

predictor (explanatory variable). The sensor readings at time i 

are shown by x[i] and y[i] for the explanatory (meter) and 

response (photovoltaic sensor) variables respectively. Since our 

data was discrete, we will present the approach assuming a 

discrete data model. Note that the techniques are generic and 

can be easily adapted to the case of continuous data in a 

straightforward way. We start by building a 3D histogram of the 

conditional probability p(y|x) of y for a given value of x. For 

each pair of sensors and meter (y,x), we use some number of 

data points to build up this histogram. During the testing phase, 

for each observed value of x, we can use this histogram to 

produce an estimate of y. There are a number of ways in which 

the histogram can be used to find the prediction model of y for 

the given values x. We build two models; the first uses all data 

points and constitutes an optimal prediction model since this 

yields a provable upper bound on the achievable prediction. The 

second model uses just P% of data from our learning phase, 

which we then use for prediction on test data. Note that P is a 

user defined value and is the ratio (in percentage) of the number 

of points used in the learning set to the number of all points. 

We considered two predictors based on the histogram for the 

conditional probability. First, while predicting the value of 

(y|x=k), we will minimize the L1 error measure if we calculate 

the median of all y[i] 's that occur in the stream when x[i]=k. A 

second predictor, that minimizes the L2 error norm, is to use the 

average value of the corresponding y[i]. Other common error 

models such as relative L1, L2, and L  can be similarly 

computed with minimal preprocessing. For a given error norm, 

no other predictor would explain the variations of y due to x 

with less error. Finally, we also use loess non-parametric 

modeling paradigm [2]. 

We compare the different data fitting methods using learn-and-

test and resubstitution-based paradigms [3].  In Figure 4, we 

show the boxplots of the average relative absolute error for each 

prediction model for a fixed percentage of learn data (P=65%). 

Each boxplot consists of a 100 datapoints, where each datapoint 

corresponds to the average error of a model built with the 

resampled learn data. Furthermore, the left plot shows the 

average absolute relative learning error for 65% learn data. The 

right plot shows the average absolute testing error for 35% 

testing data. The boxes on each plot show the relative error for 

(1) simple linear model, (2) linear model with logarithmic 

transform, (3) non-parametric histogram-based model with L1

error measure, (4) non-parametric histogram-based model with 

L2 error measure, (5) non-parametric loess fit with a span of 0.2, 

(6) non-parametric loess fit with a span of 0.3, and finally (7) 

non-parametric loess fit with a span of 0.4.  

Figure 4 – Boxplots of the prediction errors: (1) Linear 

model, (2) linear model and logarithmic transform, (3) 

non parametric –L1, (4) non parametric – L2, (5) loess – 

span=0.2, (6) loess – span=0.3, (7) loess – span=0.4. 

The simple linear model has the highest error among all of our 

models for both learning and testing phases. As we can see on 

both plots, the error in both learning and testing phases 

dramatically decreases after applying the logarithmic transform. 

The lower bound for the learning phase error is given by the 

non-parametric histogram-based method. As we can see in the 

left-side plot, both L1 and L2 measures of error give comparable 

lower bound results for the case of histogram-based method. 

However, the testing phase errors for both histogram-based 

models have large fluctuations. The reason is that the number of 

points in the experiment was not high enough to build a smooth 

model that has a value for all possible outcomes in the 

experiment. A possible way to suppress the testing phase error 

is to perform smoothing in conjunction with histogram building. 

The loess nonparametric modeling approach automatically 

performs smoothing within its span window. We show the error 

performance of the loess method for three different spans. As we 

increase the window sizes, we lose the granularity of the model 

and the learning phase error tends to increase, while the 

smoother curves resulting from wider span windows perform 

better in the testing phase. Overall, by comparing the different 

models we conclude that the best overall calibration model for 

fitting the test data are the linear model with logarithmic 

transform and the loess non-parametric fit.  

4. ERROR DENSITY MODELS 

We explain how we make a transition from a summary of 

partitioned data as presented in section 3.1 to the complete error 

model. The conversion is accomplished in the following way: we 
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first superimpose a set of lines y=ai (i=1,.., N) over the two 

dimensional plot of the calibrated models. The plots are placed 

in the coordinate system where we have measured sensor values 

on the y-axis and we have the correct meter values on the x-axis. 

Figure 5 shows a case where 10 lines were superimposed on the 

top of our light sensor measurements vs. the meter readings for 

both simple and transformed cases.  
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Figure 5 – Finding the intersection of the line y=400 

with the K% lines from Figure 2 (right).  
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Figure 6 – CDF of the error (left) was formed from the 

intersection points shown in Figure 5. PDF of the error 

is formed by differentiation and smoothing of CDF 

(right). Both cases are shown for sensor value of 400. 

Once when we have the superimposed lines, for each line we 

repeat the following procedure. We find the intersection of the 

line y=ai with each of the fitted plots using either analytic of 

numerical techniques. We build an error model for a specific 

y=ai as shown in Figure 6. Specifically, we first build a CDF by 

placing values of xj=bj on x-axis, where bj is the x-coordinate of 

intersection of each of the plots with the line y=ai. On the y-axis 

of Figure 6 (left), we assign the value between 0 and 1 that 

corresponds to the percentage of the data that is modeled using a 

specific curve that has that percentage of data points below the 

curve. If we connect the lines using either analytic (e.g. 

piecewise linear) or statistical interpolation techniques (e.g. 

least linear square polynomial fit), we obtain error models for 

our measurements y=ai. In Figure 6, we use a simple piecewise 

linear method to form the CDF. In both cases, we enforce that 

the starting point for the approximation has the value 0, while 

the end point has a value one. PDF is obtained from the CDF 

using numerical differentiation. Figure 6 (right), illustrates the 

PDF for light measurements for the sensed value y=400. Finally, 

after we repeat this procedure for each sensed value ai, we 

obtain a three dimensional PDF that has the measurement on y-

axis, the meter value on the x-axis, and the PDF function of the 

error model on the z-axis. In Figure 7, we show a three-

dimensional error model for one of the sensors that was 

developed using the rank-based partitioning criteria along with 

linear model and logarithmic transform. 

Figure 7 – PDF of error (z-axis) for different values of 

sensor measurement vs. meter measurement. 

We applied all combinations of three subsets identification 

techniques and five subsets of data fitting schemes on each set 

of sensor data. In all cases, the superior performances in terms 

of low prediction errors were achieved by the combination 

where the discrepancy of residuals and linear model after 

logarithmic transform were used. The results for these two 

methods are shown in Figure 5, Figure 6 and Figure 7.  
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