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Abstract—Symbolic debuggers are system-development tools
that can accelerate the validation speed of behavioral specifica-
tions by allowing a user to interact with an executing code at
the source level. In response to a user query, the debugger must
retrieve and display the value of a source variable in a manner
consistent with user expectations with respect to the source state-
ment where execution has halted. However, when a behavioral
specification has been optimized using transformations, values
of variables may either be inaccessible in the runtime state or
inconsistent with user expectations. We address the problem that
pertains to the retrieval of source values for the globally optimized
behavioral specifications. We present a new approach for symbolic
debugging. The implementation of the new debugging approach
poses several optimization tasks. We formulate the optimization
tasks and develop heuristics to solve them. We demonstrate the
effectiveness of the proposed approach on a set of designs.

Index Terms—Design automation, design for testability.

I. INTRODUCTION

FUNCTIONAL debugging of hardware and software sys-
tems has emerged as a dominant step with respect to time

and cost of the development process. For example, debugging
(architecture and functional verification) of the UltraSPARC-I
took twice as long as its design [22]. The difficulty of verifying
designs is likely to worsen in the future, since the key techno-
logical trends indicate that the percentage of controllable and
observable variables in designs will steadily decrease. The Intel
development strategy team foresees that a major design concern
for their year-2006 microprocessor will be the need to exhaus-
tively test all possible computational and compatibility combi-
nations [23].

Symbolic debuggers are system development tools that can
accelerate the validation speed of behavioral specifications by
allowing a user to interact with an executing code at the source
level [7]. Symbolic debugging must ensure that in response to a
user inquiry, the debugger will retrieve and display the value of
a source variable in a manner consistent with user expectations
with respect to a breakpoint in the source code. The application
of code optimization techniques usually makes symbolic
debugging harder. While code optimization techniques such
as transformations must have the property that the optimized
code is functionally equivalent to the nonoptimized code, such
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optimization techniques may produce a different execution
sequence from the source statements and alter the intermediate
results. Debugging nonoptimized rather than optimized code is
not acceptable for several reasons.

1) While an error in the nonoptimized code is undetectable,
it is detectable in the optimized code.

2) Optimizations may be necessary to execute a program due
to memory limitations or other constraints imposed on an
embedded system.

3) A symbolic debugger for optimized code is often the only
tool for finding errors in an optimization tool.

There are many similarities between debugging a behavioral
specification for hardware–software embedded systems and
debugging source-level software. Nevertheless, there are also
numerous differences that make embedded hardware and
software significantly more demanding and more important.
First, optimizations are much more important and, therefore,
more aggressively applied to embedded systems due to their
cost, speed, and power sensitivity. Therefore, a significantly
smaller percentage of variables from the behavioral specifi-
cation is preserved from the behavioral specification in the
final implementation. This imposes additional constraints on
symbolic debugging. Second, embedded systems often have
numerous parts implemented using fixed-point arithmetic that
are significantly more sensitive to numerical stability. This also
makes debugging more important and difficult. Furthermore,
the development time of embedded systems is most often
significantly shorter than for software, again implying higher
importance of fast symbolic debugging. Finally and most im-
portantly, embedded systems programs often follow semantics
such as synchronous data flow and network processes that
imply infinite nonterminating execution of the program. The
need for tracking streams of data instead of individual values
makes symbolic debugging more complex and more important.

In this paper, we address the problem pertaining to the re-
trieval of source values for the globally optimized behavioral
specifications. We present adesign-for-debugging(DfD) ap-
proach for a symbolic debugger to retrieve and display the value
of a variable correctly and efficiently in response to a user in-
quiry about the variable in the source specification. We infor-
mally define the DfD problem in the following way. We are
given a design or code. The code is fully specified in any high-
level design specification language that will be transformed to
the control data flow graph (CDFG) of the computation. The
goal of our DfD technique is to modify the original code so that
every variable of the source code is debuggable (that is, con-
trollable and observable) in the optimized program as fast as
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Fig. 1. Part of the optimized program without considering debugging. Three numbers shown on each edge of the CDFG correspond to the number of operations
required for their computation from three golden cuts: state variables only, state variables and the golden cut A, and state variables and the golden cut B.

possible. At the same time, the original code must be optimized
with respect to target design metrics such as throughput, latency,
and power consumption. A particularly important requirement
is that in response to a user inquiry about a variable in the source
program, the value of the variable should be retrieved or set as
fast as possible.

We define an important concept for developing a method that
solves the problem. Thegolden cutis defined to be the variables
in the source code that should becorrect [7] in the optimized
program. The variables are time dependent. A variable named
at two different locations in the source program is treated as two
different variables. By default,primary inputsandstateor delay
variablesare included in the golden cut. Thecomplete golden
cut is a golden cut with the property that all variables which
appear after the cut can be computed using only the variables in
the cut, excluding primary inputs and state variables. Anempty
golden cutis a golden cut with no variables except for the default
primary inputs and state variables in it.

Our proposed method can be described as follows. First, we
determine a golden cut. Next, in response to a user inquiry about
a source variable at some point in the source program, all
the variables in the golden cut that the variabledepends on
are determined by a breadth-first search in thesourceCDFG
with reversed arcs. For those variables except the primary in-
puts and state variables in the golden cut, all the statements that
they depend on are identified by the breadth-first search in the
optimizedCDFG with reversed arcs. Those statements in the op-
timized CDFG are executed on the multicore system-on-silicon
under debugging. From this execution, we get the values of the
variables in the golden cut on which the variabledepends.
Using these values, the variable is computed by the state-
ments in the source CDFG on a workstation (usually unipro-
cessor), which runs a debugger program. Our proposed method
requires that the golden cut be chosen to result in minimum de-
bugging time, optimal design metrics, and complete debugging

of optimized program as possible. The last requirement stems
from the fact that our method executes part of the source pro-
gram to get the value of a source variable in request. Because
our goal is to debug the optimized program, this portion of the
source program should be minimal.

A. Motivational Example—Symbolic Debugging with Fast
Variable Computation

We illustrate the proposed method with a small motivational
example shown in Figs. 1, 2, and 3. The design objective is
throughput optimization. The source program is shown in Fig. 1.
The source program consists of additions and multiplications
with constants. The number of clock cycles for an iteration is
nine. The number in italics next to each edge (a variable) de-
notes the number of operations that needs to be executed on a
general purpose computer for retrieving the value of the vari-
able. If there is no number by an edge, the value of the variable
is available because the variable is either an input (states or pri-
mary inputs) or output (states or primary outputs) variable.

The original program can be optimized to execute in five
clock cycles. Part of the optimized program (only for a state
variable ) is shown in Fig. 2. Almost all variables in source
program disappear in optimized program. For example, the vari-
ables and in the source program have disappeared in the
optimized program. It takes 3.575 operations on average on a
workstation to retrieve any intermediate variable in a source
program, with the assumption that the values of all state vari-
ables for the current iteration are known. In addition to the high
debugging time, debugging is performed entirely on a source
program rather than its optimized version. The proposed DfD
method produces an optimized program which can execute in
six clock cycles while ensuring faster and more complete debug-
ging of the optimized program. Part of the optimized program is
shown in Fig. 3. The golden cut chosen for our method is shown
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Fig. 2. Part of the optimized program by our proposed DfD method.

Fig. 3. Motivational example for the proposed DfD method.

in Fig. 1, labeled asGolden Cut A. It takes 1.125 operations on
average on a workstation to retrieve any intermediate variable in
a source program. If we choose the golden cut labeled asGolden
Cut B in Fig. 1, it takes one operation on average on a worksta-
tion to retrieve any intermediate variable in a source program
while the optimized program executes in eight clock cycles on
a system-on-silicon.

B. Motivational Example—Symbolic Debugging with Minimal
Impact on Computation Performance

Using the following motivational example, we show that de-
bugging of an optimized behavioral specification can be per-
formed efficiently and thoroughly with minimal loss of opti-
mization potential by the proposed DfD method for minimal im-
pact on computation performance. For brevity and expressive-
ness, we have constructed an abstract computation illustrated in
Fig. 4, which demonstrates the tradeoffs involved in selecting
cut vafriables for symbolic debugging. The CDFG of the con-
structed computation is depicted in Fig. 4. Expected optimiza-
tion steps are applied to shaded areas in the figure as follows.

1) Additions through can be compacted in a tree of
additions for critical path reduction (throughput optimiza-
tion).

2) The number of multiplications can be reduced by ap-
plying the distributivity rule to multiplications and

and addition (area optimization).

Fig. 4. Example of tradeoffs involved in selection of cut variables such that
optimization potential of the computation is not impacted.

3) All operations in the remaining shaded area can be opti-
mized according to the transformations for achieving fast
linear computation [18].

We define an important concept that enables effective DfD.
A golden cutis defined as a set of variables in the source code,
which should becorrect [7] in the optimized program. Acom-
plete golden cut is a golden cut with the property that all
user variables and primary outputs in the computation can be
computed using only the cut variables and the primary inputs.
Alternatively, acomplete golden cutis a set of variables which
bisects all cyclic paths in the CDFG of a computation [10].

Variables of an example complete golden cutGC (output of
, , and ) are depicted in Fig. 4. Using the variables in

GC and the primary inputs, any other variable in the computa-
tion can be computed. For example, consider the input variables
of addition . Bold lines in Fig. 4 illustrate the sequence of
operations to be executed in order to calculate the results of
and solely by using the variables in the cut. Since the se-
lected cut variables are not a result of operations that can be
involved in the above mentioned optimizations, their selection
yields efficient symbolic debugging accompanied with effective
design implementation.

Conversely, a highly inefficient cut can be constructed using
the output variables of , , , , , and . Besides
larger cardinality of the involved set of variables, this unfortu-
nate selection also disables all possible optimizations, thus re-
sulting in a poor implementation. In general, all possible opti-
mizations are not known in the preprocessing DfD phase. There-
fore, we propose in this paper a cut selection process, which is
guided using heuristics that determine the likelihood that an op-
eration can be involved in a transformation.
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II. RELATED WORK

We survey the related works along two lines: com-
puter-adided design (CAD) for debugging and symbolic
debugging of optimized code. In the CAD domain, recently
Powley and De Groat [19] developed a very high-speed inte-
grated-circuit hardware description language (VHDL) model
for an embedded controller . The model supports debugging of
the application software. Kochet al. [12] proposed an approach
for source-level debugging of behavioral VHDL in a way
similar to software source-level debugging through the use of
hardware emulation. Simulation has been used for functional
debugging [16]. Hennessy [7] introduced the problem of de-
bugging optimized code, defined the basic terms, and presented
measurements of the effects of some local optimizations. DOC
[4] and CXdb [2] are two examples of real debuggers for
optimized code that do not deal with global optimizations.
Adl-Tabatabai and Gross [1] discussed the problem of re-
trieving the values of source variables when applying global
scalar optimizations. When the values of source variables are
inaccessible or inconsistent, their approach just detects and
reports it to a user. Our approach provides the efficient method
of retrieving the values of such source variables. CAD-related
debugging efforts include [10], [11], [13].

III. COMPUTATIONAL AND HARDWARE MODEL

We represent a computation by a hierarchical CDFG con-
sisting of nodes representing data operators or subgraphs and
edges representing the data, control, and timing precedence
[20]. The computations operate on periodic semiinfinite
streams of inputs to produce semiinfinite streams of out-
puts. The underlying computational model is homogeneous
synchronous data flow model [14], which is widely used in
computationallly intensive applications such as image and
video processing, multimedia, speech and audio processing,
control, and communications.

We do not impose any restriction on the interconnect scheme
of the assumed hardware model at the register-transfer level.
Registers may or may not be grouped in register files. Each hard-
ware resource can be connected in an arbitrary way to another
hardware resource. The initial design is augmented with addi-
tional hardware that enables controllability in the “debugging”
mode. The following input operation is incorporated to provide
complete controllability of a variable Var1 using user specified
input: Input1: if(Debug) then .

The problem of setting breakpoints is handled in the fol-
lowing way. A breakpoint can be set in any variable such that
the execution of the program must stop immediately after
performing the operation producing the breakpoint variable.
Since the optimized code instead of the source code is running
usually on multiprocessors, the problem of determining when
to stop the execution of the optimized code for a breakpoint set
in the source code is not straightforward. If the variable set as
a breakpoint exists in the optimized code, the execution of the
optimized code stops immediately after the control step which
produces the variable. If not, we stop the execution of the
optimized code immediately after the control step producing
any variable that exists in both the source and optimized codes

and depends on the breakpoint variable. If any one of the
variables depending on the breakpoint variable is computed,
then the breakpoint variable has already been computed.

IV. DESIGN FORSYMBOLIC DEBUGGING

In this section, we present two symbolic debugging algo-
rithms. The first, presented is Section IV-A, targets fast variable
computation. The motivation for this approach is that embedded
hardware–software often have infinite-stream semantics (e.g.,
synchronous data-flow) and, therefore, require long simulation
times. In this situation, it is important to continuously calcu-
late values of the user specified variables in the initial specifica-
tion. This calculation is conducted most often on personal work-
stations which has relatively limited computationall resources
compared to the dedicated embedded hardware.

The second debugging approach, presented in Section IV-B,
aims to enable symbolic debugging while preserving all the po-
tential of the computation to be optimized using transforma-
tions. Transformations are often the best way to optimize em-
bedded hardware–software. Therefore, the two approaches are
independent and in some sense orthogonal. They can be com-
bined by forming a composite objective function for both goals.
Instead of combining them in arbitrary way without specific de-
sign goals, we decided to evaluate their individual effectiveness.

Note that both proposed symbolic debugging techniques pro-
vide complete information about all variables in the initial be-
havioral specification.

A. Selection of Optimal Golden Cuts for Fast Variable
Computation

In response to a user inquiry about a source variablein the
source CDFG, we first need to determine if the variableexists
in the optimized CDFG. This step can be efficiently performed
by keeping a list of variables that exist in both the source and op-
timized CDFGs. If the variable exists in the optimized CDFG,
we need to confirm if the value of the variableis still stored in
a register. Due to register sharing, the register holding the vari-
able may store a different variable at the time of the inquiry.
This can be handled by checking the schedule of variables for
registers. At the time of the inquiry, only the variables stored in
the registers are available. If any one of the answers is negative,
then the variable needs to be computed from the golden cut.

Our proposed method requires that the golden cut should be
chosen to result in minimum debugging time, optimal design
metrics, and complete debugging of optimized program as pos-
sible. The last requirement stems from the fact that our method
executes part of the source program to get the value of a source
variable in request. Because our goal is to debug the optimized
program, the part of the source program should be minimal. Sev-
eral conflicting requirements about a golden cut can be identi-
fied. First, a golden cut should be as small as possible in order
to minimize the disruption of the optimization potential of op-
timization techniques. Second, a golden cut should not be too
small in order to minimize the debugging time. For example,
an empty golden cut is the smallest golden cut that will mini-
mize the disruption of the optimization potential, but it will re-
sult in an optimized code with long debugging time. Finally, a
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Fig. 5. Pseudocode of the basic heuristic for the golden cut problem.l andk
are lower and upper boundaries, respectively, where edge can be selected for
CG.

golden cut should be large enough to ensure the complete de-
bugging of the optimized code. This requirement is satisfied by
the golden cut with all the variables in the source CDFG, which
results in no optimization potential to be realized. Therefore, a
golden cut should be chosen by balancing all these conflicting
requirements.

We consider the problem of finding the smallest complete
golden cut such that every source variable can be computed by at
most operations starting from the golden cut. More formally,
the problem can be defined as the following.

Problem: Given a directed acyclic hypergraph , find
the smallest set of edges such that for every edge , a
cone of with respect to has at most nodes, where acone

of with respect to is a set of nodes consisting of nodes on
paths from all edges in to .

We define hyperedge as collection of edges that go from a
node to other nodes. The reason behind this definition is that
these edges correspond to the same variable in the computation.

The source program can be described by a directed acyclic
hypergraph due to the requirement that a complete golden cut
be chosen within one iteration of the computation. Note that the
source and optimized programs in the motivational example are
described by a directed acyclic hypergraph.

The pseudocode of the basic heuristic for the golden cut
problem is provided in Fig. 5. Intuitively, the heuristic inserts
“pipeline stages” in the hypergraph so that the number of
edges with pipeline registers is minimized and the size of the
conefor each edge is less than or equal to. The pipeline stages
are inserted in sequence. Once a stage is inserted, it stays fixed.

Let denote the size of the cone for the edgewith re-
spect to . When calculating , we need to traverse the
graph once for each edge. Thus, steps are required
for each pipeline stage insertion. A minimum cut for the sub-
graph with only green edges and their incident nodes can be
optimally computed in polynomial time by a maximum flow al-
gorithm, based on the max-flow min-cut theorem [3]. Using the
method proposed by Yang and Wong [21], the flow network for
the subgraph is constructed as the following.

1) For each hyperedge in the sub-
graph, add two nodes and and connect an edge

. For each node incident on the hyperedge,

Fig. 6. Modeling a hyperedge in flow network.

Fig. 7. Construction process of a flow network for the “green” subgraph: the
flow network. Original hypergraph consists of four nodes: v1, v2, v3, and v4,
where v1 sends data to v2 and v3; v2 and v3 send data to v4.

add two edges and . Assign unit capacity to
the edge and infinite capacity to all other added
edges (see Fig. 6).

2) A “dummy” source node and a “dummy” sink node
are added to the subgraph. From the source node, we

add edges with infinite capacity to all the source nodes
in the original subgraph. We also add edges with infinite
capacity from all the sink nodes in the original subgraph
to the sink.

The construction process for an example graph is shown in
Fig. 7. A minimum cut of the constructed flow network can
be found using various approaches such as the -time
algorithm in [21]. We use linear programming for solving a flow
network by relying on a public domain package [17].
All the “saturated” edges in the constructed flow network are
added to the golden cut. To avoid trivial solutions, we use the
lower bound . The constant is experimentally determined so
that high quality golden cuts are obtained. Trivial solution is
the solution where is set uniformly to zero, i.e., we always
take golden cut as far as allowed by the user imposed constraint.
In order to avoid greedy and suboptimal solutions, we consider
edges in a belt of sizearound the user-specified distance for
establishing golden cut. Experimental evaluation indicates that

works well for all examples.
Of course, the previous insertions of the pipeline stages will

affect the quality of the subsequent insertions. Therefore, to fur-
ther improve the heuristic, we employ the iterative improve-
ment using the heuristic slightly modified from one described
in Fig. 5 as a search engine. The heuristic described in Fig. 5
is modified such that the constantis not fixed and its value
is randomly chosen between one andfor each pipeline stage
insertion. Let be the modified heuristic for the
hypergraph with a constant . Let be the number of edges
in the golden cut . The iterative improvement heuristic based
on the heuristic is described in Fig. 8.

The DfD algorithm for fast variable computation can be ex-
plained at the intuitive level in the following way. The basic idea
is to start from the boundary of computation defined by its states
and primary inputs. Since we want to calculate all variables in
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Fig. 8. Pseudocode of the iterative improvement heuristic for the golden cut
problem. Parameterc denotes the number of times of iterative improvement
attempts. In our experimentation, we usedc = 10 because we observed that
higher values induce longer runtime with no improvements to the quality of
results.

the initial behavioral specification, the next component of cut
must be placed on edges (variables) within this range. The trivial
and locally optimal solution is to place the cut as far as pos-
sible. This is not necessarily a good decision because this could
induce a very large cut. Another extreme solution is to place
the cut along the min cut of the edges within the range. Since
there are numerous polynomial time algorithms for this task,
this approach provides provably minimal cut. However, this cut
could be very close to the previous cut, with the eventual result
that a very large number of edges is placed in the cuts. In order
to strike the right balance, we heuristically evaluate several op-
tions that consider alternative solutions within the two extremes.
We leverage on the min-cut max-flow algorithm to optimally lo-
cate minimal cuts when we place a variety of constraints where
the cut can be placed within the allowed range. In order to fur-
ther enhance the performances of the algorithm and avoid local
minima, we employ the basic optimization strategy within the
iterative improvement paradigm.

One can envision many sophisticated techniques for calcu-
lating . For example, can be taken from local min cut to the
furthest user-specified distance for each cut. In practice, how-
ever, we observe that simple constant bound works well
for all examples.

B. Optimization-Friendly Selection of Optimal Golden Cuts

The performance effectiveness of the developed symbolic de-
bugging approach depends strongly on the selection of golden
cut variables. In this section, we identify the tradeoffs involved
in golden cut determination under different optimization con-
straints. Next, we establish the complexity of the cut selection
problem and provide an algorithm for its solution. Finally, we
discuss how certain transformations can affect the cut selection,
resulting in cut invalidation.

Definition of a Complete Golden Cut:Every cycle in the
CDFG must have at least one vertex in the golden cut. A com-
plete cut is a set of variables which bisects all cyclic paths in the
CDFG of a computation.

The definition of a complete golden cut has been adopted
from [10], where cuts are used to transfer minimal computation
states from simulation to emulation engines. Such a definition
of a cut ensures that any variable in the original specification
can be computed from its cut. Necessary and sufficient condi-
tion that all the variables can be computed in finite number of

steps is that the graph does not contain directed cycles. How-
ever, it does not guarantee that the modified specification can
be optimized as effectively as the original one. To address this
issue, the search for a computation cut has to reflect the trade-
offs involved with potential optimizations. The developed DfD
for minimal impact on computation performance approach does
not assume that a particular optimization will be performed, but
heuristically quantifies the likelihood that a particular variable
will disappear during the optimization process.

We propose a set of heuristics that identify variables that
are likely to be used in generic, area, and throughput opti-
mizations. Low-power constraints can be usually described
as a superposition of transformations for area and throughput
[5]. The set of criteria for optimization-sensitive cut selection
is incorporated into the search process using an objective
function . This function attempts to quantify for
each variable the likelihood that disappears during the
synthesis process

The components of the objective function return quantifiers
that represent the tradeoffs involved in decision making for in-
clusion of a variable in a complete golden cut. Values of quan-
tifiers are determined experimentally in a learning process or
according to designer’s experience and optimization goals. In
our experiments, we have used the meta-algorithmics param-
eter tuning procedure [9]. Each component corresponds to the
following generic optimization objectives.

• —Small cardinality of the golden cut:Any additional
constraints imposed on computation will reduce the opti-
mization potential. Therefore, we would like to add as few
as possible constraints.

• —Operations with high fanout:If the result
of an operation is used as an operand in a relatively
large number of different operations, then it is hard to
apply transformations to the original such that
disappears from it. Thus, it is highly desirable to include

in a complete golden cut.
• —Nonlinear operations: It has been

demonstrated that a collection of linear operations (ad-
dition, subtraction, multiplication with a constant, etc.)
can be transformed optimally and very effectively for
a particular design metric [18]. Therefore, operands or
results of nonlinear operations should be given preference
for inclusion in a golden cut.

• — -Critical path: During transformations
for almost all design metrics, the critical path of the com-
putation is frequently severely modified. This reasoning
stems from the fact that the critical path usually limits per-
formance of a circuit. Therefore, the golden cut selection
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routine should avoid including variables at mostopera-
tions close to the critical path. In our experiments, we used

%.

The following optimization indicator has been considered for
area minimization.

• —Enable distributivity:Low pri-
ority for cut selection is given to variables that can be in-
volved in applying distributivity among operations. Since
distributivity is the key enabler of reducing expensive op-
erations, such as multiplications or divisions, it is of ut-
most importance not to disable this transformation.

In our experiments, we have considered only one transformation
for maximizing throughput.

• —Number of inputs in cycles:
Cycles with higher number of primary input variables
have to be carefully cut since input operations can be
commonly extracted from the loop and processed as
a highly pipelined structure. This transformation can
significantly increase the throughput of the system.

The problem of finding a complete golden cut that obeys the
requirements of all optimization goals can be defined formally
using the following standard format.
PROBLEM: The Complete Golden Cut.
INSTANCE: Given an unscheduled and unassigned CDFG

with each node weighted according to
and real number .

QUESTION: Is there a set of variables GC such that when
removed from the CDFG, leaves no directed cycles and the sum
of weights is smaller than ?

The specified problem is an NP-complete problem since
there is an one-to-one mapping between the special case of
this problem when the weights on all nodes are equal and the
FEEDBACK ARC SET problem [6]. The developed heuristic
algorithm for this problem is summarized using the pseudocode
in Fig. 9. The heuristic starts by logically partitioning the graph
into a set of strongly connected components (SCCs) using the
breadth-search algorithm [3]. This algorithm has complexity

, where is the number of vertices and is the
number of edges in a graph. All trivial SCCs that contain
exactly one vertex are deleted from the resulting set since they
do not form cycles. Then, the algorithm iteratively performs
several processing steps on each of the nontrivial SCCs.

At the beginning of each iteration, to reduce the solution
search space, a graph compaction step is performed. In this step,
each path that contains only vertices
with exactly one variable input is replaced with a new edge

, which connects the sourceand destination and rep-
resents an arbitrary selected edge (variable) of the same path.
Nodes and inherit the maximum weight among its current
weight and all the nodes removed from the CDFG due to the
compaction process using edge .

In the next step, the algorithm decides which node (variable)
in the current set of SCCs is to be deleted. The algorithm makes
its decision based on the cardinality of the newly created set of
SCCs and the sum of objective functions of the currently se-
lected cut. The vertex that results in the largest overall objective

Fig. 9. Pseudocode for the developed algorithm for the complete golden cut
problem.

function is removed from the set of nodes as well as all adja-
cent edges. The deleted vertex is added to the resulting cutset.
The process of graph compaction, evaluation of node deletion,
node deletion, and graph updating is repeated until the set of
nontrivial SCCs in the graph is empty. The set of nodes (vari-
ables) deleted from the computation represents the final cutset
selection.

Consider the example shown in Fig. 10. The CDFG of
the third-order Gray–Markel ladder infinite-impulse response
(IIR) filter, shown in Fig. 10(a), has only one nontrivial SCC.
The graph compaction step is explained in Fig. 10(b), where
vertex is merged with vertex as well as variable is
merged with variable . In Fig. 10(c) an example of node
deletion is described. The deleted node creates two smaller
SCCs.

1) Discussion of Cut Validity After Applying Transfor-
mations: Once the DfD for minimal impact on compu-
tational performance procedure modifies the source code

, a synthesis toolSTis applied in order to
generate the final optimized specification .
In general, the synthesis tool should have the freedom to
perform arbitrary transformations on the source computation.
The question that can be posed is: Does there exist such a
set of transformationsST that translates the source specifi-
cation with an enforced complete golden cutGC into
a new specification , where the enforced cutGC is not
a complete cut? This question can be answered from two
perspectives.
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Fig. 10. Performing the steps of a single iteration of the cutset selection
procedure.

1) Several examples of computation structures of different
implementations of the same computational functionality
(for example: the Gray–Markel ladder, cascade, parallel,
elliptic, and direct-form IIR filters) clearly indicate that,
generally, there exist such transformations that enforce a
given cut in one specification not to satisfy the cut proper-
ties in the transformed specification. However, the sophis-
tication of such algorithmic transformations is far from
being met by any published synthesis tool. Therefore, it
is not expected that the structure of the computation is
changed drastically during optimization.

2) There exist transformations performed by common com-
pilers (such as loop fusion, splitting, folding, and un-
folding), which modify the loop structure of the compu-
tation. However, all of these transformations preserve the
completeness of a cut selected in the DfD phase.

V. EXPERIMENTAL RESULTS

This section summarizes our evaluation of two proposed DfD
techniques. Section V-A provides information about the effec-
tiveness of symbolic debugging technique for fast variable cal-

TABLE I
GOLDEN CUT SIZES 1, 2, AND 3 ARE

OBTAINED FOR VALUES OFk IN THE LINEAR PROGRAM, SUCH THAT THE FINAL

QUERY TIME IS 0.5, 0.25,AND 0.125, RESPECTIVELY, OF INITIAL QUERY TIME

culation. Section V-B presents our findings about the impact of
symbolic debugging technique for minimal impact on compu-
tation performance.

A. Symbolic Debugging with Fast Variable Computation

We applied our approach to design for symbolic debugging
on a set of ten small industrial examples as well as two large
design examples. The smaller designs include a set of Aven-
haus, Volterra, and IIR filters, an audio digital-to-analog con-
verter, and a least mean square audio formatter. Table I presents
the experimental results for the small designs. We definequery
timeas an expected time to retrieve any variable in the source
program. The time is measured as average number of operations
that needs to be executed for retrieving the value of a variable.
Table I is obtained from the constraint that the valuefor the
linear program is set such that the finalquery timeis 50%, 25%,
or 12.5% of the initialquery time. The average golden cut size
with respect to the number of variables was 4.99%, 10.49%, and
19.26%, respectively.

The two large designs include the JPEG codec from the Inde-
pendent JPEG Group and the European GSM 06.10 provisional
standard for full-rate speech transcoding, prI-ETS 300036,
which uses residual pulse excitation/long-term prediction
coding at 13 kb/s. Table II presents the experimental results for
the large designs. For the same set ofquery timeconstraints,
the average golden cut size with respect to the number of
variables was 2.83%, 6.07%, and 12.72%, respectively. None
of the examples resulted in runtimes of the linear programmer
larger than a minute.

B. Symbolic Debugging with Minimal Impact on Computation
Performance

Proper performance evaluation of the proposed debugging
techniques is a complex problem due to a great variety of op-
timization steps that can be undertaken during design optimiza-
tion using transformations. In addition, it is well known that
the effectiveness of transformations is greatly dependent or the
order in which they are applied. The situation is further com-
plicated by a great variety of designs. For example, design can
vary tremendously in their size, type of used operations, cycle,
and in general topology structure.
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TABLE II
GOLDEN CUT SIZES 1, 2,AND 3 ARE OBTAINED FOR THE VALUE k IN THE

LINEAR PROGRAM, SUCH THAT THE FINAL QUERY TIME IS 0.5, 0.25,AND

0.125, RESPECTIVELY, OF INITIAL QUERY TIME

In order to address this concern, we have applied the new
technique on more than hundred designs from the Hyper [8] and
Mediabench [15] benchmark suites. We have used the following
transformations: associativity, commutativity, distributivity,
zero and inverse element laws, retiming, pipelining, loop
unfolding and folding, constant propagation, substitution of
constant multiplication with shifts and additions, and common
subexpression elimination and replication. In addition, we
have used several popular scripts for transformation ordering,
such as one which guarantees the maximal throughput when
applied to linear computations.On the overwhelming number
of designs, our technique did not incur any cost, regardless of
targeted optimization goals: area, throughput, or power.

On two designs (noise-sharper and modem), the DfD
procedure induced rather high overhead. This is mainly a con-
sequence of the fact that the designs are very amenable for very
aggressive optimization. Addition of any debugging constrains
reduces this potential. Furthermore, on these twjo designs,
heuristic scheduling and assignment techniques performed
really well on the initial specification, but not so well on the
modified representation. The Hyper high-level synthesis system
[20] uses randomized scheduling and allocation algorithms;
when applied on large numbers of design, some statistical
outflier effects are inevitable.

The detected exceptions are shown in Table III. On these ex-
amples, we applied retiming for joint optimization of latency
and throughput and then maximally fast script for linear compu-
tations. The designs augmented with additional debugging con-
straints were able to produce the best combination of latency
and throughput. However, on some of them, notable area over-
head was induced due to the added constraints. Closer analysis
of these examples indicates that the symbolic constraints in-
duced a need for computation of additional variables used only
for debugging purposes. The used combination of transforma-
tions drastically changed the structure of computations such that
the initial selection of cut resulted in a need for significant ad-
ditional computation. It can be concluded that although it is
possible to find examples with additional overhead due to en-
forced computation of the golden cut, such cases occur rarely
and they are commonly associated with application of rather
complex and sophisticated transformation scripts for optimiza-
tion of complex objective functions. Such design objectives are
desired rarely in modern design practice.

Both symbolic debugging techniques are faster on average
than the Hyper scheduling and assignment procedures. While
DfD for fast calculation has just somewhat lower runtime than
the Hyper synthesis procedures, the second technique is almost

TABLE III
COMPARISON OFAREAS OFDESIGNSOPTIMIZED WITH AND WITHOUT THE DfD

PHASE. ICP—INITIAL CRITICAL PATH; OCP—CRITICAL PATH AFTER

OPTIMIZATION; GC—CARDINALITY OF THE COMPLETE GOLDEN CUT;
IAREA—OPTIMIZED DESIGN AREA WITHOUT DfD; OAREA—OPTIMIZED

DESIGNAREA WITH DfD; AREA OH—IS THE OVERHEAD IN AREA INCURRED

DUE TO PREPROCESSING FORSYMBOLIC DEBUGGING

always at least an order of magnitude faster. We conducted ex-
tensive experimentation on the weight factors used for the objec-
tive function in DfD procedure for aggressive optimization. We
varied the weight factors for each parameter by scaling each of
them by random factors in range 0.1 to 10. The procedure had
very consistent performances except for two cases. These two
cases occur when the cardinality of golden cut and test linear are
assigned small weights. Small weight factors for these two com-
ponent often seriously reduce the effectiveness of transforma-
tions. On the other hand, setting very high values for these two
components does not have a significant impact on the overall
effectiveness.

Fundamentally, a sound way to analyze the experimental re-
sults when numerous alternatives are available is to statistically
sample the design space for variety of design and transforma-
tion orders. While we conducted numerous experiments, we did
not try to analyze them statistically because the performances of
both DfD techniques was very consistent. In addition, except in
a few designs that are shown in Table III, we did not observe
significant overhead.

VI. CONCLUSION

We addressed the problem related to the retrieval of source
values for the globally optimized behavioral specifications. We
presented an approach for a symbolic debugger to retrieve and
display the value of a variable correctly and efficiently in re-
sponse to a user inquiry about the variable in the source spec-
ification. The implementation of the new debugging approach
posed several optimization tasks. We formulated the optimiza-
tion tasks and developed efficient algorithms to solve them. The
effectiveness of the proposed approach was demonstrated on a
set of designs.
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