392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

Symbolic Debugging of Embedded Hardware and
Software

Farinaz Koushanfar, Darko Kirovski, Inki Hong, Miodrag PotkonjdMember, IEEE and
Marios C. PapaefthymiqgiMember, IEEE

Abstract—Symbolic debuggers are system-development tools optimization techniques may produce a different execution
that can accelerate the validation speed of behavioral specifica- sequence from the source statements and alter the intermediate

tions by allowing & user to interact with an executing code at (aqts. Debugging nonoptimized rather than optimized code is
the source level. In response to a user query, the debugger must
not acceptable for several reasons.

retrieve and display the value of a source variable in a manner
consistent with user expectations with respect to the source state- 1) While an error in the nonoptimized code is undetectable,
ment where execution has halted. However, when a behavioral it is detectable in the optimized code.

specification has been optimized using transformations, values 2) Optimizations may be necessary to execute a program due
of variables may either be inaccessible in the runtime state or P y y prog

inconsistent with user expectations. We address the problem that to memory limitations or other constraints imposed on an
pertains to the retrieval of source values for the globally optimized embedded system.

behavioral specifications. We present a new approach for symbolic ~ 3) A symbolic debugger for optimized code is often the only
debugging. The implementation of the new debugging approach tool for finding errors in an optimization tool.

poses several optimization tasks. We formulate the optimization L . .
tasks and develop heuristics to solve them. We demonstrate the There are many similarities between debugging a behavioral

effectiveness of the proposed approach on a set of designs. specification for hardware—software embedded systems and
debugging source-level software. Nevertheless, there are also
numerous differences that make embedded hardware and
software significantly more demanding and more important.
I. INTRODUCTION First, optimizations are much more important and, therefore,

UNCTIONAL debugging of hardware and software sysMore aggressively applied to _e_m_bedded systems (_Jlue_ _to their
F tems has emerged as a dominant step with respect to tif@st, SPeed, and power sensitivity. Therefore, a significantly
and cost of the development process. For example, debug ller percentage of variables from the behavioral specifi-
(architecture and functional verification) of the UltraSPARC-§alion is preserved from the behavioral specification in the
took twice as long as its design [22]. The difficulty of verifyingin@l implementation. This imposes additional constraints on
designs is likely to worsen in the future, since the key technd¥mbolic debugging. Second, embedded systems often have
logical trends indicate that the percentage of controllable aRMerous parts implemented using fixed-point arithmetic that
observable variables in designs will steadily decrease. The I Significantly more sensitive to numerical stability. This also
development strategy team foresees that a major design con¢Baes debugging more important and difficult. Furthermore,
for their year-2006 microprocessor will be the need to exha§e development time of embedded systems is most often
tively test all possible computational and compatibility combigignificantly shorter than for software, again implying higher
nations [23]. importance of fast symbolic debugging. Finally and most im-
Symbolic debuggers are system development tools that dgytantly, embedded systems programs often follow semantics
accelerate the validation speed of behavioral specifications $§€h @s synchronous data flow and network processes that
allowing a user to interact with an executing code at the sour8Ply infinite nonterminating execution of the program. The
level [7]. Symbolic debugging must ensure that in response i&ged for trackl'ng streams of data instead of |nd|V|dan values
user inquiry, the debugger will retrieve and display the value B{akes symbolic debugging more complex and more important.
a source variable in a manner consistent with user expectation4 this paper, we address the problem pertaining to the re-
with respect to a breakpoint in the source code. The applicatiti¢val of source values for the globally optimized behavioral
of code optimization techniques usually makes symbolfPecifications. We present design-for-debuggingDfD) ap-
debugging harder. While code optimization techniques suBfPach forasymbolic debugger to retrieve and display the value
as transformations must have the property that the optimizé@ variable correctly and efficiently in response to a user in-
code is functionally equivalent to the nonoptimized code, su@iiry about the variable in the source specification. We infor-
mally define the DfD problem in the following way. We are
. . _ E)ven a design or code. The code is fully specified in any high-
Manuscript received September 25, 2000. This paper was recommendet? \}/ . . .
Associate Editor R. Karri. evel design specification language that will be transformed to
F. Koushanfar, D. Kirovski, I. Hong, and M. Potkonjak are with the Computdhe control data flow graph (CDFG) of the computation. The
Science Department, University of California, Los Angeles, CA 90024 USA.qoal of our DfD technique is to modify the original code so that
M. C. Papaefthymiou is with the Department of Electrical Engineering an% . . .
Computer Science, University of Michigan, Ann Arbor, MI 48109 UsA. €Very variable of the source code is debuggable (that is, con-
Publisher Item Identifier S 0278-0070(01)01512-3. trollable and observable) in the optimized program as fast as

Index Terms—besign automation, design for testability.

0278-0070/01$10.00 © 2001 IEEE

KOUSHANFAR et al: SYMBOLIC DEBUGGING OF EMBEDDED HARDWARE AND SOFTWARE 393

Clock
Cycle
1

- GoldenCut A . 2%

5 Golden Cut B

Fig. 1. Part of the optimized program without considering debugging. Three numbers shown on each edge of the CDFG correspond to the numbes of operation
required for their computation from three golden cuts: state variables only, state variables and the golden cut A, and state variables anduhB.golden ¢

possible. At the same time, the original code must be optimizetioptimized program as possible. The last requirement stems
with respect to target design metrics such as throughput, laterfoym the fact that our method executes part of the source pro-
and power consumption. A particularly important requiremegram to get the value of a source variable in request. Because
is thatin response to a user inquiry about a variable in the soume goal is to debug the optimized program, this portion of the
program, the value of the variable should be retrieved or setsmirce program should be minimal.

fast as possible.

We define an important concept for developing a method tth
solves the problem. Thgolden cuis defined to be the variables, ,.
in the source code that should berrect[7] in the optimized
program. The variables are time dependent. A variable named We illustrate the proposed method with a small motivational
at two different locations in the source program is treated as t@gample shown in Figs. 1, 2, and 3. The design objective is
different variables. By defaulprimary inputsandstateordelay throughput optimization. The source program is shown in Fig. 1.
variablesare included in the golden cut. Tlkemplete golden The source program consists of additions and multiplications
cutis a golden cut with the property that all variables whickvith constants. The number of clock cycles for an iteration is
appear after the cut can be computed using only the variablegine. The number in italics next to each edge (a variable) de-
the cut, excluding primary inputs and state variablesefpty notes the number of operations that needs to be executed on a
golden cuts a golden cut with no variables except for the defaugieneral purpose computer for retrieving the value of the vari-
primary inputs and state variables in it. able. If there is no number by an edge, the value of the variable

Our proposed method can be described as follows. First, vgeavailable because the variable is either an input (states or pri-
determine a golden cut. Next, in response to a user inquiry abauary inputs) or output (states or primary outputs) variable.

a source variable, at some point in the source program, all The original program can be optimized to execute in five
the variables in the golden cut that the variabjedepends on clock cycles. Part of the optimized program (only for a state
are determined by a breadth-first search in $berceCDFG variableD2) is shown in Fig. 2. Almost all variables in source
with reversed arcs. For those variables except the primary program disappear in optimized program. For example, the vari-
puts and state variables in the golden cut, all the statements #hialesz andy in the source program have disappeared in the
they depend on are identified by the breadth-first search in thptimized program. It takes 3.575 operations on average on a
optimizedCDFG with reversed arcs. Those statements in the operkstation to retrieve any intermediate variable in a source
timized CDFG are executed on the multicore system-on-silicpnogram, with the assumption that the values of all state vari-
under debugging. From this execution, we get the values of thieles for the current iteration are known. In addition to the high
variables in the golden cut on which the variabledepends. debugging time, debugging is performed entirely on a source
Using these values, the variahilg is computed by the state-program rather than its optimized version. The proposed DfD
ments in the source CDFG on a workstation (usually uniproaethod produces an optimized program which can execute in
cessor), which runs a debugger program. Our proposed metlsodclock cycles while ensuring faster and more complete debug-
requires that the golden cut be chosen to result in minimum dgng of the optimized program. Part of the optimized program is
bugging time, optimal design metrics, and complete debuggiafjown in Fig. 3. The golden cut chosen for our method is shown

Motivational Example—Symbolic Debugging with Fast
Variable Computation

394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

PI2 Di@1 D2@1 D3@1

Distributivity

for reduction of

number of
multiplications

IN3
Critical

path
reduction

D2
Simplification of
linear computations
[Pot92]

Fig. 2. Part of the optimized program by our proposed DfD method.

Clock Cut variables
PI1 P2 D@1 D@1 D3@1 pork

2
3
ouT D1 D21 D3
4
Fig. 4. Example of tradeoffs involved in selection of cut variables such that
5 optimization potential of the computation is not impacted.
6

3) All operations in the remaining shaded area can be opti-
mized according to the transformations for achieving fast
linear computation [18].

Fig. 3. Motivational example for the proposed DfD method.

We define an important concept that enables effective DfD.
in Fig. 1, labeled a&olden Cut Alt takes 1.125 operations onA golden cutis defined as a set of variables in the source code,
average on a workstation to retrieve any intermediate variablewhich should becorrect[7] in the optimized program. Aom-

a source program. If we choose the golden cut labelébéden plete golden cul.. is a golden cut with the property that all
Cut Bin Fig. 1, it takes one operation on average on a workstaser variables and primary outputs in the computation can be
tion to retrieve any intermediate variable in a source progracomputed using only the cut variables and the primary inputs.
while the optimized program executes in eight clock cycles dklternatively, acomplete golden cus a set of variables which

a system-on-silicon. bisects all cyclic paths in the CDFG of a computation [10].

Variables of an example complete golden @& (output of
B. Motivational Example—Symbolic Debugging with Minimaf/3, } 5, andA6) are depicted in Fig. 4. Using the variables in
Impact on Computation Performance GC and the primary inputs, any other variable in the computa-

)) o tion can be computed. For example, consider the input variables
Using the following motivational example, we show that deyf addition A14. Bold lines in Fig. 4 illustrate the sequence of
bugging of an optimized behavioral specification can be pefperations to be executed in order to calculate the results bf
formed efficiently and thoroughly with minimal loss of opti-and 3 solely by using the variables in the cut. Since the se-
mization potential by the proposed DfD method for minimal iMpacteq cut variables are not a result of operations that can be
pact on computation performance. For brevity and expressiygyolved in the above mentioned optimizations, their selection
ness, we have constructed an abstract computation |IIustrate9ig]dS efficient symbolic debugging accompanied with effective
Fig. 4, which demonstrates the tradeoffs involved in selectir&@sign implementation.
cut vafriables for symbolic debugging. The CDFG of the con- conversely, a highly inefficient cut can be constructed using
structed computation is depicted in Fig. 4. Expected optimizgye output variables af/1, M2, A2, A9, C2, and AS. Besides
tion steps are applied to shaded areas in the figure as followgarger cardinality of the involved set of variables, this unfortu-
1) Additions A1 through 44 can be compacted in a tree ofnate selection also disables all possible optimizations, thus re-
additions for critical path reduction (throughput optimizasulting in a poor implementation. In general, all possible opti-
tion). mizations are not known in the preprocessing DfD phase. There-
2) The number of multiplications can be reduced by afere, we propose in this paper a cut selection process, which is
plying the distributivity rule to multiplicationg/1 and guided using heuristics that determine the likelihood that an op-
M2 and additionA5 (area optimization). eration can be involved in a transformation.

KOUSHANFAR et al: SYMBOLIC DEBUGGING OF EMBEDDED HARDWARE AND SOFTWARE 395

Il. RELATED WORK and depends on the breakpoint variable. If any one of the
We survey the related works along two lines: Comyariables depending on the breakpoint variable is computed,
puter-adided design (CAD) for debugging and sy./mbolit@en the breakpoint variable has already been computed.
debugging of optimized code. In the CAD domain, recently

Powley and De Groat [19] developed a very high-speed inte- IV. DESIGN FORSYMBOLIC DEBUGGING

grated-circuit hardware description language (VHDL) model | this section, we present two symbolic debugging algo-
for an embedded controller . The model supports debuggingithms. The first, presented is Section IV-A, targets fast variable
the application software. Koagt al.[12] proposed an approachcomputation. The motivation for this approach is that embedded
for source-level debugging of behavioral VHDL in a wayargware—software often have infinite-stream semantics (e.g.,
similar to softwar_e source—le\{el debugging through the use &nchronous data-flow) and, therefore, require long simulation
hardware emulation. Simulation has been used for functiofghes. In this situation, it is important to continuously calcu-
debugging [16]. Hennessy [7] introduced the problem of dgste values of the user specified variables in the initial specifica-
bugging optimized code, defined the basic terms, and presenjigdl. This calculation is conducted most often on personal work-
measurements of the effects of some local optimizations. DQgations which has relatively limited computationall resources
[4] and CXdb [2] are two examples of real debuggers fQfompared to the dedicated embedded hardware.

optimized code that do not deal with global optimizations. The second debugging approach, presented in Section IV-B,
Adl-Tabatabai and Gross [1] discussed the problem of rgmms to enable symbolic debugging while preserving all the po-
trieving the values of source variables when applying globgdntial of the computation to be optimized using transforma-
scalar optimizations. When the values of source variables ghs. Transformations are often the best way to optimize em-
inaccessible or inconsistent, their approach just detects ayiided hardware—software. Therefore, the two approaches are
reports it to a user. Our approach provides the efficient methﬁ’fi‘iependent and in some sense orthogonal. They can be com-
of retrieving the values of such source variables. CAD-relatgghed by forming a composite objective function for both goals.

debugging efforts include [10], [11], [13]. Instead of combining them in arbitrary way without specific de-
sign goals, we decided to evaluate their individual effectiveness.
Ill. COMPUTATIONAL AND HARDWARE MODEL Note that both proposed symbolic debugging techniques pro-

We represent a computation by a hierarchical CDFG coﬁ'—de. completeT .|nfo.rmat|on about all variables in the initial be-
glloral specification.

sisting of nodes representing data operators or subgraphs aA
edges representing the data, control, and timing precedence .) .
[20]. The computations operate on periodic semiinfinitd: Selection of Optimal Golden Cuts for Fast Variable
streams of inputs to produce semiinfinite streams of odgOMPutation
puts. The underlying computational model is homogeneousin response to a user inquiry about a source variabiethe
synchronous data flow model [14], which is widely used isource CDFG, we first need to determine if the variabéxists
computationallly intensive applications such as image amidthe optimized CDFG. This step can be efficiently performed
video processing, multimedia, speech and audio processihgkeeping alist of variables that exist in both the source and op-
control, and communications. timized CDFGs. If the variable exists in the optimized CDFG,
We do not impose any restriction on the interconnect schemve need to confirm if the value of the variahlés still stored in
of the assumed hardware model at the register-transfer lewetegister. Due to register sharing, the register holding the vari-
Registers may or may not be grouped in register files. Each haattle x may store a different variable at the time of the inquiry.
ware resource can be connected in an arbitrary way to anotfiéis can be handled by checking the schedule of variables for
hardware resource. The initial design is augmented with addegisters. At the time of the inquiry, only the variables stored in
tional hardware that enables controllability in the “debugginghe registers are available. If any one of the answers is negative,
mode. The following input operation is incorporated to providéhen the variable needs to be computed from the golden cut.
complete controllability of a variable Varl using user specified Our proposed method requires that the golden cut should be
input: Inputl: if(Debug) theVarl = Inputl. chosen to result in minimum debugging time, optimal design
The problem of setting breakpoints is handled in the folnetrics, and complete debugging of optimized program as pos-
lowing way. A breakpoint can be set in any variable such thaible. The last requirement stems from the fact that our method
the execution of the program must stop immediately aftexecutes part of the source program to get the value of a source
performing the operation producing the breakpoint variableariable in request. Because our goal is to debug the optimized
Since the optimized code instead of the source code is runnprggram, the part of the source program should be minimal. Sev-
usually on multiprocessors, the problem of determining wheamal conflicting requirements about a golden cut can be identi-
to stop the execution of the optimized code for a breakpoint ditd. First, a golden cut should be as small as possible in order
in the source code is not straightforward. If the variable set asminimize the disruption of the optimization potential of op-
a breakpoint exists in the optimized code, the execution of thimization techniques. Second, a golden cut should not be too
optimized code stops immediately after the control step whisimall in order to minimize the debugging time. For example,
produces the variable. If not, we stop the execution of ttea empty golden cut is the smallest golden cut that will mini-
optimized code immediately after the control step producingize the disruption of the optimization potential, but it will re-
any variable that exists in both the source and optimized codsat in an optimized code with long debugging time. Finally, a

396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

and constants [and k e
E' =9
Repeat O% ==l =2l
Calculate |cg: (e)] of all edges
after the most recently inserted pipe stage. \@ @

If all [cei(e)| <k
break Fig. 6. Modeling a hyperedge in flow network.

Mark as “green” the edges with | < |cg/(e)] < k.

Construct a flow network for the subgraph with

only green edges and their incident nodes.

Find a minimum cut of the flow network using

a maximum flow algorithm.

E' « FE'U {edges of the new cut}.

Return E’

Given: a directed acyclic hypergraph H(V, E) @ = @
[

Fig. 5. Pseudocode of the basic heuristic for the golden cut prolblandk
are lower and upper boundaries, respectively, where edge can be selecteg_-i@r

CG 7. Construction process of a flow network for the “green” subgraph: the

flow network. Original hypergraph consists of four nodes: v1, v2, v3, and v4,
where v1 sends data to v2 and v3; v2 and v3 send data to v4.

golden cut should be large enough to ensure the complete de-
bugging of the optimized code. This requirement is satisfied by add two edgegu, n;) and(nz, u). Assign unit capacity to
the golden cut with all the variables in the source CDFG, which the edggn;,n2) and infinite capacity to all other added
results in no optimization potential to be realized. Therefore, a edges (see Fig. 6).
golden cut should be chosen by balancing all these conflicting2) A “dummy” source nodes and a “dummy” sink node
requirements. t are added to the subgraph. From the source node, we
We consider the problem of finding the smallest complete add edges with infinite capacity to all the source nodes
golden cut such that every source variable can be computed by at in the original subgraph. We also add edges with infinite
mostk operations starting from the golden cut. More formally, capacity from all the sink nodes in the original subgraph
the problem can be defined as the following. to the sink.
Problem: Given adirected acyclic hypergragh(V, E), find
the smallest set of edgés’ such that for every edge€ E,a The construction process for an example graph is shown in
conec of e with respect ta&” has at most nodes, where eone Fig. 7. A minimum cut of the constructed flow network can
c of e with respect ta” is a set of nodes consisting of nodes oRe found using various approaches such asx{# || E|)-time
paths from all edges i’ to c. algorithm in [21]. We use linear programming for solving a flow
We define hyperedge as collection of edges that go fromnatwork by relying on a public domain packaggesolve [17].
node to other nodes. The reason behind this definition is th&t the “saturated” edges in the constructed flow network are
these edges correspond to the same variable in the computatigitied to the golden cut. To avoid trivial solutions, we use the
The source program can be described by a directed acyg@er bound!. The constant is experimentally determined so
hypergraph due to the requirement that a complete golden gt high quality golden cuts are obtained. Trivial solution is
be chosen within one iteration of the computation. Note that thige solution wherd is set uniformly to zero, i.e., we always
source and optimized programs in the motivational example age golden cut as far as allowed by the user imposed constraint.
described by a directed acyclic hypergraph. In order to avoid greedy and suboptimal solutions, we consider
The pseudocode of the basic heuristic for the golden cafiges in a belt of sizearound the user-specified distance for
problem is provided in Fig. 5. Intuitively, the heuristic insertgstablishing golden cut. Experimental evaluation indicates that
“pipeline stages” in the hypergraphl so that the number of ; — 2 works well for all examples.
edges with pipeline registers is minimized and the size of theof course, the previous insertions of the pipeline stages will
conefor each edge is less than or equaktd’he pipeline stages affect the quality of the subsequent insertions. Therefore, to fur-
are inserted in sequence. Once a stage is inserted, it stays fixggr improve the heuristic, we employ the iterative improve-
Let|cgr(e)| denote the size of the cone for the edgeith re- ment using the heuristic slightly modified from one described
spect toE’. When calculatingcg (¢)|, we need to traverse thein Fig. 5 as a search engine. The heuristic described in Fig. 5
graph once for each edge. Thi¥(|V||E|) steps are required js modified such that the constahts not fixed and its value
for each pipeline stage insertion. A minimum cut for the subs randomly chosen between one dntbr each pipeline stage
graph with only green edges and their incident nodes can jgertion. LetPipeline(H, k) be the modified heuristic for the
optimally computed in polynomial time by a maximum flow al-hypergrapt with a constank. Let|E’| be the number of edges
gorithm, based on the max-flow min-cut theorem [3]. Using th@ the golden cuf’. The iterative improvement heuristic based
method proposed by Yang and Wong [21], the flow network fain the heuristidipeline(H, k) is described in Fig. 8.
the subgraph is constructed as the following. The DfD algorithm for fast variable computation can be ex-
1) For each hyperedge = (v;v1,...,us) in the sub- plained atthe intuitive level in the following way. The basic idea
graph, add two nodes; andn, and connect an edgeis to start from the boundary of computation defined by its states
(n1,n2). For each node incident on the hyperedge, and primary inputs. Since we want to calculate all variables in

KOUSHANFAR et al: SYMBOLIC DEBUGGING OF EMBEDDED HARDWARE AND SOFTWARE 397

Given: a directed acyclic hypergraph H(V, E)

steps is that the graph does not contain directed cycles. How-
and constant k

ever, it does not guarantee that the modified specification can
be optimized as effectively as the original one. To address this
issue, the search for a computation cut has to reflect the trade-
offs involved with potential optimizations. The developed DfD
for minimal impact on computation performance approach does
not assume that a particular optimization will be performed, but
heuristically quantifies the likelihood that a particular variable
will disappear during the optimization process.
Fig. 8. Pseudocode of the iterative improvement heuristic for the golden cutwe_ propose a set O_f heur'St_'CS that identify variables thgt
problem. Parameter denotes the number of times of iterative improvemen@re likely to be used in generic, area, and throughput opti-
a_ttempts. In our experimentation,_ we u_sed: 1_0 because we observed thatmizations. Low-power constraints can be usua”y described
Pég:ﬁ;values induce longer runtime with no improvements to the quality gs a superpositiqn (?f transform_atiqns for ar‘e‘a and throug_hput
[5]. The set of criteria for optimization-sensitive cut selection
o) o is incorporated into the search process using an objective
the initial behavioral specification, the next component of C‘f'ﬁmctioncb(vi, CDFG). This function attempts to quantify for

must be placed on edges (variables) within this range. The triviglch variabley; the likelihood thaty; disappears during the
and locally optimal solution is to place the cut as far as pogynthesis process

sible. This is not necessarily a good decision because this could
induce a very large cut. Another extreme solution is to place
the cut along the min cut of the edges within the range. Since
there are numerous polynomial time algorithms for this task,
this approach provides provably minimal cut. However, this cut
could be very close to the previous cut, with the eventual result
that a very large number of edges is placed in the cuts. In order
to strike the right balance, we heuristically evaluate several op-
tions that consider alternative solutions within the two extremes.
We leverage on the min-cut max-flow algorithm to optimally lo-

cate minimal cuts when we place a variety of constraints whereThe components of the objective function return quantifiers
the cut can be placed within the allowed range. In order to fugyat represent the tradeoffs involved in decision making for in-
ther enhance the performances of the algorithm and avoid l0gg]sjon of a variable in a complete golden cut. Values of quan-
minima, we employ the basic optimization strategy within thfiers are determined experimentally in a learning process or
iterative improvement paradigm. according to designer’s experience and optimization goals. In
One can envision many sophisticated techniques for cal@yyr experiments, we have used the meta-algorithmics param-
lating /. For example] can be taken from local min cut to theeter tuning procedure [9]. Each component corresponds to the

Minimum Cut = oo
Repeat
E' = Pipeline(H, k)
If |E'} < Minimum Cut
Minimum Cut = |E'|
Golden Cut = E'
Until no improvement in ¢ consecutive iterations
Return Golden Cut

&(v;, ODFG) = « - |GC|
+ fanout(v;)
+ testLinear(v;)
+ test_e_CP(v;)
+ testDistributivity (v;)
x testParallelism(v;)

+ testInputsInCycles(v;).

furthest user-specified distance for each cut. In practice, hotiowing generic optimization objectives.

ever, we observe that simple constant bolird 2 works well
for all examples.

B. Optimization-Friendly Selection of Optimal Golden Cuts

The performance effectiveness of the developed symbolic de- ¢
bugging approach depends strongly on the selection of golden
cut variables. In this section, we identify the tradeoffs involved
in golden cut determination under different optimization con-
straints. Next, we establish the complexity of the cut selection
problem and provide an algorithm for its solution. Finally, we
discuss how certain transformations can affect the cut selection,e
resulting in cut invalidation.

Definition of a Complete Golden CutEvery cycle in the
CDFG must have at least one vertex in the golden cut. A com-
plete cut is a set of variables which bisects all cyclic paths in the
CDFG of a computation.

The definition of a complete golden cut has been adopted
from [10], where cuts are used to transfer minimal computation ¢
states from simulation to emulation engines. Such a definition
of a cut ensures that any variable in the original specification
can be computed from its cut. Necessary and sufficient condi-
tion that all the variables can be computed in finite number of

| GC|—Small cardinality of the golden cuiny additional
constraints imposed on computation will reduce the opti-
mization potential. Therefore, we would like to add as few
as possible constraints.

fanout(v;)—Operations with high fanoutf the resultw;

of an operatiorD; is used as an operand in a relatively
large number of different operations, then it is hard to
apply transformations to the origin@IDFG such thaty;
disappears from it. Thus, it is highly desirable to include
v; in a complete golden cut.

testLinear(v;)—Nonlinear operations: It has been
demonstrated that a collection of linear operations (ad-
dition, subtraction, multiplication with a constant, etc.)
can be transformed optimally and very effectively for
a particular design metric [18]. Therefore, operands or
results of nonlinear operations should be given preference
for inclusion in a golden cut.

test_e_CP(v;)—e-Critical path: During transformations
for almost all design metrics, the critical path of the com-
putation is frequently severely modified. This reasoning
stems from the fact that the critical path usually limits per-
formance of a circuit. Therefore, the golden cut selection

398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

routine should avoid including variables at mesipera- Create a set SCC = ComputeScc(CDFG(V, E)) of strongly
tions close to the critical path. In our experiments, we usec| connected components (3]
e = 20%. For each SCC; € SCC
If |SCC;i| = 1 delete SCC; from SCC
The following optimization indicator has been considered for| CUT = null
area minimization. While SCC # empty
For each SCC; € SCC
* testDistributivity(v;)—Enable distributivity: Low pri- GraphCompaction(SCC;)
ority for cut selection is given to variables that can be in- For each node v; € SCC;

S = ComputeScc(SCC; — vj)

volved in applying distributivity among operations. Since OF(S,v5) = 5. ®(vy, CDFG)

distributivity is the key enabler of reducing expensive op-

End For
erations, such as multiplications or divisions, it is of ut- Select vertex v; which results in max OF(S, v;)
most importance not to disable this transformation. Delete v; from SCC;
. . . SCC+ = S(V;)
In our experiments, we have considered only one transformatio For each SCC; € SCC
for maximizing throughput. If |SCC;i| = 1 delete SCC; from SCC
. . End For
* testInputsInCycles(v;) —Number of inputs in cycles: CUT = CUT U v;

Cycles with higher number of primary input variables End For

have to be carefully cut since input operations can be| End while

commonly extracted from the loop and processed a¢ Procedure GraphCompaction(SCC;)
a highly pipelined structure. This transformation can| For each vertex v; € SCC;

S ; If v; has exactly one input edge E; ; with a source in vy
significantly increase the throughput of the system. For each edge Ex.m

The problem of finding a complete golden cut that obeys the Create edge E; m
requirements of all optimization goals can be defined formally Delete Ei,m
using the following standard format. End For ‘)
PROBLEM: The Complete Golden Cut. Weight(v;} = maz(Weight(v;), Weight(ui))

Delete vg

INSTANCE: Given an unscheduled and unassigned CDFG| g.4 For
CDFG(V, E) with each nodew; weighted according to
®(v;, CDFG) and real numbet. Fig. 9. Pseudocode for the developed algorithm for the complete golden cut
QUESTION: Is there a set of variables GC such that whenroblem.

removed from the CDFG, leaves no directed cycles and the sum

of weights},, cac ®(vi, CDFG) is smaller thank™ ~ function is removed from the set of nodes as well as all adja-
The specified problem is an NP-complete problem singgnt edges. The deleted vertex is added to the resulting cutset.
there is an one-to-one mapping between the special caserpé process of graph compaction, evaluation of node deletion,
this problem when the weights on all nodes are equal and fi§de deletion, and graph updating is repeated until the set of
FEEDBACK ARC SET problem [6]. The developed heuristiqontrivial SCCs in the graph is empty. The set of nodes (vari-
algorithm for this problem is summarized using the pseudocogges) deleted from the computation represents the final cutset
in Fig. 9. The heuristic starts by logically partitioning the grapBe|ection.
into a set of strongly connected components (SCCs) using theonsider the example shown in Fig. 10. The CDFG of
breadth-search algorithm [3]. This algorithm has complexighe third-order Gray—Markel ladder infinite-impulse response
O(V + E), whereV’ is the number of vertices anél is the (j|R) filter, shown in Fig. 10(a), has only one nontrivial SCC.
number of edges in a graph. All trivial SCCs that contaifthe graph compaction step is explained in Fig. 10(b), where
exactly one vertex are deleted from the resulting set since th@ytiex B is merged with vertexd as well as variabléV is
do not form cycles. Then, the algorithm iteratively performgerged with variablél”. In Fig. 10(c) an example of node
several processing steps on each of the nontrivial SCCs. geletion is described. The deleted node creates two smaller
At the beginning of each iteration, to reduce the solutio8CCs.
search space, a graph compaction step is performed. In this step) Discussion of Cut Validity After Applying Transfor-
eachpattP : A ~ Bthatcontainsonlyverticds € P,V # A mations: Once the DfD for minimal impact on compu-
with exactly one variable input is replaced with a new edgational performance procedure modifies the source code
E.4,, which connects the sourckand destinatior and rep- cdfg,, = DfD(cdfg), a synthesis todbTis applied in order to
resents an arbitrary selected edge (variable) of the same pg#herate the final optimized specificatiodfg, = ST(cdfg,,,).
NodesA and B inherit the maximum weight among its currenin general, the synthesis tool should have the freedom to
weight and all the nodes removed from the CDFG due to tierform arbitrary transformations on the source computation.
compaction process using edga 5. The question that can be posed is: Does there exist such a
In the next step, the algorithm decides which node (variablsgt of transformation$T that translates the source specifi-
in the current set of SCCs is to be deleted. The algorithm maleation cdig,,, with an enforced complete golden oB(C into
its decision based on the cardinality of the newly created setaoihew specificatioredfg,, where the enforced cusC is not
SCCs and the sum of objective functions of the currently sa-complete cut? This question can be answered from two
lected cut. The vertex that results in the largest overall objectiperspectives.

KOUSHANFAR et al: SYMBOLIC DEBUGGING OF EMBEDDED HARDWARE AND SOFTWARE 399

TABLE |
GOLDEN CuT Sizes 1, 2, AND 3 ARE
OBTAINED FOR VALUES OFk IN THE LINEAR PROGRAM, SUCH THAT THE FINAL

a) Control data
flow graph

of a third QUERY TIME 1S 0.5, 0.25AND 0.125, RESPECTIVELY, OF INITIAL QUERY TIME
order Gray
Markel Variables | G. Cut | G. Cut | G. Cut
ladder filter Design in CDFG | Sizel | Size2 | Size 3
12th order IIR 56 3 5 9
Avenhaus direct 40 2 5 9
Avenhaus cascade 34 2 4 8
Avenhaus parallel 39 2 5 9
Avenhaus continued 35 2 5 9
Avenhaus ladder 50 3 6 11
DAC 354 7 15 28
Compaction 2nd order Volterra 29 2 4 7
of Aand B —O 3rd order Volterra 50 3 5 9
LMS formatter 464 9 21 45

culation. Section V-B presents our findings about the impact of
symbolic debugging technique for minimal impact on compu-
tation performance.

;L:lf c?;';fcﬁg’i A. Symbolic Debugging with Fast Variable Computation
| We applied our approach to design for symbolic debugging
on a set of ten small industrial examples as well as two large
design examples. The smaller designs include a set of Aven-
haus, Volterra, and IIR filters, an audio digital-to-analog con-
verter, and a least mean square audio formatter. Table | presents
the experimental results for the small designs. We defurery
time as an expected time to retrieve any variable in the source
Vis the node considered Bold edges and nodes program. The time is measured as average number of operations
for deletion represent the remaining that nee_,-ds to l:_)e executed for retrieving the value of a variable.
SCCs when V is deleted Table | is obtained from the constraint that the valutor the
linear program is set such that the filgglery times 50%, 25%,
or 12.5% of the initialquery time The average golden cut size
Fig. 10. Performing the steps of a single iteration of the cutset selectigyith respectto the number of variables was 4.99%, 10.49%, and
procedure. 19.26%, respectively.
The two large designs include the JPEG codec from the Inde-
1) Several examples of computation structures of differependent JPEG Group and the European GSM 06.10 provisional
implementations of the same computational functionalitandard for full-rate speech transcoding, prl-ETS 300036,
(for example: the Gray—Markel ladder, cascade, parallglhich uses residual pulse excitation/long-term prediction
elliptic, and direct-form IIR filters) clearly indicate that, coding at 13 kb/s. Table Il presents the experimental results for
generally, there exist such transformations that enforcee large designs. For the same setjoéry timeconstraints,
given cutin one specification not to satisfy the cut propethe average golden cut size with respect to the number of
tiesin the transformed specification. However, the sophigariables was 2.83%, 6.07%, and 12.72%, respectively. None
tication of such algorithmic transformations is far fronpf the examples resulted in runtimes of the linear programmer
being met by any published synthesis tool. Therefore,|j§rger than a minute.
is not expected that the structure of the computation is
changed drastically during optimization. B. Symbolic Debugging with Minimal Impact on Computation
2) There exist transformations performed by common corperformance

pilers (such as loop fusion, splitting, folding, and un- . .
folding), which modify the loop structure of the compus Proper performance evaluation of the proposed debugging

. ; techniques is a complex problem due to a great variety of op-
tation. However, all of these transformations preserve the . . . o
; timization steps that can be undertaken during design optimiza-
completeness of a cut selected in the DfD phase. . : . ” .
tion using transformations. In addition, it is well known that
the effectiveness of transformations is greatly dependent or the
order in which they are applied. The situation is further com-
This section summarizes our evaluation of two proposed Dfidicated by a great variety of designs. For example, design can
techniques. Section V-A provides information about the effegary tremendously in their size, type of used operations, cycle,

tiveness of symbolic debugging technique for fast variable cand in general topology structure.

¢) An example of edge deletion
and creation of new SCCs.

V. EXPERIMENTAL RESULTS

400 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 3, MARCH 2001

TABLE I TABLE Il
GOLDEN CUT SizEs 1, 2,AND 3 ARE OBTAINED FOR THE VALUE k IN THE COMPARISON OFAREAS OFDESIGNSOPTIMIZED WITH AND WITHOUT THE DfD
LINEAR PROGRAM, SUCH THAT THE FINAL QUERY TIME 1S 0.5, 0.25AND PHASE. ICP—INITIAL CRITICAL PATH; OCP—Q@RITICAL PATH AFTER
0.125, RESPECTIVELY, OF INITIAL QUERY TIME OPTIMIZATION ; GC—CARDINALITY OF THE COMPLETE GOLDEN CUT;
IAREA—OPTIMIZED DESIGN AREA WITHOUT DfD; OAREA—OPTIMIZED
Variables | G. Cut | G. Cut | G. Cut DESIGNAREA WITH DfD; AREA OH—Is THE OVERHEAD IN AREA INCURRED
Design in CDFG Size 1 Size 2 Size 3 DUE TO PREPROCESSING FORBYMBOLIC DEBUGGING
JPEG encoder 4806 120 234 501 Design | ICP | OCP | GC [IArea | OArea | Area OH
Jg SES decoge‘ g;g;’ 19085 ;(2)2 ii? dist 7 1 4 | 4] 796 | 823 | 35%
P 3““’ de‘ Seer = s — chemical 6 3 3 | 25.56 | 26.33 3%
ecocer 5WDF 7 | 5 5 | 8155 | 85 4%
7IIR 10 4 7 42.58 51.95 22%
. . h 11 5 4 49.90 60.38 21%

In order to address this concern, we have applied the n avle;H;uS B 5 5 T 5542 | 681% 23?‘;
tech_nlque on more than hundre(_j designs from the Hyper [8] &R 17 5 5 1 66.26 | 75.53 14%
Medlabench [15] benchr_na_rk_ suites. We ha_/e_ used_thg foII_oyw band-pass 20 5 6 | 172.45 | 214 245
transformations: associativity, commutativity, distributivity noise-shaper | 29 6 9 [23397 | 325.7 39%
zero and inverse element laws, retiming, pipelining, 100 modem 25 6 11 | 238.01 | 330.3 40%
unfolding and folding, constant propagation, substitution (__ DAC 58 3 3 | 4299 | 43.09 0.2%

constant multiplication with shifts and additions, and common

subexpression elimination and replication. In addition, wi :
) : . always at least an order of magnitude faster. We conducted ex-

have used several popular scripts for transformation ordering, . : . . .
. . tehsive experimentation on the weight factors used for the objec-

such as one which guarantees the maximal throughput wl'{en

. . ! ; Ive function in DfD procedure for aggressive optimization. We
applied to linear computation®n the overwhelming number_ "~ . .
X ! X . varied the weight factors for each parameter by scaling each of
of designs, our technique did not incur any cost, regardless

S) fAlem by random factors in range 0.1 to 10. The procedure had
targeted optimization goals: area, throughput, or power :
. . ry consistent performances except for two cases. These two
On two designs (noise-sharper and modem), the Df S .
. . o . cases occur when the cardinality of golden cut and test linear are
procedure induced rather high overhead. This is mainly a con-_. . .
. assigned small weights. Small weight factors for these two com-
sequence of the fact that the designs are very amenable for ver

a0aressive optimization. Addition of anv debuaain constrair?so}l]em often seriously reduce the effectiveness of transforma-
99 P ' y 99Ing tions. On the other hand, setting very high values for these two

reduces this potential. Furthermore, on these twjo designs S)
o : . : components does not have a significant impact on the overall
heuristic scheduling and assignment techniques perform .
2 o effectiveness.
really well on the initial specification, but not so well on the .
. . ; : Fundamentally, a sound way to analyze the experimental re-
modified representation. The Hyper high-level synthesis system . : . L
. h . 2~ Sylts when numerous alternatives are available is to statistically
[20] uses randomized scheduling and allocation algorithms) . .
. . ._..sample the design space for variety of design and transforma-
when applied on large numbers of design, some statisti¢a : . .
. L9 1on orders. While we conducted numerous experiments, we did
outflier effects are inevitable.

The detected exceptions are shown in Table Ill. On these ?r;)?_t try to analyz_e them statistically b_ecause the p_e_rformances_ of
. - . P oth DfD techniques was very consistent. In addition, except in
amples, we applied retiming for joint optimization of latenc

. . : few designs that are shown in Table Ill, we did not observe
and throughput and then maximally fast script for linear COMPU: ., .ot overhead
tations. The designs augmented with additional debugging com™ v '
straints were able to produce the best combination of latency
and throughput. However, on some of them, notable area over-
head was induced due to the added constraints. Closer analysi&/e addressed the problem related to the retrieval of source
of these examples indicates that the symbolic constraints wralues for the globally optimized behavioral specifications. We
duced a need for computation of additional variables used omisesented an approach for a symbolic debugger to retrieve and
for debugging purposes. The used combination of transforntisplay the value of a variable correctly and efficiently in re-
tions drastically changed the structure of computations such tspbnse to a user inquiry about the variable in the source spec-
the initial selection of cut resulted in a need for significant adfication. The implementation of the new debugging approach
ditional computation. It can be concluded that although it {sosed several optimization tasks. We formulated the optimiza-
possible to find examples with additional overhead due to etien tasks and developed efficient algorithms to solve them. The
forced computation of the golden cut, such cases occur rarelectiveness of the proposed approach was demonstrated on a
and they are commonly associated with application of rathget of designs.
complex and sophisticated transformation scripts for optimiza-
tion of complex objective functions. Such design objectives are REFERENCES
desired rarely in modern design practice. [1] A.-R. Adl-Tabatabai and T. Gross, “Source-level debugging of scalar

Both symbolic debugging techniques are faster on average optimized code,'SIGPLAN Not.vol. 31, no. 5, pp. 33-43, May 1996.
than the Hyper scheduling and assignment procedures. Whil&] G. Brooks, G. J. Hansen, and S. Simmons, “A new approach to debug-
DfD for fast calculation has just somewhat lower runtime than ging optimized code SIGPLAN Not.vol. 27, no. 7, pp. 1-11, July 1992.
[3] T.H. Cormen, C. E. Leiserson, and R. L. Rivdsttroduction to Algo-

the Hyper synthesis procedures, the second technique is almost rithms New York: McGraw-Hill, 1990.

VI. CONCLUSION

KOUSHANFAR et al: SYMBOLIC DEBUGGING OF EMBEDDED HARDWARE AND SOFTWARE 401

[4]

5]

(6]

(71
(8]

[9]

[10]

(11]

[12]

(23]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

D. S. Coutant, S. Meloy, and M. Ruscetta, “DOC: A practical approacharinaz Koushanfar received the B.S. degree in electrical engineering from
to source-level debugging of globally optimized cod8lGPLAN Not. Sharif University of Technology, Tehran, Iran, in 1998 and the M.S. degree in
vol. 23, no. 7, pp. 125-134, July 1988. electrical engineering from the University of California, Los Angeles, in 2001.
S. Dey, A. Raghunathan, N. K. Jha, and K. Wakabayashi, “Corghe is currently working toward the Ph.D. degree in electrical engineering and
troller-based power management for control-flow intensive designs;fbmputer science at the University of California, Berkeley.

IEEE Trans. Computer-Aided Desigwol. 18, pp. 1496-1508, Oct. Her current research interests include design and debugging of embedded
1999. systems, wireless distributed embedded systems, and, in particular, wireless ad
M. R. Garey and D. S. Johnso@pmputers and Intractability: A Guide hoc sensor networks, sensor network optimizations, and computational security.
to the Theory of NP-CompletenessSan Francisco, CA: Freeman, Ms. Koushanfar is a recipient of the National Science Foundation Graduate
1979, p. 192. Research Fellowship.

J. Hennessy, “Symbolic debugging of optimized cod«CM Trans. Pro-

gram. Lang. Systvol. 4, no. 3, pp. 323—-344, July 1982.

A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. W.))) . .
Brodersen, “Optimizing power using transformationtZEE Trans. Darko Kirovski received the M.S. and Ph.D. degrees from the University of

Computer-Aided Desigvol. 14, pp. 12-31, Jan. 1995. Califo_rnia, Los Angeles, in 1997 a_nd 2Q00, respectively. '

D. Kirovski and M. Potkonjak, “System-level synthesis of low-power He is currently a Researcher with Microsoft Research, Redmond, WA. His
hard real-time systems,” iroc. Design Automation Conflune 1997, current resea_rch. interests include various aspects of design and debugging of
pp. 697—702. system-on-chip, intellectual property protection, and content protect systems.
D. Kirovski, M. Potkonjak, and L. M. Guerra, “Improving the observ- Dr. Kirovski received a Microsoft Research Graduate Fellowship and a DAC

ability and controllability of datapaths for emulation-based debugging@raduate Fellowship.

IEEE Trans. Computer-Aided Desigwol. 18, pp. 1529-1541, Nov.
1999.

——, “Cut-based debugging for programmable systems-on-chgigE
Trans. VLSI Systvol. 8, pp. 40-51, Feb. 2000.

G. Koch, U. Kebschull, and W. Rosenstiel, “Debugging of behavior;

VHDL specifications by source-level emulation,” #roc. Eur. Design g js currently a Senior Research and Design Engineer with the Physical Syn-
Automation Conf.Sept. 1995, pp. 256-261.) _thesis Group at Synopsys, Inc., Mountain View, CA. He has authored or coau-
F. Koushanfar, D. Kirovski, and M. Potkonjak, “Symbolic debuggingnsred more than 20 papers. His current research interests include system-level

scheme for optimized hardware and software Pioc. IEEE/ACM Int. gynihesis, physical synthesis, intellectual property protection, and verification.
Conf. Computer-Aided Desighov. 2000, pp. 40-44.

E. A. Lee and D. G. Messerschmitt, “Synchronous data fldwrdc.
IEEE, vol. 75, pp. 1235-1245, Sept. 1987.
C. Lee, M. Potkonjak, and W. H. Mangion-Smith, “MediaBench: AMiodrag Potkonjak (S'90-M'91) received the Ph.D. degree in electrical en-
tool for evaluating and synthesizing multimedia and communication sygineering and computer science from the University of California, Berkeley, in
tems,” inProc. Int. Symp. Microarchitecturd 997, pp. 330-335. 1991.
C. Liem, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya, In 1991, he joined C&C Research Laboratories, NEC USA, Princeton, NJ.
“System-on-a-chip cosimulation and compilatiodEEE Des. Test Since 1995, he has been with the University of California, Los Angeles, where
Comput, vol. 14, pp. 16-25, Apr.—June 1997. he is currently a Professor with the Computer Science Department. His current
M. R. C. M. Berkelaar. LP Solve User’s Manual, version 1.5. Eindhoveresearch interests include communication systems design, embedded systems,
Univ. Technol. [Online]. Available: ftp://ftp.es.ele.tue.nl/pub/lp_solve computational security, and intellectual property protection.
M. Potkonjak and J. Rabaey, “Maximally and arbitrarily fastimplemen- Prof.. Potkonjak received the National Science Foundation CAREER Award,
tation of linear and feedback linear computation&EE Trans. Com- the OKAWA Foundation Award, the University of California at Los Angeles
puter-Aided Desigyvol. 19, pp. 30-43, Jan. 2000. TRW SEAS Excellence in Teaching Award, and a number of best paper awards.
G. S. Powley and J. E. DeGroat, “Experiences in testing and debugging
the 1960 MX VHDL model,” in Proc. VHDL Int. Users ForumMay
1994, pp. 130-135.))
J. M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping Marlps C. Papaefthymlou‘(M 91) received the Ph.D. degree in electrical engi-
datapath-intensive architecture$2EE Des. Test Computvol. 8, pp. N€ering and computer science from the Massachusetts Institute of Technology,
40_51, June 1991. Cambridge, MA, in 1993.
H. Yang and D. F. Wong, “Efficient network flow based min cut balanced Heis an As_sociate Professor of Electrical Engineerjng and Computer Science
partitioning,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Desjgn anc_i Act_|ng D|re_ctqr of the Advanced _Computer Archltect_ure Labo_ratory at the
Nov. 1994, pp. 50-55. University of Michigan, Ann Arb_or. His current research interests include sev-
L. Yang, D. Gao, J. Mostoufi, R. Joshi, and P. Loewenstein, “System dgral aspects of very large scale integration systems design with an emphasis on
sign methodology of UltraSPARC-1,” iRroc. Design Automation Conf. timing and energy-_related problems. He is also active in the field of parallel and
June 1995, pp. 7-12. distributed computln_g. _
A. Yu, “The future of microprocessorsiEEE Micro, vol. 16, pp. 46-53, Prof. Papaefthymiou received a Best Paper Award at the 1995 ACM/IEEE
Dec. 1996. Design Automation Conference, an ARO Young Investigator Award, an
National Science Foundation CAREER Award, and several IBM Partner-
ship Awards. He is an Associate Editor for the IEERANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS and for
the IEEE TRANSACTIONS ONCOMPUTERS

Inki Hong received the M.S. degree in computer science from Stanford Univer-
ﬁity, Stanford, CA, in 1994, and the Ph.D. degree in computer science from the
Qniversity of California, Los Angeles, in 2001.

