
54 November/December 2019 Copublished by the IEEE Computer and Reliability Societies 1540-7993/19©2019IEEE

DEEP LEARNING ON PRIVATE DATA

Deep Learning on Private Data
M. Sadegh Riazi, Bita Darvish Rouhani, and Farinaz Koushanfar | University of California San Diego

Emerging complex deep neural networks require vast amounts of data to achieve high precision. However,
the information is often collected from user logs and personal data. In this article, we summarize recent
cryptographic methodologies for provably privacy-preserving deep learning and inference.

W ith the ever-increasing volume of data in our
digital world, powerful machine-learning

models are needed to efficiently process the vast
amount of information in different applications and
industries. Hierarchical deep neural networks (DNNs),
also known as deep learning (DL) techniques, provide
efficient modeling methodologies for automatic extrac-
tion of the underlying features in the content. In several
important and frequent tasks, including visual clas-
sification, game playing, and speech recognition, DL
achieves superior accuracy in comparison with human
cognition.

In a supervised setting, DL involves two distinct
phases: training and inference (prediction). Figure 1
illustrates a high-level block diagram of the learning
process for devising a typical machine-learning system.
The performance of a DL model is directly dependent
on the volume of available training data. However, the
training samples are usually collected from users’ con-
tent stored on cloud servers—content that contains
sensitive information, such as images, voice recordings,
location logs, and medical records.

Users’ privacy is of critical concern not only dur-
ing training but also for inference. Internet companies
are now providing machine learning as a service where
users can send their queries to cloud servers and receive

a prediction result by paying certain fees. These queries
can include sensitive data, such as users’ health records,
sent to the remote DL servers for medical diagnosis.

One naïve solution to mitigate the risk of data leak-
age during DL inference is to have consumers download
the model and run it on their own trusted platform.
But this solution is not attainable in real-world settings
because the DL model is learned by processing massive
amounts of training data. As such, the trained artificial
intelligence models are usually considered to be sensi-
tive intellectual property.1 Companies require confi-
dentiality to preserve their competitive advantage.

In a nutshell, three main requirements should be
considered in privacy-preserving DL.

1. During the training phase, users’ sensitive data should
not be revealed to the central server that is training the
DL model.

2. During inference, users’ queries should not be
revealed to the server.

3. The server’s proprietary DL model should not be
revealed to the user.

Efficient methodologies for private inference and
training are essential for future advances in deep learn-
ing. In theory, any function can be evaluated on private
inputs from two or more distinct parties using secure
function evaluation (SFE) protocols. However, a naïve
transformation of a particular function using the generic

Digital Object Identifier 10.1109/MSEC.2019.2935666
Date of current version: 24 September 2019

www.computer.org/security 55

SFE protocols incurs several orders of magnitude of
overhead, both in terms of computation and communi-
cation. To empower privacy-preserving computation in
the context of DL, it is crucially important to devise novel
domain-specific customized techniques that can reduce
the complexity of SFE protocol execution.

This article pres-
ents a systemiza-
tion of knowledge
of the most recent
privacy-preserving
frameworks for DL
and provides a com-
prehensive compari-
son in terms of the
unique proper ties
and performances on
standard benchmarks. We also include a summary of
the recent attacks and illustrate how they are related to
privacy-preserving frameworks. Pertinent terminology
can be found in “Glossary of Low-Level Building Blocks
Leveraged for Privacy-Preserving Deep Learning.”

DNNs
DL is a subclass of machine learning that resembles the
functionality of a human brain. There are different vari-
ants of DL architectures. However, all of them have a lay-
ered structure, starting from an input layer and ending
with an output layer. There can be one or more layers
in between, which are called hidden layers. The output
of a given layer is the input to the next layer. Once new
raw data are given as input to the NN, the output of each
layer is computed until reaching the final output layer. In
most cases, the output values represent the probabilities

of different classes that the input can belong to. Popular
main categories of the neuron networks that are widely
used in DL are DNNs, convolutional NNs (CNNs), and
recurrent NNs (RNNs).

The DNN is a more generic architecture used in vari-
ous applications. The most computationally expensive

parts of a DNN involve
matrix multiplication,
also known as fully con-
nected layers. In addi-
tion, DNNs have an
activation layer, which
is the only nonlinear
part of their struc-
ture. Popular activa-
tion functions include

the rectified linear unit
(ReLU), logistic Sigmoid, and hyperbolic tangent. The
output layer is usually a softmax layer that translates the
output of the last hidden layer to a probability vector. In
addition to the aforementioned layers, CNNs have

■ one or more convolution layers, each of which is a
weighted sum of different segments of the previous
layer; these weights as well as the weights in the fully
connected layer are learned in the DL training phase

■ one or more pooling layers, each of which selects either
the average (mean-pooling) or maximum (max-pooling)
of different segments in the previous layer.

CNNs are specifically used where input data have
spatial correlation, such as in facial recognition systems.
In contrast to DNNs and CNNs, RNNs have an inter-
nal state. This characteristic makes RNNs suitable for

Training

Inference
(Prediction)

Medical Diagnosis
(Output Label)

Trained Model

Figure 1. An overview of training and inference in DL.

Efficient methodologies for private infer-
ence and training are essential for future
advances in deep learning.

DEEP LEARNING ON PRIVATE DATA

56	 IEEE Security & Privacy� November/December 2019

applications where a sequence of input data needs to be
processed. RNNs are widely used for speech recognition.

Delivering an efficient solution for privacy-preserving
DL has been an active research area in recent years.
The proposed frameworks can be categorized based
on supporting training or inference. Training and infer-
ence are inherently different. In training, the data are

usually distributed among many parties, and a central-
ized entity, e.g., an Internet company, may wish to learn
the model on all of the data samples. Therefore, training
the model without revealing each party’s input is essen-
tially a multiparty problem. In contrast, inference is a
two-party problem in which one party holds an already
trained model and another party has a private input.

Glossary of Low-Level Building Blocks Leveraged
for Privacy-Preserving Deep Learning

■■ Garbled circuits (GC)S1: This is one of the generic secure function evaluation (SFE) protocols introduced by
Andrew Yao in 1986. It enables two parties, Alice and Bob, to jointly compute a function on their private inputs
without revealing anything but the outcome of the function. The first step in utilizing this protocol is to describe
the function as a Boolean circuit with two-input logic gates. Alice then starts assigning random keys to each wire
in the circuit. For each gate, she encrypts the output keys of the gates using the corresponding input key pairs
and forms garbled tables. She sends all of the garbled tables as well as the input keys associated with her input.
Bob also acquires the correct keys associated with his input. After that, Bob decrypts each gate one by one until
he finds the output keys. Finally, Alice provides the mapping between the output keys to the true semantic values
to generate the plaintext output of the function. Note that the number of interactions between Alice and Bob is
constant and independent of the function.

■■ Goldreich–Micali–Wigderson (GMW)S2: This is another generic SFE protocol. Similar to GC, GMW requires that
the function be described as a Boolean circuit. However, unlike GC, two parties need to interact for every and
gate. Therefore, by paralleling all of the independent and gates, the communication round complexity is linear
with respect to the depth of the circuit. The GMW protocol requires only small communication for each gate
compared to the GC protocol.

■■ Secret sharing (SS): This is a method to distribute a secret to two or more parties where each share does not
provide any information about the secret, but the secret can be reconstructed from the shares. One of the most
popular SS variants is additive SS. In this case, a secret is shared by sampling random numbers and creating the
last share such that the summation of all of the shares yields the secret value. The secret can be reconstructed by
adding all of the shares.

■■ Homomorphic encryption (HE): This is a cryptographic primitive that enables one party to encrypt data and
send it to another party, who can then perform certain operations on the encrypted version of the data. Upon
completion of the computation, the encrypted version of the result is sent back to the first party, who can then
decrypt it and get the result in plaintext. For example, an additively HE, such as the Paillier cryptosystem,S3
supports addition on the encrypted version of two numbers. In a fully HE,S4 an arbitrary functional logic can be
computed.

■■ Differential privacy (DP)S5: This is a metric that defines how much information about a single entry in a database
is revealed upon a query to the database. To preserve the privacy of database entries, carefully chosen noise is
added to the database, such that the statistical properties of the database are preserved while each data point is
changed because of the added noise. Equivalently, DP can be seen as a way to reduce the dependency between
the outcome of a computation and one of the data points in the database, thus reducing information leakage.

References
S1.	A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. 27th IEEE Annu. Symp. Foundations Computer Sci-

ence, (sfcs 1986), pp. 162–167.
S2.	O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” in Proc. 19th ACM Annu. Symp. Theory

Computing, 1987, pp. 218–229.
S3.	P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Proc. Int. Conf. Theory and

Applications Cryptographic Techniques, 1999, pp. 223–238.
S4.	C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. Annu. ACM Symp. Theory Computing, vol.

9, 2009, pp. 169–178.
S5.	C. Dwork, “Differential privacy,” in Encyclopedia of Cryptography and Security. New York: Springer-Verlag, 2011,

pp. 338–340.

www.computer.org/security 57

Privacy-preserving DL frameworks can also be cat-
egorized based on the family of the utilized secure
computation protocols, i.e., homomorphic encryption
(HE), garbled circuits (GC), secret sharing (SS), and
Goldreich–Micali–Wigderson (GMW). While all of
these methods have provable privacy properties, each
of them has specific characteristics and capabilities. In
addition to secure computation approaches, differen-
tial privacy (DP) has been suggested as a solution for
mitigating the information leakage when training a NN.
However, unlike SFE protocols, DP does not provide a
perfectly leakageproof solution.

Private Training
In what follows, we present a brief description of the
systems and frameworks to train a DL model on a set of
distributed data sets held by different individuals while
preserving the data confidentiality and privacy of the
data owners.

One approach, explored by Shokri and Shmatikov,2
is to have each party locally train his or her version of
the DL model and selectively share some of the updated
parameters with a central server. The intuition is that
optimization algorithms can be run in parallel by differ-
ent individuals, and the results can be aggregated later
on. To further mitigate the information leakage, the
authors add specific noise to the model updates before
sharing them instead of sending the raw values to the

server. As a result, they introduce a tradeoff between
the accuracy of the trained NN and the privacy of data.
While this solution has a minimal computation over-
head, it does not provide provable security guarantees in
collaborative training. As we discuss later in this article,
it has been shown that a malicious party can infer sensi-
tive information about other participants’ private data in
this setting.

In light of designing a system with concrete privacy guar-
antees, Google has announced a cryptography-based
approach for secure data aggregation in which updates
from all clients are aggregated without revealing each
individual update.4 The protocol is based on Shamir’s
SS and is robust against clients exiting the protocol at
any time.

The task of privacy-preserving training can be ap -
proached differently where the training data are secret
-shared by each data owner to two (or more) non
-colluding servers (SecureML and SecureNN). These
servers execute specific secure computation protocols to
train a DL model while keeping the training data private.
All of the intermediate values are secret-shared among
servers, and at the end of the protocol, servers hold a
share of the trained model. The secret-shared model can
be used directly in subsequent secure computation pro-
tocols to provide privacy-preserving inference, or the
trained model can be reconstructed from the shares to
achieve the model in cleartext. In the SecureML3 system,

Table 1. The characteristics of privacy-preserving inference frameworks and their underlying
cryptographic primitives.

Framework
Preserving
accuracy

Constant
number of
interactions

DL model
preprocessing

Scalability
for large
DL models

Nonpolynomial
activation and
max-pooling

Cryptographic
protocol(s)

CryptoNets Leveled HE

SecureML Linearly HE,
GC, SS

MiniONN (with
Sqr Act.)

Additively HE,
GC, SS

MiniONN (with
ReLU and pooling)

DeepSecure GC

DeepSecure (plus
preprocessing)

Chameleon GMW, GC, SS

Gazelle Additively HE,
GC, SS

XONN GC, SS

Conv: convolutional; Sqr Act: square activation function.

DEEP LEARNING ON PRIVATE DATA

58	 IEEE Security & Privacy� November/December 2019

the authors propose a method to train and run DL models
securely. The solution is based on HE, GC, and SS. Data
owners secret-share their data to multiple noncolluding
servers, which privately train the NN. SecureML uses a
customized activation function that is more efficient for
training a neural network using secure computation pro-
tocols. The SecureNN framework (SecureNN) proposes
new protocols for training and inference on deep neural
networks using three noncolluding servers. The training
time and communication between servers can be signifi-
cantly reduced in this computation model. Similarly, the
ABY3 framework (aby3) introduces new protocols in the
three-server setting where intermediate values are kept in
arithmetic, binary, and Yao shares during the protocol exe-
cution. Compared to the two-party SecureML system, the
training time is reduced by up to four orders of magnitude.

We do not quantitatively compare the solutions for
privacy-preserving training since the methodologies have
different security guarantees and computational models.
Therefore, comparing the training times is not meaningful.

Private Inference
In the past few years, privacy-preserving inference
for an already trained NN has been the main research
focus. In this article, we discuss the suggested meth-
ods. The high-level comparison of the frameworks is
provided in Table 1, while the quantitative compari-
son of their performance is shown in Table 2. All of the
discussed frameworks are secure in the honest-but-
curious (HbC) adversary model in which all parties
are assumed to follow the protocol, although they
might attempt to infer more information based on the

data they send and receive. The HbC adversary model
is a stepping stone to more powerful models, such as
security against malicious adversaries, where any party
can deviate from the protocol at any time.

Developed by Microsoft Research, CryptoNets5
leverages leveled HE,6 a variant of HE that supports a cer-
tain number of consecutive multiplications of a cipher-
text. In HE, ciphertexts inherently have some noise. After
each multiplication, the noise grows, and after many mul-
tiplications, the result is no longer correct. Therefore, the
parameters of HE, e.g., the size of the ciphertext, can be
adjusted based on the security threshold and the num-
ber of multiplications that the scheme has to support.
The latter is derived from the NN architecture. Relying
on leveled HE has the benefit that the client has to do
significantly less computation compared to the server,
which is usually computationally more powerful. How-
ever, popular nonpolynomial activation functions such
as ReLU cannot be realized efficiently using HE. The
authors propose to approximate the activation functions
using low-degree polynomials. Therefore, the NN model
should be retrained in plaintext using the same activation
function to maintain high prediction accuracy.

Perhaps the most critical limitation of this approach
is that increasing the number of layers in the NN model
requires larger ciphertext size, which, in turn, signifi-
cantly increases the computation and communication
overhead. Researchers report experimental results
on the Modified National Institute of Standards and
Technology (MNIST) data set, which is a collection of
handwritten digits, each represented as a 28 × 28 pixel
image where each pixel takes a gray-scale value between

Table 2. A performance comparison of different frameworks for privacy-preserving inference (prediction) on the
MNIST data set, given similar computational platforms.

Framework

Prediction timing (s) Communication (MB)
Accuracy
(%) DNN architectureOffline Online Total Offline Online Total

CryptoNets – 297.5 297.5 – 372.2 372.2 98.95 Conv-Sqr Act-MeanP-Sqr Act-FC

SecureML 4.7 0.18 4.88 – – – 93.1 FC-Sqr Act-FC-Sqr Act-FC

MiniONN (with Sqr Act.) 0.9 0.14 1.04 3.8 12 15.8 97.6

DeepSecure – 9.67 9.67 – 791 791 99 Conv-ReLU-FC-ReLU-FC

DeepSecure (plus
preprocessing)

– 1.08 1.08 – 88.2 88.2 99

Chameleon 1.34 1.36 2.7 7.8 5.1 12.9 99

MiniONN 3.58 5.74 9.32 20.9 636.6 657.5 99 Conv-ReLU-MaxP-Conv-
ReLU-MaxP-FC-ReLU-FC-
ReLU

Gazelle 0.65 0.51 1.16 47.5 22.5 70.0 99

XONN – 0.15 0.15 – 32.13 32.13 99

FC: fully connected layer; MaxP: max-pooling; MeanP: mean-pooling.

www.computer.org/security� 59

zero and 255. To perform a single private inference,
CryptoNets takes 298 seconds and requires 372 MB of
communication.

In light of supporting nonpolynomial activation
functions and pooling operations, the DeepSecure8
framework has been introduced, which uses GC as its
backbone cryptographic engine. DeepSecure does not
require a retraining procedure and supports any activa-
tion and pooling functions. Additionally, DeepSecure
introduces the idea of reducing the size of the data and
the network by a preprocessing stage and before execut-
ing the GC protocol, thus compacting the computation
and communication. The preprocessing stage is indepen-
dent of the underlying cryptographic protocol and can be
adopted by any other back-end engines.

The major downside of GC is the enormous com-
munication overhead for multiplication, a ubiquitous
operation in all NN models. To evaluate any function
in GC, the functionality has to be described as a Bool-
ean circuit. Since the number of Boolean gates in the
multiplication circuit grows quadratically with respect
to the bit width of operands, realizing secure multipli-
cation in GC is inefficient.

To benefit from the best characteristic of differ-
ent secure computation protocols, several frameworks
are proposed that rely on mixed-protocol methodolo-
gies. The MiniONN framework7 proposes to use GC
to execute nonlinear activation functions and SS-based
methods to execute linear operations. MiniONN has
two main computation phases: an offline phase, based
on additively HE to precompute random shares that are
independent of the actual inputs, and an online phase,
based on GC and SS.

The Chameleon framework9 utilizes the GMW pro-
tocol for low-depth nonlinear activation functions and
GC for more complicated nonlinear activation func-
tions, e.g., Sigmoid, as well as for pooling layers. All
arithmetical operations, such as addition and multipli-
cation, are performed using SS. Similar to its concurrent
work, MiniONN, Chameleon has offline and online
computation phases. Most of the computation is shifted
to the offline phase to provide a fast online prediction
phase. The offline phase consists of creating the corre-
lated randomness used in the online phase for all three
protocols, i.e., GC, GMW, and SS. These random (but
correlated) shares are independent of the actual inputs
and functionality that are being evaluated; they have to
be created by a third party.

Similar to SecureML, Chameleon requires the
presence of two noncolluding servers. However, in
contrast to SecureML, the third party is not involved
in the online phase. Moreover, the functionality of the
third party can be replaced using the Intel Software
Guard Extension (SGX)10 and achieve a two-party

computation model. The GMW protocol in Cha-
meleon supports single instruction, multiple data
(SIMD), which creates a way to process the same opera-
tion on multiple data considerably faster.

Gazelle15 is another mixed-protocol solution that sug-
gests leveraging HE to perform linear operations and GC
for nonlinear activation functions. The authors propose
an efficient algorithm to realize convolutional layers using
HE. As a result, Gazelle improves the runtime of private
inference and reduces the communication between the
client and the server.

While mixed-protocol solutions offer an interesting
approach to reduce the private inference runtime, they
require (at least) one round of interaction between cli-
ent and server per each layer in the neural network. In
Internet settings, this property can significantly deteri-
orate the performance and increase the execution time
due to high communication delay.

The XONN system16 introduces a different approach
and suggests transforming the neural network such that
the underlying operations are more compatible with
secure computation protocols. The authors propose to
binarize the neural network to avoid any multiplication
during the private inference. In other words, all parame-
ters and weights in the NN are restricted to take a binary
value, zero or one. This, in turn, transforms the multi-
plication to a combination of XOR and bit-count opera-
tions. By relying on the GC protocol as the back-end
cryptographic engine, the XOR operation can be exe-
cuted with negligible computation and no communi-
cation.19 As a result, XONN achieves state-of-the-art
performance in private inference. In addition, XONN
requires only a constant number of communication
rounds regardless of the number of layers in the NN.
Relying on standalone GC leads to another advantage,
too: the solution can be upgraded using standard proto-
cols to be secure against active adversaries that can devi-
ate from the protocol at any time. The authors report
experimental results on four medical data sets to enable
secure and privacy-preserving medical diagnosis for
breast cancer, diabetes, liver disease, and malaria infec-
tion, with inference time in the range of tens to a few
hundred milliseconds. In the next section, we elaborate
on the transformation procedure of XONN.

Preprocessing Neural Networks
In the XONN framework, a one-time preprocessing step
is proposed to transform the neural network to a repre-
sentation that is more efficient for secure computation
protocols. The procedure starts by binarizing neural net-
works in which the DL parameters take only binary val-
ues. Given a binary NN, the costly matrix multiplication
will be transformed into bitwise-XOR and bit-count oper-
ations. Due to the free-XOR optimization19 proposed

DEEP LEARNING ON PRIVATE DATA

60 IEEE Security & Privacy November/December 2019

for the GC protocol, the XOR operations can be evalu-
ated with minimal computation and no communication.
As a result, DL models can be preprocessed according
to the secure computation protocols to render signifi-
cantly faster inference. One major downside of binariz-
ing neural networks is the reduced prediction accuracy.
In XONN, a two-phase process is introduced to boost
the accuracy back to the desired level. The two phases
are called scaling and
pruning. In the first
phase, the number of
neurons in each layer
is scaled by a con-
stant factor and the
model is retrained. If
the prediction accu-
racy is more than the
desired level, the pro-
cess stops; otherwise,
the process is rerun
with a higher scaling factor. Once the prediction accu-
racy passes the desired level, the pruning phase starts.
In this phase, the XONN algorithm selects and removes
neurons that contribute least to the final accuracy of the
DL model. The algorithm selects these neurons based
on the cost function tailored for the GC protocol. In the
end, a trimmed DL model is created that incurs minimal
computation and communication cost in the GC proto-
col with desired prediction accuracy. As input to the GC

protocol, a Boolean circuit representation of the model is
produced and passed to the protocol. Figure 2 illustrates
an overview of the preprocessing step and the execution
flow in XONN.

Securely Outsourcing the Computation
In scenarios where the client (input holder) is greatly
resource constrained, such as with mobile phones and

embedded devices, it
is favorable to out-
source the computa-
tion to a secondary
server. While there
can be many solu-
tions to this problem,
a simple one is to
use the XOR-sharing
technique adopted
by DeepSecure8 and
X O N N. 1 6 I n t h i s

method, a client who owns the input data only has to XOR
his or her original input with a random binary vector of the
same size as the input. The XORed result is then sent to
one of the servers and the random vector to the secondary
server. Both servers then execute the GC protocol and send
back the shares of the result. The client has only to XOR the
final shares to reconstruct the true prediction result.

In the outsourcing mode, the client needs only to
perform the XOR operation, which has a negligible

Private Input
Data

Private
Diagnosis

GC Protocol
Execution

Private
Weights

Public
Architecture

Original Architecture
Boolean Circuit
Representation

Fixed-Point Weights Binary Weights

Pruning

Transformed DL Model

Server SideClient Side

3

2 Scaling

Binarizing

1

O
ne

-T
im

e
P

re
pr

oc
es

si
ng

Figure 2. The internal architecture of the XONN framework comprising the core GC execution engine and the preprocessing steps.

DL models can be preprocessed according to
the secure computation protocols to render
significantly faster inference.

www.computer.org/security� 61

computation cost. Outsourcing is well suited for sce-
narios where the client is resource constrained, e.g.,
the Internet of Things, in which the edge nodes usu-
ally have limited computational power. The security
model is based on the noncollusion assumption of
the servers. FHE does not support the XOR-sharing
technique and incurs a higher computational cost at
the client side.

Attacks on DNNs
We now survey four of most important attacks on DL.
The first three are designed for the inference phase where
there is a server holding the trained model and a client
querying the model. Depending on the attack, the adver-
sary may have either black- or white-box access to the
model. In the black-box scenario, an adversarial client can
only query the server and receive the prediction result.
The prediction can consist of the label with or without
the confidence values for each class. In the white-box
scenario, the attacker is able to download the model and
acquire the complete network parameters. The fourth

attack is designed for the training phase where multi-
ple parties want to jointly train a model on their private
inputs. Figure 3 provides an overview of all four attacks.

Model Inversion
The model inversion attack11 extracts information
about the training data used for learning the model.
For a given class, the attacker, with either black-box
or white-box access to the model, attempts to cre-
ate an input that maximizes the confidence score
of that class using the gradient descent algorithm.
Figure 3 details the attack for the white-box access
scenario. The generated input is a prototypical sample
of that class. For example, in the case of a facial recog-
nition system, an attacker can produce an approximate
image of one of the people whose image was used in
the training phase by only having her name. The model
inversion attack does not depend on how the network
was trained and reveals information about the average
features of a given class. To mitigate this attack in the
black-box access scenario, it is suggested to round the

Class
Label

(c)

Original
Training Data

Downloading
Model Parameters

Class
Label

Client
(Adversary)

Sample
of Class

(a)

θ

Client
(Adversary)

(b)

Server

Training

Training Data

θ
θθ ′

x1

x2

fθ (x2)

fθ (x1)

Attacker Has Attacker’s Goal Attacker Gets Secure Computation

xi Query Model Parametersθ Model Predictionfθ (xi)

Client
(Adversary)

(d)

Server

Training

Training Data

θ

x1

fθ (x1)

Member?
Yes/No

Is x1 Here?

~

Figure 3. An overview of attacks on DL in terms of scenarios, adversary abilities, and goals: (a) a model inversion attack; (b) a model extraction
attack; (c) a membership inference attack; and (d) a GAN-based attack.

DEEP LEARNING ON PRIVATE DATA

62	 IEEE Security & Privacy� November/December 2019

confidence score before the prediction results are sent
back to the client.

Model Extraction
The model extraction attack12 attempts to learn an
approximation of a server model by querying the
model many times. In the client-server computation
model, a malicious client creates its own version of the
model, with the incentive of undermining the pay-per-
prediction fees (stealing the model). Model extraction
can also be used as a step toward model inversion: the
attacker first learns an approximation of the model and
then attempts to reconstruct the training data. How-
ever, similar to model inversion, this attack can be
prevented by not providing the confidence vector and
reporting only the final class label that has the highest
confidence value.

Membership Inference
In the membership inference attack, 13 the goal is to iden-
tify whether a specific record has been used in the train-
ing phase or not. There are certain privacy concerns that
arise from this attack. For example, a membership infer-
ence attack on a classifier that suggests different medica-
tions for a given disease can reveal that a person whose
data was used in the training phase actually has that dis-
ease. The intuition behind the attack is that models can
perform better on the data records used in the training
phase compared with the data they have never seen. In
this case, the model is overfitting on the training data.
Such a difference in the behavior of the model enables a
membership inference attack. There are two main miti-
gation strategies: 1) during the training phase, regular-
ization techniques should be used to avoid overfitting
and 2) during the inference phase, the complete confi-
dence vector should not be revealed to the client.

The Hitaj et al. Attack
Hitaj et al.14 crafted an attack based on generative adver-
sarial networks (GANs) to infer sensitive information
in a collaborative DL. More specifically, they showed
that an adversarial client can learn the training samples
held by other clients even in the privacy-preserving col-
laborative DL setting suggested by Shokri and Shma-
tikov.2 GANs generate samples that look similar to the
training data without having access to the training data
themselves. A GAN produces samples by interacting
only with a discriminative DNN. The goal of a GAN is
to deceive the discriminative model into believing that
the produced sample is real and that the goal of the dis-
criminative model is to detect the synthetic samples.
The process continues until the discriminative model
cannot perform better than a random guess. In gen-
eral, Hitaj et al. showed that applying record-level DP

in collaborative DL is not effective. It is illustrated that
more effective solutions based on secure multiparty
computation and HE are needed to guarantee data
owners’ privacy.

Note that the goal of private inference frameworks
is to preserve the privacy of inputs from both the cli-
ent and the server. In model inversion attacks with a
white-box access, the network parameters are down-
loaded, and, as a result, the attack is out of the scope of
private inference frameworks. In the black-box setting,
the attack can be mitigated by adding a layer inside the
secure computation protocol to round the confidence
scores before sending the result back to the client.
Similarly, model extraction and membership inference
attacks can be effective if the prediction confidence vec-
tor is sent to the client. Private inference frameworks
that support nonlinear functionalists can output only
the label of the class that has the highest confidence
score. In this case, the confidence vector is not revealed
to the client, and the attack will become infeasible.11

Privacy is one of the biggest concerns when learning
(and using) the NN models on users’ sensitive

information. This article provides a systematic view and
comparison of the latest efficient privacy-preserving
solutions for DNN learning and inference. The meth-
odologies rely on various building blocks, such as
GC, HE, SS, and DP. We have also outlined various
attacks on DL. Several of these attacks rely on the con-
fidence vector provided by the cloud server. Hence,
if only the output label is provided to the client, such
attacks can be prevented. Such techniques as 1) devis-
ing mixed-protocol solutions,7,9,15 2) preprocessing the
network and data, 8,16 and 3) using correlated random-
ness9 can significantly reduce the overhead of secure
computation protocols.

During the past few years, there has been more focus
on private inference than private learning. To bridge
the wide gap between machine learning on plaintext
and encrypted data, more research for finding efficient
customized privacy-preserving learning techniques is
needed.

Acknowledgments
We thank Ari Juels and the referees for their comments
on earlier versions of this article.

References
	 1.	 G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani,

D. Vitali, and G. Felici, “Hacking smart machines with
smarter ones: How to extract meaningful data from
machine learning classifiers,” Int. J. Security Netw., vol. 10,
no. 3, pp. 137–150, 2015.

www.computer.org/security� 63

	 2.	 R. Shokri and V. Shmatikov, “Privacy-preserving deep
learning,” in Proc. 22nd ACM SIGSAC Conf. Computer and
Communications Security, 2015, pp. 1310–1321.

	 3.	 P. Mohassel and Y. Zhang, “SecureML: A system for scal-
able privacy-preserving machine learning,” in Proc. IEEE
Symp. Security and Privacy, 2017, pp. 19–38.

	 4.	 K. Bonawitz et al., “Practical secure aggregation for
privacy-preserving machine learning,” in Proc. ACM SIG-
SAC Conf. Computer and Communications Security,
2017, pp. 1175–1191

	 5.	 R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naeh-
rig, and J. Wernsing, “CryptoNets: Applying neural networks
to encrypted data with high throughput and accuracy,” in
Proc. Int. Conf. Machine Learning, 2016, pp. 201–210.

	 6.	 J.W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved
security for a ring-based fully homomorphic encryption
scheme,” in Proc. IMA Int. Conf. Cryptography and Coding.
Berlin: Springer-Verlag, 2013, pp. 45–64.

	 7.	 J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural
network predictions via MiniONN transformations,” in
Proc. ACM SIGSAC Conf. Computer and Communications
Security, 2017, pp. 619–631.

	 8.	 B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSe-
cure: Scalable provably-secure deep learning,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conf. (DAC), p. 2.

	 9.	 M. S Riazi et al., “Chameleon: A hybrid secure compu-
tation framework for machine learning applications,” in
Proc. 2018 Asia Conf. Computer and Communications Secu-
rity, 2018, pp. 707–721.

	10.	 R. Bahmani et al., “Secure multiparty computation from
SGX,” in Proc. Int. Conf. Financial Cryptography and Data
Security, Cham, Switzerland: Springer, 2017, pp. 477–497.

	11.	 M. Fredrikson, S. Jha, and T. Ristenpart, “Model inver-
sion attacks that exploit confidence information and
basic countermeasures,” in Proc. 22nd ACM SIGSAC
Conf. Computer and Communications Security, 2015,
pp. 1322–1333.

	12.	 F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ris-
tenpart, “Stealing machine learning models via predic-
tion APIs,” in Proc. 25th USENIX Security Symp., 2016,
pp. 601–618.

	13.	 R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Mem-
bership inference attacks against machine learning models,”
in Proc. IEEE Symp. Security and Privacy, 2017, pp. 3–18.

	14.	 B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models
under the GAN: Information leakage from collaborative
deep learning,” in Proc. ACM SIGSAC Conf. Computer and
Communications Security, 2017, pp. 603–618.

	15.	 C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
“GAZELLE: A low latency framework for secure neural
network inference,” in Proc. 27th USENIX Security Symp.,
2018, pp. 1651–1669.

	16.	 Riazi, M. Sadegh, Mohammad Samragh, Hao Chen,
Kim Laine, Kristin E. Lauter, and Farinaz Koushanfar.

“XONN: XNOR-based Oblivious Deep Neural Network
Inference,” in Proc. 28th USENIX Security Symp., 2019, pp.
1501–1518.

	17.	 S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-Party
secure computation for neural network training,” Proc. Pri-
vacy Enhancing Technologies, vol. 1, no. 3, pp. 26–49, 2019.

	18.	 P. Mohassel and P. Rindal, “ABY3: A mixed protocol frame-
work for machine learning,” in Proc. 2018 ACM SIGSAC
Conf. Computer and Communications Security, pp. 35–52.

	19.	 V. Kolesnikov and T. Schneider, “Improved garbled cir-
cuit: Free XOR gates and applications,” in Proc. Int. Collo-
quium on Automata, Languages, and Programming, Lecture
Notes in Computer Science series, Berlin: Springer, 2008,
pp. 486–498.

M. Sadegh Riazi is a Ph.D. candidate in the Department of
Electrical and Computer Engineering at the University
of California San Diego. His research interests include
secure multiparty computation, privacy-preserving
deep learning, large-scale machine learning, and
high-performance computing platforms for secure
computation. Riazi received a master’s degree from
Rice University, Houston, Texas, in 2016. Contact him
at mriazi@ucsd.edu.

Bita Darvish Rouhani is a research scientist at Micro-
soft. Her research interests include deep learning, the
safety of machine-learning models, and big data anal-
ysis. Rouhani received a Ph.D. in electrical and com-
puter engineering from the University of California
San Diego. Contact her at bita@ucsd.edu.

Farinaz Koushanfar is a professor and Henry Booker
Faculty Scholar in the Department of Electrical and
Computer Engineering at the University of California
San Diego, where she directs the Adaptive Comput-
ing and Embedded Systems Lab. She is the cofounder
and codirector of the University of California San
Diego Center for Machine-Integrated Computing and
Security. Koushanfar received a Ph.D. from the Uni-
versity of California, Berkeley. She is a fellow of the
Kavli Foundation Frontiers of the National Academy
of Engineering. She has received a number of awards
and honors for her research, mentorship, teaching,
and outreach activities, including the Presidential
Early Career Award for Scientists and Engineers from
U.S. President Obama, ACM SIGDA Outstanding
New Faculty Award, Cisco IoT Security Grand Chal-
lenge Award, and MIT Technology Review TR-35
2008 (World’s Top 35 Innovators Under 35), as well
as Young Faculty/CAREER Awards from National
Science Foundation, DARPA, U.S. Office of Naval
Research, and U.S. Army Research Office. Contact
her at farinaz@ucsd.edu.

