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DEEP LEARNING ON PRIVATE DATA

Deep Learning on Private Data
M. Sadegh Riazi, Bita Darvish Rouhani, and Farinaz Koushanfar | University of California San Diego

Emerging complex deep neural networks require vast amounts of data to achieve high precision. However, 
the information is often collected from user logs and personal data. In this article, we summarize recent 
cryptographic methodologies for provably privacy-preserving deep learning and inference.

W ith the ever-increasing volume of data in our 
digital world, powerful machine-learning 

models are needed to efficiently process the vast 
amount of information in different applications and 
industries. Hierarchical deep neural networks (DNNs), 
also known as deep learning (DL) techniques, provide 
efficient modeling methodologies for automatic extrac-
tion of the underlying features in the content. In several 
important and frequent tasks, including visual clas-
sification, game playing, and speech recognition, DL 
achieves superior accuracy in comparison with human 
cognition.

In a supervised setting, DL involves two distinct 
phases: training and inference (prediction). Figure  1 
illustrates a high-level block diagram of the learning 
process for devising a typical machine-learning system. 
The performance of a DL model is directly dependent 
on the volume of available training data. However, the 
training samples are usually collected from users’ con-
tent stored on cloud servers—content that contains 
sensitive information, such as images, voice recordings, 
location logs, and medical records. 

Users’ privacy is of critical concern not only dur-
ing training but also for inference. Internet companies 
are now providing machine learning as a service where 
users can send their queries to cloud servers and receive 

a prediction result by paying certain fees. These queries 
can include sensitive data, such as users’ health records, 
sent to the remote DL servers for medical diagnosis. 

One naïve solution to mitigate the risk of data leak-
age during DL inference is to have consumers download 
the model and run it on their own trusted platform. 
But this solution is not attainable in real-world settings 
because the DL model is learned by processing massive 
amounts of training data. As such, the trained artificial 
intelligence models are usually considered to be sensi-
tive intellectual property.1 Companies require confi-
dentiality to preserve their competitive advantage.

In a nutshell, three main requirements should be 
considered in privacy-preserving DL. 

1. During the training phase, users’ sensitive data should 
not be revealed to the central server that is training the 
DL model.

2. During inference, users’ queries should not be 
revealed to the server.

3. The server’s proprietary DL model should not be 
revealed to the user.

Efficient methodologies for private inference and 
training are essential for future advances in deep learn-
ing. In theory, any function can be evaluated on private 
inputs from two or more distinct parties using secure 
function evaluation (SFE) protocols. However, a naïve 
transformation of a particular function using the generic 
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SFE protocols incurs several orders of magnitude of 
overhead, both in terms of computation and communi-
cation. To empower privacy-preserving computation in 
the context of DL, it is crucially important to devise novel 
domain-specific customized techniques that can reduce 
the complexity of SFE protocol execution.

This article pres-
ents  a  systemiza-
tion of knowledge 
of the most recent 
privacy-preserving 
frameworks for DL 
and provides a com-
prehensive compari-
son in terms of the 
unique proper ties 
and performances on 
standard benchmarks. We also include a summary of 
the recent attacks and illustrate how they are related to 
privacy-preserving frameworks. Pertinent terminology 
can be found in “Glossary of Low-Level Building Blocks 
Leveraged for Privacy-Preserving Deep Learning.”

DNNs
DL is a subclass of machine learning that resembles the 
functionality of a human brain. There are different vari-
ants of DL architectures. However, all of them have a lay-
ered structure, starting from an input layer and ending 
with an output layer. There can be one or more layers 
in between, which are called hidden layers. The output 
of a given layer is the input to the next layer. Once new 
raw data are given as input to the NN, the output of each 
layer is computed until reaching the final output layer. In 
most cases, the output values represent the probabilities 

of different classes that the input can belong to. Popular 
main categories of the neuron networks that are widely 
used in DL are DNNs, convolutional NNs (CNNs), and 
recurrent NNs (RNNs).

The DNN is a more generic architecture used in vari-
ous applications. The most computationally expensive 

parts of a DNN involve 
matrix multiplication, 
also known as fully con-
nected layers. In addi-
tion, DNNs have an 
activation layer, which 
is the only nonlinear 
part of their struc-
ture. Popular activa-
tion functions include 

the rectified linear unit 
(ReLU), logistic Sigmoid, and hyperbolic tangent. The 
output layer is usually a softmax layer that translates the 
output of the last hidden layer to a probability vector. In 
addition to the aforementioned layers, CNNs have 

■ one or more convolution layers, each of which is a 
weighted sum of different segments of the previous 
layer; these weights as well as the weights in the fully 
connected layer are learned in the DL training phase

■ one or more pooling layers, each of which selects either 
the average (mean-pooling) or maximum (max-pooling) 
of different segments in the previous layer. 

CNNs are specifically used where input data have 
spatial correlation, such as in facial recognition systems. 
In contrast to DNNs and CNNs, RNNs have an inter-
nal state. This characteristic makes RNNs suitable for 
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Medical Diagnosis
(Output Label)

Trained Model

Figure 1. An overview of training and inference in DL.

Efficient methodologies for private infer-
ence and training are essential for future 
advances in deep learning.
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applications where a sequence of input data needs to be 
processed. RNNs are widely used for speech recognition.

Delivering an efficient solution for privacy-preserving 
DL has been an active research area in recent years. 
The proposed frameworks can be categorized based 
on supporting training or inference. Training and infer-
ence are inherently different. In training, the data are 

usually distributed among many parties, and a central-
ized entity, e.g., an Internet company, may wish to learn 
the model on all of the data samples. Therefore, training 
the model without revealing each party’s input is essen-
tially a multiparty problem. In contrast, inference is a 
two-party problem in which one party holds an already 
trained model and another party has a private input.

Glossary of Low-Level Building Blocks Leveraged  
for Privacy-Preserving Deep Learning

■■ Garbled circuits (GC)S1: This is one of the generic secure function evaluation (SFE) protocols introduced by 
Andrew Yao in 1986. It enables two parties, Alice and Bob, to jointly compute a function on their private inputs 
without revealing anything but the outcome of the function. The first step in utilizing this protocol is to describe 
the function as a Boolean circuit with two-input logic gates. Alice then starts assigning random keys to each wire 
in the circuit. For each gate, she encrypts the output keys of the gates using the corresponding input key pairs 
and forms garbled tables. She sends all of the garbled tables as well as the input keys associated with her input. 
Bob also acquires the correct keys associated with his input. After that, Bob decrypts each gate one by one until 
he finds the output keys. Finally, Alice provides the mapping between the output keys to the true semantic values 
to generate the plaintext output of the function. Note that the number of interactions between Alice and Bob is 
constant and independent of the function.

■■ Goldreich–Micali–Wigderson (GMW)S2: This is another generic SFE protocol. Similar to GC, GMW requires that 
the function be described as a Boolean circuit. However, unlike GC, two parties need to interact for every and 
gate. Therefore, by paralleling all of the independent and gates, the communication round complexity is linear 
with respect to the depth of the circuit. The GMW protocol requires only small communication for each gate 
compared to the GC protocol.

■■ Secret sharing (SS): This is a method to distribute a secret to two or more parties where each share does not 
provide any information about the secret, but the secret can be reconstructed from the shares. One of the most 
popular SS variants is additive SS. In this case, a secret is shared by sampling random numbers and creating the 
last share such that the summation of all of the shares yields the secret value. The secret can be reconstructed by 
adding all of the shares.

■■ Homomorphic encryption (HE): This is a cryptographic primitive that enables one party to encrypt data and 
send it to another party, who can then perform certain operations on the encrypted version of the data. Upon 
completion of the computation, the encrypted version of the result is sent back to the first party, who can then 
decrypt it and get the result in plaintext. For example, an additively HE, such as the Paillier cryptosystem,S3 
supports addition on the encrypted version of two numbers. In a fully HE,S4 an arbitrary functional logic can be 
computed.

■■ Differential privacy (DP)S5: This is a metric that defines how much information about a single entry in a database 
is revealed upon a query to the database. To preserve the privacy of database entries, carefully chosen noise is 
added to the database, such that the statistical properties of the database are preserved while each data point is 
changed because of the added noise. Equivalently, DP can be seen as a way to reduce the dependency between 
the outcome of a computation and one of the data points in the database, thus reducing information leakage.
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Privacy-preserving DL frameworks can also be cat-
egorized based on the family of the utilized secure 
computation protocols, i.e., homomorphic encryption 
(HE), garbled circuits (GC), secret sharing (SS), and 
Goldreich–Micali–Wigderson (GMW). While all of 
these methods have provable privacy properties, each 
of them has specific characteristics and capabilities. In 
addition to secure computation approaches, differen-
tial privacy (DP) has been suggested as a solution for 
mitigating the information leakage when training a NN. 
However, unlike SFE protocols, DP does not provide a 
perfectly leakageproof solution.

Private Training
In what follows, we present a brief description of the 
systems and frameworks to train a DL model on a set of 
distributed data sets held by different individuals while 
preserving the data confidentiality and privacy of the 
data owners. 

One approach, explored by Shokri and Shmatikov,2
is to have each party locally train his or her version of 
the DL model and selectively share some of the updated 
parameters with a central server. The intuition is that 
optimization algorithms can be run in parallel by differ-
ent individuals, and the results can be aggregated later 
on. To further mitigate the information leakage, the 
authors add specific noise to the model updates before 
sharing them instead of sending the raw values to the 

server. As a result, they introduce a tradeoff between 
the accuracy of the trained NN and the privacy of data. 
While this solution has a minimal computation over-
head, it does not provide provable security guarantees in 
collaborative training. As we discuss later in this article, 
it has been shown that a malicious party can infer sensi-
tive information about other participants’ private data in 
this setting. 

In light of designing a system with concrete privacy guar-
antees, Google has announced a cryptography-based 
approach for secure data aggregation in which updates 
from all clients are aggregated without revealing each 
individual update.4 The protocol is based on Shamir’s 
SS and is robust against clients exiting the protocol at 
any time.

The task of privacy-preserving training can be ap -
proached differently where the training data are secret
-shared by each data owner to two (or more) non
-colluding servers (SecureML and SecureNN). These 
servers execute specific secure computation protocols to 
train a DL model while keeping the training data private. 
All of the intermediate values are secret-shared among 
servers, and at the end of the protocol, servers hold a 
share of the trained model. The secret-shared model can 
be used directly in subsequent secure computation pro-
tocols to provide privacy-preserving inference, or the 
trained model can be reconstructed from the shares to 
achieve the model in cleartext. In the SecureML3 system, 

Table 1. The characteristics of privacy-preserving inference frameworks and their underlying 
cryptographic primitives.

Framework
Preserving 
accuracy

Constant 
number of 
interactions

DL model 
preprocessing

Scalability 
for large 
DL models

Nonpolynomial 
activation and 
max-pooling

Cryptographic 
protocol(s)

CryptoNets Leveled HE

SecureML Linearly HE, 
GC, SS

MiniONN (with 
Sqr Act.)

Additively HE, 
GC, SS

MiniONN (with 
ReLU and pooling)

DeepSecure GC

DeepSecure (plus 
preprocessing)

Chameleon GMW, GC, SS

Gazelle Additively HE, 
GC, SS

XONN GC, SS

Conv: convolutional; Sqr Act: square activation function.
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the authors propose a method to train and run DL models 
securely. The solution is based on HE, GC, and SS. Data 
owners secret-share their data to multiple noncolluding 
servers, which privately train the NN. SecureML uses a 
customized activation function that is more efficient for 
training a neural network using secure computation pro-
tocols. The SecureNN framework (SecureNN) proposes 
new protocols for training and inference on deep neural 
networks using three noncolluding servers. The training 
time and communication between servers can be signifi-
cantly reduced in this computation model. Similarly, the 
ABY3 framework (aby3) introduces new protocols in the 
three-server setting where intermediate values are kept in 
arithmetic, binary, and Yao shares during the protocol exe-
cution. Compared to the two-party SecureML system, the 
training time is reduced by up to four orders of magnitude.

We do not quantitatively compare the solutions for 
privacy-preserving training since the methodologies have 
different security guarantees and computational models. 
Therefore, comparing the training times is not meaningful.

Private Inference
In the past few years, privacy-preserving inference 
for an already trained NN has been the main research 
focus. In this article, we discuss the suggested meth-
ods. The high-level comparison of the frameworks is 
provided in Table 1, while the quantitative compari-
son of their performance is shown in Table 2. All of the 
discussed frameworks are secure in the honest-but-
curious (HbC) adversary model in which all parties 
are assumed to follow the protocol, although they 
might attempt to infer more information based on the 

data they send and receive. The HbC adversary model 
is a stepping stone to more powerful models, such as 
security against malicious adversaries, where any party 
can deviate from the protocol at any time.

Developed by Microsoft Research, CryptoNets5 
leverages leveled HE,6 a variant of HE that supports a cer-
tain number of consecutive multiplications of a cipher-
text. In HE, ciphertexts inherently have some noise. After 
each multiplication, the noise grows, and after many mul-
tiplications, the result is no longer correct. Therefore, the 
parameters of HE, e.g., the size of the ciphertext, can be 
adjusted based on the security threshold and the num-
ber of multiplications that the scheme has to support. 
The latter is derived from the NN architecture. Relying 
on leveled HE has the benefit that the client has to do 
significantly less computation compared to the server, 
which is usually computationally more powerful. How-
ever, popular nonpolynomial activation functions such 
as ReLU cannot be realized efficiently using HE. The 
authors propose to approximate the activation functions 
using low-degree polynomials. Therefore, the NN model 
should be retrained in plaintext using the same activation 
function to maintain high prediction accuracy. 

Perhaps the most critical limitation of this approach 
is that increasing the number of layers in the NN model 
requires larger ciphertext size, which, in turn, signifi-
cantly increases the computation and communication 
overhead. Researchers report experimental results 
on the Modified National Institute of Standards and 
Technology (MNIST) data set, which is a collection of 
handwritten digits, each represented as a 28 × 28 pixel 
image where each pixel takes a gray-scale value between 

Table 2. A performance comparison of different frameworks for privacy-preserving inference (prediction) on the 
MNIST data set, given similar computational platforms.

Framework

Prediction timing (s) Communication (MB)
Accuracy 
(%) DNN architectureOffline Online Total Offline Online Total

CryptoNets – 297.5 297.5 – 372.2 372.2 98.95 Conv-Sqr Act-MeanP-Sqr Act-FC

SecureML 4.7 0.18 4.88 – – – 93.1 FC-Sqr Act-FC-Sqr Act-FC

MiniONN (with Sqr Act.) 0.9 0.14 1.04 3.8 12 15.8 97.6

DeepSecure – 9.67 9.67 – 791 791 99 Conv-ReLU-FC-ReLU-FC

DeepSecure (plus 
preprocessing)

– 1.08 1.08 – 88.2 88.2 99

Chameleon 1.34 1.36 2.7 7.8 5.1 12.9 99

MiniONN 3.58 5.74 9.32 20.9 636.6 657.5 99 Conv-ReLU-MaxP-Conv- 
ReLU-MaxP-FC-ReLU-FC- 
ReLU

Gazelle 0.65 0.51 1.16 47.5 22.5 70.0 99

XONN – 0.15 0.15 – 32.13 32.13 99

FC: fully connected layer; MaxP: max-pooling; MeanP: mean-pooling. 
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zero and 255. To perform a single private inference, 
CryptoNets takes 298 seconds and requires 372 MB of 
communication.

In light of supporting nonpolynomial activation 
functions and pooling operations, the DeepSecure8 
framework has been introduced, which uses GC as its 
backbone cryptographic engine. DeepSecure does not 
require a retraining procedure and supports any activa-
tion and pooling functions. Additionally, DeepSecure 
introduces the idea of reducing the size of the data and 
the network by a preprocessing stage and before execut-
ing the GC protocol, thus compacting the computation 
and communication. The preprocessing stage is indepen-
dent of the underlying cryptographic protocol and can be 
adopted by any other back-end engines. 

The major downside of GC is the enormous com-
munication overhead for multiplication, a ubiquitous 
operation in all NN models. To evaluate any function 
in GC, the functionality has to be described as a Bool-
ean circuit. Since the number of Boolean gates in the 
multiplication circuit grows quadratically with respect 
to the bit width of operands, realizing secure multipli-
cation in GC is inefficient.

To benefit from the best characteristic of differ-
ent secure computation protocols, several frameworks 
are proposed that rely on mixed-protocol methodolo-
gies. The MiniONN framework7 proposes to use GC 
to execute nonlinear activation functions and SS-based 
methods to execute linear operations. MiniONN has 
two main computation phases: an offline phase, based 
on additively HE to precompute random shares that are 
independent of the actual inputs, and an online phase, 
based on GC and SS. 

The Chameleon framework9 utilizes the GMW pro-
tocol for low-depth nonlinear activation functions and 
GC for more complicated nonlinear activation func-
tions, e.g., Sigmoid, as well as for pooling layers. All 
arithmetical operations, such as addition and multipli-
cation, are performed using SS. Similar to its concurrent 
work, MiniONN, Chameleon has offline and online 
computation phases. Most of the computation is shifted 
to the offline phase to provide a fast online prediction 
phase. The offline phase consists of creating the corre-
lated randomness used in the online phase for all three 
protocols, i.e., GC, GMW, and SS. These random (but 
correlated) shares are independent of the actual inputs 
and functionality that are being evaluated; they have to 
be created by a third party. 

Similar to SecureML, Chameleon requires the 
presence of two noncolluding servers. However, in 
contrast to SecureML, the third party is not involved 
in the online phase. Moreover, the functionality of the 
third party can be replaced using the Intel Software 
Guard Extension (SGX)10 and achieve a two-party 

computation model. The GMW protocol in Cha-
meleon supports single instruction, multiple data 
(SIMD), which creates a way to process the same opera-
tion on multiple data considerably faster. 

Gazelle15 is another mixed-protocol solution that sug-
gests leveraging HE to perform linear operations and GC 
for nonlinear activation functions. The authors propose 
an efficient algorithm to realize convolutional layers using 
HE. As a result, Gazelle improves the runtime of private 
inference and reduces the communication between the 
client and the server. 

While mixed-protocol solutions offer an interesting 
approach to reduce the private inference runtime, they 
require (at least) one round of interaction between cli-
ent and server per each layer in the neural network. In 
Internet settings, this property can significantly deteri-
orate the performance and increase the execution time 
due to high communication delay.

The XONN system16 introduces a different approach 
and suggests transforming the neural network such that 
the underlying operations are more compatible with 
secure computation protocols. The authors propose to 
binarize the neural network to avoid any multiplication 
during the private inference. In other words, all parame-
ters and weights in the NN are restricted to take a binary 
value, zero or one. This, in turn, transforms the multi-
plication to a combination of XOR and bit-count opera-
tions. By relying on the GC protocol as the back-end 
cryptographic engine, the XOR operation can be exe-
cuted with negligible computation and no communi-
cation.19 As a result, XONN achieves state-of-the-art 
performance in private inference. In addition, XONN 
requires only a constant number of communication 
rounds regardless of the number of layers in the NN. 
Relying on standalone GC leads to another advantage, 
too: the solution can be upgraded using standard proto-
cols to be secure against active adversaries that can devi-
ate from the protocol at any time. The authors report 
experimental results on four medical data sets to enable 
secure and privacy-preserving medical diagnosis for 
breast cancer, diabetes, liver disease, and malaria infec-
tion, with inference time in the range of tens to a few 
hundred milliseconds. In the next section, we elaborate 
on the transformation procedure of XONN. 

Preprocessing Neural Networks
In the XONN framework, a one-time preprocessing step 
is proposed to transform the neural network to a repre-
sentation that is more efficient for secure computation 
protocols. The procedure starts by binarizing neural net-
works in which the DL parameters take only binary val-
ues. Given a binary NN, the costly matrix multiplication 
will be transformed into bitwise-XOR and bit-count oper-
ations. Due to the free-XOR optimization19 proposed 
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for the GC protocol, the XOR operations can be evalu-
ated with minimal computation and no communication. 
As a result, DL models can be preprocessed according 
to the secure computation protocols to render signifi-
cantly faster inference. One major downside of binariz-
ing neural networks is the reduced prediction accuracy. 
In XONN, a two-phase process is introduced to boost 
the accuracy back to the desired level. The two phases 
are called scaling and 
pruning. In the first 
phase, the number of 
neurons in each layer 
is scaled by a con-
stant factor and the 
model is retrained. If 
the prediction accu-
racy is more than the 
desired level, the pro-
cess stops; otherwise, 
the process is rerun 
with a higher scaling factor. Once the prediction accu-
racy passes the desired level, the pruning phase starts. 
In this phase, the XONN algorithm selects and removes 
neurons that contribute least to the final accuracy of the 
DL model. The algorithm selects these neurons based 
on the cost function tailored for the GC protocol. In the 
end, a trimmed DL model is created that incurs minimal 
computation and communication cost in the GC proto-
col with desired prediction accuracy. As input to the GC 

protocol, a Boolean circuit representation of the model is 
produced and passed to the protocol. Figure 2 illustrates 
an overview of the preprocessing step and the execution 
flow in XONN.

Securely Outsourcing the Computation
In scenarios where the client (input holder) is greatly 
resource constrained, such as with mobile phones and 

embedded devices, it 
is favorable to out-
source the computa-
tion to a secondary 
server. While there 
can be many solu-
tions to this problem, 
a  simple one is  to 
use the XOR-sharing 
technique adopted 
by DeepSecure8 and 
X O N N. 1 6  I n  t h i s 

method, a client who owns the input data only has to XOR 
his or her original input with a random binary vector of the 
same size as the input. The XORed result is then sent to 
one of the servers and the random vector to the secondary 
server. Both servers then execute the GC protocol and send 
back the shares of the result. The client has only to XOR the 
final shares to reconstruct the true prediction result. 

In the outsourcing mode, the client needs only to 
perform the XOR operation, which has a negligible 
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Figure 2. The internal architecture of the XONN framework comprising the core GC execution engine and the preprocessing steps. 

DL models can be preprocessed according to 
the secure computation protocols to render 
significantly faster inference.



www.computer.org/security� 61

computation cost. Outsourcing is well suited for sce-
narios where the client is resource constrained, e.g., 
the Internet of Things, in which the edge nodes usu-
ally have limited computational power. The security 
model is based on the noncollusion assumption of 
the servers. FHE does not support the XOR-sharing 
technique and incurs a higher computational cost at 
the client side.

Attacks on DNNs
We now survey four of most important attacks on DL. 
The first three are designed for the inference phase where 
there is a server holding the trained model and a client 
querying the model. Depending on the attack, the adver-
sary may have either black- or white-box access to the 
model. In the black-box scenario, an adversarial client can 
only query the server and receive the prediction result. 
The prediction can consist of the label with or without 
the confidence values for each class. In the white-box 
scenario, the attacker is able to download the model and 
acquire the complete network parameters. The fourth 

attack is designed for the training phase where multi-
ple parties want to jointly train a model on their private 
inputs. Figure 3 provides an overview of all four attacks.

Model Inversion
The model inversion attack11 extracts information 
about the training data used for learning the model. 
For a given class, the attacker, with either black-box 
or white-box access to the model, attempts to cre-
ate an input that maximizes the confidence score 
of that class using the gradient descent algorithm. 
Figure 3 details the attack for the white-box access 
scenario. The generated input is a prototypical sample 
of that class. For example, in the case of a facial recog-
nition system, an attacker can produce an approximate 
image of one of the people whose image was used in 
the training phase by only having her name. The model 
inversion attack does not depend on how the network 
was trained and reveals information about the average 
features of a given class. To mitigate this attack in the 
black-box access scenario, it is suggested to round the 

Class
Label

(c)

Original
Training Data

Downloading
Model Parameters

Class
Label

Client
(Adversary)

Sample
of Class

(a)

θ

Client
(Adversary)

(b)

Server

Training

Training Data

θ
θθ ′

x1

x2

fθ (x2)

fθ (x1)

Attacker Has Attacker’s Goal Attacker Gets Secure Computation

xi Query Model Parametersθ Model Predictionfθ (xi )

Client
(Adversary)

(d)

Server

Training

Training Data

θ

x1

fθ (x1)

Member?
Yes/No

Is x1 Here?

~

Figure 3. An overview of attacks on DL in terms of scenarios, adversary abilities, and goals: (a) a model inversion attack; (b) a model extraction 
attack; (c) a membership inference attack; and (d) a GAN-based attack.
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confidence score before the prediction results are sent 
back to the client.

Model Extraction
The model extraction attack12 attempts to learn an 
approximation of a server model by querying the 
model many times. In the client-server computation 
model, a malicious client creates its own version of the 
model, with the incentive of undermining the pay-per-
prediction fees (stealing the model). Model extraction 
can also be used as a step toward model inversion: the 
attacker first learns an approximation of the model and 
then attempts to reconstruct the training data. How-
ever, similar to model inversion, this attack can be 
prevented by not providing the confidence vector and 
reporting only the final class label that has the highest 
confidence value.

Membership Inference
In the membership inference attack, 13 the goal is to iden-
tify whether a specific record has been used in the train-
ing phase or not. There are certain privacy concerns that 
arise from this attack. For example, a membership infer-
ence attack on a classifier that suggests different medica-
tions for a given disease can reveal that a person whose 
data was used in the training phase actually has that dis-
ease. The intuition behind the attack is that models can 
perform better on the data records used in the training 
phase compared with the data they have never seen. In 
this case, the model is overfitting on the training data. 
Such a difference in the behavior of the model enables a 
membership inference attack. There are two main miti-
gation strategies: 1) during the training phase, regular-
ization techniques should be used to avoid overfitting 
and 2) during the inference phase, the complete confi-
dence vector should not be revealed to the client.

The Hitaj et al. Attack
Hitaj et al.14 crafted an attack based on generative adver-
sarial networks (GANs) to infer sensitive information 
in a collaborative DL. More specifically, they showed 
that an adversarial client can learn the training samples 
held by other clients even in the privacy-preserving col-
laborative DL setting suggested by Shokri and Shma-
tikov.2 GANs generate samples that look similar to the 
training data without having access to the training data 
themselves. A GAN produces samples by interacting 
only with a discriminative DNN. The goal of a GAN is 
to deceive the discriminative model into believing that 
the produced sample is real and that the goal of the dis-
criminative model is to detect the synthetic samples. 
The process continues until the discriminative model 
cannot perform better than a random guess. In gen-
eral, Hitaj et al. showed that applying record-level DP 

in collaborative DL is not effective. It is illustrated that 
more effective solutions based on secure multiparty 
computation and HE are needed to guarantee data 
owners’ privacy.

Note that the goal of private inference frameworks 
is to preserve the privacy of inputs from both the cli-
ent and the server. In model inversion attacks with a 
white-box access, the network parameters are down-
loaded, and, as a result, the attack is out of the scope of 
private inference frameworks. In the black-box setting, 
the attack can be mitigated by adding a layer inside the 
secure computation protocol to round the confidence 
scores before sending the result back to the client. 
Similarly, model extraction and membership inference 
attacks can be effective if the prediction confidence vec-
tor is sent to the client. Private inference frameworks 
that support nonlinear functionalists can output only 
the label of the class that has the highest confidence 
score. In this case, the confidence vector is not revealed 
to the client, and the attack will become infeasible.11

Privacy is one of the biggest concerns when learning 
(and using) the NN models on users’ sensitive 

information. This article provides a systematic view and 
comparison of the latest efficient privacy-preserving 
solutions for DNN learning and inference. The meth-
odologies rely on various building blocks, such as 
GC, HE, SS, and DP. We have also outlined various 
attacks on DL. Several of these attacks rely on the con-
fidence vector provided by the cloud server. Hence, 
if only the output label is provided to the client, such 
attacks can be prevented. Such techniques as 1) devis-
ing mixed-protocol solutions,7,9,15 2) preprocessing the 
network and data, 8,16 and 3) using correlated random-
ness9 can significantly reduce the overhead of secure 
computation protocols.

During the past few years, there has been more focus 
on private inference than private learning. To bridge 
the wide gap between machine learning on plaintext 
and encrypted data, more research for finding efficient 
customized privacy-preserving learning techniques is 
needed. 
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