
The Fusion of Secure Function Evaluation
and Logic Synthesis

Siam U. Hussain, M. Sadegh Riazi, and Farinaz Koushanfar University of California, San Diego

Secure Function Evaluation (SFE) requires the underlying function to be compiled to a Boolean logic circuit.
Designing custom SFE compilers has been an active research area. However, intelligent adaptation of the Integrated
Circuits (IC) synthesis tools outperforms these compilers. It is time for the custom compilers to embrace this trend.

IN the era of big data, ensur-
ing privacy of sensitive content is

a standing challenge. While several
heuristic methodologies for privacy-
preserving computing have been sug-
gested, due to the large space of pos-
sible breaches, it is hard to assure
their resilience. Solutions based on
provably secure cryptographic prim-
itives hold a promise to provide pri-
vacy guarantees within the standard
security model.

Netlist

F (. , .)

Output Output

Data DataGC/
GMW

Fig. 1: Outline of the GC Protocol.

In 1986, the seminal work [1]
by Yao introduced the Secure Func-
tion Evaluation (SFE) protocol named
Garbled Circuit (GC) that allows any
polynomial time two-party function
to be computed efficiently without
revealing the private inputs. The fol-
lowing year, a different approach to
SFE was proposed in the Goldreich-
Micali-Wigderson (GMW) [2] proto-
col. Over the years many subsequent
enhancements made Yao‘s protocol
truly practical, while the GMW pro-
tocol has also been shown to be ef-
fective in some scenarios. A common

property of both these protocols is
that the underlying function is rep-
resented as a Boolean circuit, called
a netlist. The secure computation is
performed in a way such that the
Boolean value associated with each
wire in the netlist is shared among
the two parties. Only for the output
wires, the parties reveal their respec-
tive shares to learn the values associ-
ated with them. The key elements of
these protocols are outlined in Fig 1.

One of the most crucial parts of
executing a function through either
GC or GMW is converting the behav-
ioral description of the function to the
netlist. On the one hand, several cus-
tom compilers supporting (or design-
ing) various programming languages
have emerged for addressing this is-
sue. However, such custom compilers
have been shown to have reliability
issues and limitations in global op-
timization. On the other hand, tech-
niques for interpreting a behavioral
description in a Boolean format are
widely researched for designing dig-
ital integrated circuits (IC). Design
automation for the purpose of IC
design is a true engineering success
story; the tools have enabled us to
scale our chips to billions of gates to
support complicated tasks. There is
a wide gap between the capabilities
of conventional IC design automation
tools to compile sophisticated func-
tions and what could be achieved by
the custom SFE compilers.

Our work in this area, called Tiny-
Garble [3] bridges this gap by for-
mulating GC netlist generation as an
atypical circuit synthesis task which
can be addressed and scaled with
standard IC logic synthesis tools.
Following the path of TinyGarble,
Demmler et. al. showed that a similar
approach also greatly enhances the
performance of circuit generation for
the GMW protocol [4]. In this paper,
we summarize the recent advances
following the paradigm shift intro-
duced by TinyGarble and several
novel applications that are enabled
by connecting these two seemingly
separate but synergistic technical ar-
eas. We start with a brief overview
of the GC and GMW protocols, be-
fore delving into the details of circuit
construction and synthesis by design
automation tools along with exciting
new results. We also provide a short
history of the development of custom
SFE compilers.

What is Garbled Circuit?
Formally, Yao’s GC allows two par-
ties Alice and Bob to jointly compute
a function z = F(xa, xb) on their
private inputs xa from Alice and xb

from Bob. The netlist of the function
F consists of 2-input 1-output logic
gates. Alice, assigns each wire in the
netlist with two k-bit random keys
corresponding to the values 1 and 0.
For each gate, a garbled truth table
is constructed by encrypting the keys

1986 2010 2011 2012 2013 20152009 2014 20162004

Yao GC Protocol
[Yao, FOCS]

Billion gates SFE
[KSS, USENIX]

SFE in ANSI C
[HFAK, CCS]

FastGC
[HEKM, USENIX]

VMCrypt
[Malka, CCS]

TASTY
[HKSSW, CCS]

GC for One-Time Prog.
[JKS, CHES]

FairPlay
[MNPS, USENIX]

2-Party SFE is practical
[PSNW, AISACCS]

PCF
[KSMB, USENIX]

SFE on GPU
[HMSG, ACSAC]

Fixed Key Cipher
[BHKR, USENIX]

SFE on GPU
[PL, ePrint]

SFE on GPU
[FN, ACNS]

Circuit Structures
[ZE, S&P]

RAM-Model
[LHSHK, S&P]

Mobile phone HW tokens
[DSZ, USENIX]

CBMC-GC
[FHKSV, CC]

GarbledCPU
[SDZSSK, DAC]

Frigate [MGCBT,
Euro S&P]

Crypto Primitives

LibraryHardwareCompiler

Logic Synthesis

Legends

1999

Row Reduction
[NPS, EC]

2008

Free XOR
[VT, ICALP]

TinyGarble
[SHSSK, S&P]

Obliv-C
[ZE, ePrint]

ObliVM
[LWNHS, S&P]

Logic Synthesis for
GMW [DDKSS, CCS]

Half Gate
[ZRE, TACT]

Fig. 2: Most impactful works on Yao’s garbled circuit (GC) over the years.

for the output with the correspond-
ing input keys. Next, she sends the
garbled tables along with the keys for
her input values to Bob. Bob obtains
the keys corresponding to his input
values through Oblivious Transfers
(OTs) that allows him to retrieve the
keys without revealing the values of
his inputs. He then uses these input
keys to evaluate the encrypted tables
gate by gate and decrypt the keys as-
sociated with the value of each wire.
However, the mapping of these keys
to the actual values is known only
to Alice. Thus together they share
the secret value of each wire. At the
final step, they reveal their respective
shares for only the output wires to
learn the output z.

The original work by Yao and a
majority of the subsequent enhance-
ments adopt a honest-but-curious secu-
rity model. In this model, both Alice
and Bob follow the agreed upon pro-
tocol but may want to deduce more
from the information at hand. Re-
cent works have shown how to make
Yao’s protocol secure in the malicious
security model where the parties may
deviate from the correct protocol.

A number of optimizations to the

GC protocol have been proposed,
e.g., free-XOR [5], row reduction [6],
half-gate [7], and fixed-key block ci-
pher [8]. Among these, the most
important one is free-XOR as it al-
lows the evaluation of XOR, XNOR
and NOT gates without costly cryp-
tographic encryption and communi-
cation. Therefore, the primary opti-
mization goal while generating the
netlist for F is to minimize the
number of non-XOR gates (AND, OR,
NAND, etc.). Row-reduction and half-
gate optimizations reduce the size of
the garbled tables for non-XOR gates
by 25% each.

GMW and BMR Protocols
In the GMW protocol, the value of

each wire is split into two shares such
that the actual value is XOR of these
two. Each of Alice and Bob receives
one share for each wire. Since the
XOR operation is associative, they can
locally XOR their respective shares
of the input wires to compute the
shares of the output wire of the XOR
gates. Thus this protocol naturally
supports free-XOR. For the non-XOR
gates, however, Alice computes the
output of each gate for all four pos-

sible combinations of the shares of
the input wires held by Bob, and
Bob receives one of them through
OT. To minimize the number of com-
munication rounds, all non-XOR gates
at the same level of the netlist are
evaluated in parallel. Thus, the round
complexity of the GMW protocol de-
pends on the circuit depth, as op-
posed to being constant like in the
Yao‘s protocol. However, in settings
with low network latency, this pro-
tocol has been shown to have supe-
rior performance in some cases. More
importantly, it scales better to prob-
lems involving more than two par-
ties. Even though GC was designed
for two-party computations, subse-
quent enhancement has extended this
to multiparty settings, one of the
most notable one being the Beaver-
Micali-Rogaway (BMR) [9] protocol.

A Brief History of GC Compilers
Yao’s protocol drew the interest of
researchers around the world upon
its appearance in 1986. However, it
was primarily considered a theoret-
ical concept until the emergence of
Fairplay [10], the first realization of
GC, in 2004. Fairplay introduced the

2

Current Garbled Circuit Compilers

PAL, 2012 [1]: The primary goal of PAL
is to generate the netlist at runtime on
mobile platform. This framework takes
the input function an SFDL program,
and produces a netlist in SHDL. SFDL
and SHDL were developed by the first
GC framework Fairplay [2] which is
employed by PAL to execute the SHDL
netlist. This framework does not con-
sider the free-XOR optimization while
generating the netlist.
KSS, 2012 [3] This framework pro-
vides inherent security against mali-
cious adversary. The input function is
represented using a custom untyped
language and the output is a netlist
in binary format which is executed in
parallel with generation.
PCF, 2013 [4]: The PCF compiler takes
LCC bytecode as input (generated by
LCC compiler from a C program) and
generates the netlist in a condensed
ASCII format. The netlist is executed
through the GC back-end which sup-
ports run-time unrolling of the loops
inside the program.
CBMC-GC, 2014 [5]: This compiler
supports a general purpose language,
a subset of ANSI-C. It employs a
bit-precise model checker, CBMC, to
translate C programs into equivalent
Boolean netlist in ASCII format. This

framework provides only the compiler
to generate the netlist, and not a GC
back-end for execution.

Wysteria, 2014 [6]: Wysteria is a high-
level programming language and com-
piler that enables users to write mixed-
mode programs. Such programs in-
clude a mixture of local and secure
computations.

Obliv-C, 2015 [7]: The Obliv-C lan-
guage is an extension of C designed
to write privacy-preserving functions
for GC. The compilation and execution
task are combined in this framework.
The output is a compiled binary that
executes the function securely.

ObliVM, 2015 [8]: Similar to Obliv-
C, this framework also combines the
compilation and execution tasks. The
input function is written in Java and
the output is a Java class file. This
framework supports oblivious access to
arrays when the index depends on the
private data.

Frigate, 2016 [9]: The goal of this frame-
work is to generate the netlist reliably
and fast. The input function is written
in a custom language that resembles C.
The function is compiled to a netlist
in a custom format which is executed
through its own GC back-end.

REFERENCES

[1] B. Mood, L. Letaw, and K. Butler,
“Memory-efficient garbled circuit genera-
tion for mobile devices,” Financial Cryptog-
raphy and Data Security, pp. 254–268, 2012.

[2] D. Malkhi, N. Nisan, B. Pinkas, and
Y. Sella, “Fairplay-secure two-party com-
putation system.” in USENIX Security.
USENIX, 2004, pp. 287–302.

[3] B. Kreuter, A. Shelat, and C.-H. Shen,
“Billion-gate secure computation with ma-
licious adversaries.” in USENIX Security.
USENIX, 2012, pp. 285–300.

[4] B. Kreuter, A. Shelat, B. Mood, and K. R.
Butler, “PCF: A portable circuit format for
scalable two-party secure computation.” in
USENIX Security. USENIX, 2013, pp. 321–
336.

[5] M. Franz, A. Holzer, S. Katzenbeisser,
C. Schallhart, and H. Veith, “CBMC-GC:
An ANSI C Compiler for Secure Two-Party
Computations,” in Compiler Construction.
Springer, 2014, pp. 244–249.

[6] A. Rastogi, M. A. Hammer, and M. Hicks,
“Wysteria: A programming language for
generic, mixed-mode multiparty computa-
tions,” in S&P. IEEE, 2014, pp. 655–670.

[7] S. Zahur and D. Evans, “Obliv-C: A lan-
guage for extensible data-oblivious com-
putation.” IACR Cryptology ePrint Archive,
vol. 2015, p. 1153, 2015.

[8] C. Liu, X. S. Wang, K. Nayak, Y. Huang,
and E. Shi, “ObliVM: A programming
framework for secure computation,” in
S&P. IEEE, 2015, pp. 359–376.

[9] B. Mood, D. Gupta, H. Carter, K. Butler,
and P. Traynor, “Frigate: A validated, ex-
tensible, and efficient compiler and inter-
preter for secure computation,” in Security
and Privacy (EuroS&P), 2016 IEEE European
Symposium on. IEEE, 2016, pp. 112–127.

Secure Function Definition Language
(SFDL) to write the functions. The
compiler converted the functions to
a netlist in Secure Hardware Defini-
tion Language (SHDL) which is later
executed through the Yao’s protocol.
Since then, there has been a surge in
the research on GC. A selected set of
the most impactful works are shown
on the timeline presented in Fig 2. In
this section, we focus on the differ-
ent compilers developed to perform
SFE through the GC protocol. A brief
description of the frameworks is pro-
vided in the inset.

Realization of a function through

GC entails two major tasks: (i) the
behavioral description of the under-
lying function is compiled to a netlist
of Boolean logic and (ii) the netlist
is executed via a garbling back-end.
In the frameworks, PCF, KSS, CBMC-
GC, TinyGarble and Frigate the two
tasks are independent of each other.
These frameworks provide more flex-
ibility to the user as the netlist com-
piled by one framework can be exe-
cuted by another one. Thus, the user
can choose the best framework for
each task. For example, the JustGar-
ble framework [8] provided around
20× speed-up to the execution task

by employing a fixed-key block ci-
pher to garble the gates. This frame-
work does not include the compiler.
However, a netlist compiled by any
of the above mentioned frameworks
can be executed by JustGarble to ben-
efit from its speed-up. In contrast to
this, in Obliv-C and ObliVM, the two
tasks are unified. The outputs of these
frameworks are compiled binary of
the function to be executed securely.
For these frameworks to benefit from
the optimization of JustGarble, the
source codes of the frameworks need
to be modified.

The ABY framework [11] provides

3

a mixed-protocol that efficiently com-
bines secure computation based on
GC, GMW and Beavers multiplica-
tion triples based on arithmetic shar-
ing. Similar to Obliv-C and ObliVM,
this framework treats netlist genera-
tion and execution as a unified task.
However, recently by Demmler et.al.
have extended [4] the framework to
accept externally generated netlists.

Custom-designed compilers en-
able users to write the program
in a high-level language and pro-
vide a more user-friendly interface.
However, such customized compil-
ers for secure computation intro-
duce their own Domain Specific Lan-
guages (DSLs) which usually have
unfamiliar syntax, thus, diminishing
their original goal. One of the most
recent frameworks, Frigate [12] per-
formed extensive research on the reli-
ability of the current frameworks and
found out that most of them suffer
from reliability issues. For example,
they reported that PAL, KSS, CMBC,
Obliv-C, ObliVM, and PCF crashed
on programs that should have been
compiled correctly. Moreover, KSS,
ObliVM, and PCF generated incorrect
netlists. While many of these issues
were later taken care of by the respec-
tive developers, this research exposed
a serious reliability issue regarding
the usage of these compilers.

Fusion of SFE and Logic Synthesis
Conventional IC logic synthesis
transforms the behavioral description
of a function to a netlist of Boolean
gates. This concept can be traced
back to as early as 1979 when
IBM first started developing the
Logic Synthesis System (LSS) [13].
Since then IC design automation
and synthesis rose to become one
of the most successful engineering
ventures, as it has uniquely enabled
the modern computing era. The logic
synthesis and other automated IC

design tools have raised designers’
productivity by several orders of
magnitude. Indeed, while the com-
puting and information revolution
is mostly credited to Moore’s law
scaling, the complexity hurdle has
been addressed by the automated
design tools. Contemporary tools and
methodologies enable automation
of IC design, verification and test
of chips across various levels of
abstraction and sophistication.

TABLE 1: Comparison of the No. of
non-XORs of TinyGarble with Frigate

Function Frigate TG Improv.

Sum 1024 1,025 1,023 0.20%
Compare 16,384 16,386 16,384 0.01%
Hamming 160 719 159 77.89%
Mult 32 995 993 0.20%
MatrixMult
5x5 32

128,252 127,225 0.80%

AES 128 10,383 6,400 38.36%

The task of generating efficient
Boolean circuit (netlist) for GC is
substantially similar to logic synthe-
sis. For nearly three decades these
two fields did not cross paths un-
til the introduction of TinyGarble [3]
in 2015. TinyGarble creates a set of
libraries and optimization strategies
for industrial logic synthesis tools
such that they can efficiently be
employed to generate an optimized
netlist for GC. At the time of its publi-
cation, TinyGarble demonstrated su-
periority over the existing custom GC
compilers. Recently, the Frigate [12]
framework has shown to outperform
all other previous compilers, except
TinyGarble. In Table 1, the number
of non-XOR gates in selected bench-
mark functions generated by these
two frameworks are compared. Es-
sentially, the key to TinyGarble’s ef-
ficiency is standing on the shoulders
of a giant: IC logic synthesis. The
synthesis tools that make TinyGarble
a possibility are the same ones that
enabled the design of contemporary

ICs with billions of gates.
As mentioned in the previous

section, the netlist generation and
execution of GC can be run indepen-
dently in the TinyGarble framework.
The GC execution of TinyGarble
supports secure two-party com-
putation in the honest-but-curious
model. However, the capability
of its netlist generation tool-chain
goes well beyond that. Currently,
it supports netlist generation for
the realization of the BMR proto-
col (github.com/cryptobiu/Semi-
Honest-BMR) that supports secure
computation involving more than
two parties, and the realization
of two-party GC in the malicious
setting provided in the EMP-Toolkit
(github.com/emp-toolkit). The
methodology can easily be extended
to other GC based protocols given
they also support disintegration of
netlist generation and GC execution.

Inspired by TinyGarble, Demmler
et. al. employed logic synthesis tools
to generate netlists for the GMW pro-
tocol. Since the round complexity of
the GMW protocol depends on the
depth of the netlist, they developed a
tool-chain to optimize the netlist not
only for size but also for depth. Their
work showed a reduction of depth
by up to 14% even over manually
optimized netlists.

Both GC and GMW involve logic
gates whose functionalities are fixed
(e.g., AND, OR). Therefore, both
TinyGarble and [4] employ ASIC syn-
thesis tools. Dessouky et. al. [14] in-
troduce protocols involving lookup
tables (LUTs) which can be pro-
grammed to realize arbitrary func-
tions. To generate the Boolean cir-
cuits, this work employs multi-input
LUT-based synthesis tools which
form the core of synthesis for FPGAs.

Note that while the logic synthe-
sis tools have been shown to out-
perform custom compilers in terms

4

of efficiency, development of prac-
tical privacy-preserving systems re-
quires consideration of several other
factors, e.g., language expressibility,
richer programming paradigms, and
accessibility to developers (please re-
fer to [15] for a comprehensive study
on these factors). Perhaps the holy
grail of GC compilers would be one
that combines the efficiency of logic
synthesis tools with the versatility of
programming languages.

Another significant contribution
of [3] is introducing and leveraging
the concept of the sequential circuit to
GC. We elaborate this concept next.

0.1

1

10

100

1000

10000

0

2

4

6

8

10

12

14

1 4

1
6

6
4

2
5

6

1
0

2
4

4
0

9
6

1
6

3
8

4

C
P

U
 c

yc
le

 ×
1

0
E6

Sequential Cycle (c)

32,768-bit Sum

Garbling Time
Memory Footprint

Fig. 3: The effect of the sequential
representation of the circuit on the
garbling time and memory footprint.

Sequential Garbled Circuit
TinyGarble‘s unique ability to garble
sequential circuits enables scaling of
the designs by leveraging the concept
of a memory. As opposed to the com-
binational circuit, a sequential circuit
has internal states stored in registers
(flip-flops). At each clock cycle, the
state of the circuit depends on the in-
puts at that cycle and the current state
of the circuit. Consider a 32-bit adder
circuit for example. The circuit can
be represented as (i) a combinational
circuit that takes two 32-bit numbers
and outputs the 32-bit sum or, (ii) a
sequential circuit, 1-bit full-adder that
computes 1-bit of the sum at each
clock cycle. This circuit is executed

for 32 clock cycles to produce a 32-bit
output. The state of the circuit is the
carry of the previous clock cycle. In
a general case, an n-bit adder can be
realized using a l-bit adder module,
executed for dnl e clock cycles.

Describing a function as a sequen-
tial circuit provides a compact rep-
resentation that can scale for large
input sizes. For example, Fig 3 shows
the memory footprint and garbling
times for different values of l for
realizing a 215-bit adder. As can be
seen, the amount of memory required
for garbling of the sequential circuit
decreases linearly with l. A major
benefit of reducing the memory foot-
print is that for several benchmark
functions, TinyGarble can synthesize
them to compact sizes that can fit
within the cache. This compaction re-
sults in fewer cache misses and there-
fore a reduction in the garbling time
which is evident in Fig 3. Note that
for a certain value of l, the drop in
the execution time reaches a satura-
tion point. At this point the netlist
completely fits into the cache, and the
number of cache misses is reduced
to its minimum. Further reduction of
the netlist size does not further im-
prove the time. This saturation point
usually occurs at a higher value of
l for more complicated tasks with
larger netlists.

The PCF framework also took a
similar approach where it rolls a for-
loop and repeatedly garble it, in-
stead of unrolling it in a large cir-
cuit. However, sequential circuit de-
scription is a well-known and estab-
lished approach that allows us to use
industrial IC compilers to generate
more optimized circuits, and at the
same time, keep the garbling foot-
print small. The comparison in [3]
shows that TinyGarble outperforms
PCF by up to 85% in terms of the
number of non-XOR gates for all
the benchmarks. Moreover, sequen-

tial description enables several (pre-
viously unreported) functions to be
efficiently garbled. For example, The
TinyGarble framework has been em-
ployed to devise a scalable privacy-
preserving solution for stable match-
ing in [16], sub-string search [17], and
deep learning [18]. Even more inter-
estingly, the sequential format allows
garbling a general purpose processor
(CPU). This was not possible by the
prior custom compilers, as no sizable
CPU can be built as a non-sequential
circuit (a circuit without states, a.k.a.
combinational circuit). For the sake of
brevity, we elaborate one application–
stable matching in this section. In
the next section we provide a brief
overview of the garbled processor.

In stable matching, there are
two groups of people where ev-
ery member has a preference list
to be matched to a person in the
other group. The stability condition
requires that there should be no
two persons such that they prefer
each other more than their already
assigned partners. In secure stable
matching, the goal is to ensure the
privacy of the preference lists of the
members. This has been seen as one
of the most complicated tasks in
privacy-preserving computation. The
memory footprint of secure stable
matching with combinational circuits
cannot scale for real-world group
sizes. The work in [16] presents a
scalable solution to this problem by
employing the sequential garbling in-
troduced by TinyGarble. The circuit
block diagrams of the combinational
and sequential circuits are depicted
in Fig 4. The combinational circuit re-
quires O

(
n2

)
sub-modules each com-

prising O
(
n2 log n

)
number of non-

XOR gates where n is the number
of people in each group. Since the
combinational circuit has O

(
n4 log n

)
gates, it quickly reaches the limit of
circuit synthesis tools. In contrast,

5

n2 log(n) n2 log(n)

1 2 n2

n2 log(n)

Combinational Circuit Sequential Circuit

n2 log(n)
R

eg
ister

Fig. 4: Combinational and sequential circuits for stable matching. n is the number of people in each group.

the sequential circuit only requires
O
(
n2 log n

)
non-XOR gates. There-

fore, it provides scalability to the
much higher set sizes. Moreover, gar-
bling the sequential circuit requires
significantly less memory.

Garbling A Processor
Custom-designed compilers usually
require the user to write the pro-
gram in an unfamiliar syntax. More-
over, they suffer from correctness and
reliability issues as studied in [12].
An elegant solution to these prob-
lems is to have off-the-shelf (unmod-
ified) standard compilers and com-
pile user’s program to the binary
code. This approach has the advan-
tage that legacy-codes can be used
with minimal modification and no
special syntax is used. In order to
securely evaluate the compiled bi-
nary code on user’s private data, one
has to garble a general-purpose pro-
cessor. In other words, the Boolean
circuit garbled in the GC protocol
is a general-purpose processor that
includes instruction-memory, data-
memory, and stack along with other
components. The compiled binary it-
self is considered as an input to the
processor by being loaded into the
instruction memory. User’s private
data is also loaded into the data mem-
ory. Therefore, by garbling the pro-
cessor, the program is securely eval-
uated on users’ private input.

Naive adaptation of garbled pro-
cessor for SFE, however, incurs a
large overhead. The reason is that

for each instruction the entire proces-
sor circuit including instruction-fetch,
instruction-decoding, control paths,
etc. have to be garbled. Two solutions
have been proposed to reduce this
overhead: (i) static reduction [19] and
(ii) dynamic reduction [20].

In [19], authors propose to cre-
ate custom ALUs for different in-
structions and evaluate the corre-
sponding ALU for each cycle. How-
ever, such coarse-grain optimization
(instruction-level as opposed to gate-
level) still incurs a significant over-
head. To overcome these limitations,
a gate-level reduction approach is
proposed in ARM2GC that dynami-
cally identifies gates that can be pro-
cessed using public data, i.e., the
compiled binary. In other words,
ARM2GC determines which parts of
the processor can be evaluated in
plaintext and which parts need to be
garbled. The decision is based on the
instruction at each clock cycle and the
public/private state of the processor.
The latter depends on the previous
instructions and how they have af-
fected the public and private status
of different parts of the processor.

It has been shown that ARM2GC
requires 8.4E + 3 and 49E + 3 times
less garbled non-XOR gates compared
to [19] for computing Hamming dis-
tances with 32 and 512-bit inputs,
respectively. In fact, the number of
gates garbled in ARM2GC for dif-
ferent benchmarks is comparable or
significantly lower compared to the
high-level GC compilers like CBMC-

GC or Frigate. In the ARM2GC
framework [20], users can write the
program in a standard language and
compile using verified ARM compil-
ers. The compiled program acts as
public input to the ARM processor
circuit. In contrast to custom com-
pilers, ARM2GC relies on standard
compilers that are rigorously tested
and as a result is more reliable.

ADAPTATION of standard logic
synthesis techniques to generate

the netlist for Yao’s GC protocol along
with the introduction of sequential
GC provide a paradigm shift in the
field of privacy-preserving computa-
tion. The results of four decades of re-
search in the field of electronic design
automation are made available to the
security community. Leveraging the
powerful IC synthesis tools for garble
circuit compilation uniquely allows
efficient and scalable realization of
a number of exciting new privacy-
preserving applications. In particular,
it enables the execution of a gen-
eral purpose processor through the
GC protocol. Recent advances in gar-
bling a processor allow the users to
write a function in any programming
language and compute it efficiently
through the GC protocol. The usage
of standard and verified compilers
for garbling eliminates the unrelia-
bility of custom compilers; opening
the possibility of privacy-preserving
implementation of services that entail
extensive computation and massive
data sets, e.g., secure search, neural
network, navigation, and a lot more.

6

*References

[1] A. C.-C. Yao, “How to generate and
exchange secrets,” in FOCS. IEEE,
1986, pp. 162–167.

[2] M.-S. Goldreich, O. and A. Wigder-
son, “How to play ANY mental game,”
in Symposium on Theory of Computing.
ACM, 1987.

[3] E. M. Songhori, S. U. Hussain, A.-R.
Sadeghi, T. Schneider, and F. Koushan-
far, “TinyGarble: Highly compressed
and scalable sequential garbled cir-
cuits,” in S&P. IEEE, 2015, pp. 411–
428.

[4] D. Demmler, G. Dessouky, F. Koushan-
far, A.-R. Sadeghi, T. Schneider, and
S. Zeitouni, “Automated synthesis of
optimized circuits for secure computa-
tion,” in CCS. ACM, 2015.

[5] V. Kolesnikov and T. Schneider, “Im-
proved garbled circuit: Free XOR gates
and applications,” in ICALP. Springer,
2008, pp. 486–498.

[6] M. Naor, B. Pinkas, and R. Sum-
ner, “Privacy preserving auctions and
mechanism design,” in EC. ACM,
1999, pp. 129–139.

[7] S. Zahur, M. Rosulek, and D. Evans,
“Two halves make a whole: Reducing
data transfer in garbled circuits using
half gates.” pp. 220–250, 2015.

[8] M. Bellare, V. T. Hoang, S. Keelveedhi,
and P. Rogaway, “Efficient garbling
from a fixed-key blockcipher,” in S&P.
IEEE, 2013, pp. 478–492.

[9] D. Beaver, S. Micali, and P. Rogaway,
“The round complexity of secure proto-
cols,” in Proceedings of the twenty-second
annual ACM symposium on Theory of
computing. ACM, 1990, pp. 503–513.

[10] D. Malkhi, N. Nisan, B. Pinkas, and
Y. Sella, “Fairplay-secure two-party
computation system.” in USENIX Secu-
rity. USENIX, 2004, pp. 287–302.

[11] D. Demmler, T. Schneider, and
M. Zohner, “ABY-a framework for
efficient mixed-protocol secure two-
party computation.” in NDSS, 2015.

[12] B. Mood, D. Gupta, H. Carter, K. Butler,
and P. Traynor, “Frigate: A validated,
extensible, and efficient compiler and
interpreter for secure computation,” in
(EuroS&P). IEEE, 2016, pp. 112–127.

[13] J. A. Darringer, D. Brand, J. V. Gerbi,
W. H. Joyner, and L. Trevillyan, “LSS: A
system for production logic synthesis,”
IBM Journal of research and Development,
vol. 28, no. 5, pp. 537–545, 1984.

[14] G. Dessouky, F. Koushanfar, A.-R.
Sadeghi, T. Schneider, S. Zeitouni, and
M. Zohner, “Pushing the communica-
tion barrier in secure computation us-
ing lookup tables,” in NDSS, 2017.

[15] M. Hastings, B. Hemenway, D. Noble,
and S. Zdancewic, “Sok: General pur-
pose compilers for secure multi-party
computation,” in IEEE Symposium on
Security & Privacy. IEEE, 2019.

[16] M. S. Riazi, E. M. Songhori, A.-R.
Sadeghi, T. Schneider, and F. Koushan-
far, “Toward practical secure stable
matching,” Proceedings on Privacy En-
hancing Technologies, vol. 2017, no. 1, pp.
62–78, 2017.

[17] M. S. Riazi, E. M. Songhori, and
F. Koushanfar, “PriSearch: Efficient
Search on Private Data,” in Proceedings
of the 54th Annual Design Automation
Conference 2017. ACM, 2017, p. 14.

[18] B. D. Rouhani, M. S. Riazi, and
F. Koushanfar, “DeepSecure: Scalable
provably-secure deep learning,” arXiv
preprint arXiv:1705.08963, 2017.

[19] X. Wang, S. D. Gordon, A. McIntosh,
and J. Katz, “Secure computation of
mips machine code,” in European Sym-
posium on Research in Computer Security.
Springer, 2016, pp. 99–117.

[20] E. M. Songhori, M. S. Riazi, S. U. Hus-
sain, A.-R. Sadeghi, and F. Koushanfar,
“ARM2GC: Simple and efficient gar-
bled circuit framework by skipping,”
Cryptology ePrint Archive 2017/1157,
2017.

Siam U. Hussain is currently
a doctoral student at the De-
partment of Electrical and Com-
puter Engineering at University
of California, San Diego. His re-
search interests include privacy
preserving computing and hard-
ware security.

M. Sadegh Riazi is currently
a doctoral student at the De-
partment of Electrical and Com-
puter Engineering at University
of California, San Diego. His re-
search interests include privacy
preserving computing and ma-
chine learning.

Farinaz Koushanfar is the Pro-
fessor and Henry Booker Fac-
ulty Scholar at the Department
of Electrical and Computer Engi-
neering at University of Califor-
nia, San Diego, She is the Direc-
tor of Adaptive Computing and
Embedded Systems (ACES) Lab
and Co-Founder/Co-Director of
Center for Machine Integrated
Computing and Security (MICS).
Her research focuses on massive
data analytics in constrained set-
tings and security and privacy
for data-intensive computing.

7

