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1 INTRODUCTION
Deep Neural Networks (DNNs) are being widely developed for various machine learning applications, many of
which are required to run on embedded devices. In the realm of embedded DNNs, real-time execution under severe
power limitations is hard to satisfy [20, 32]. Contemporary research has focused on the FPGA-based acceleration of
DNNs [8, 10, 50, 52]. However, FPGAs are inherently limited in terms of on-chip memory capacity. Thus, the high-storage
requirement of DNN models hinders an efficient and low power execution on FPGAs.

To reduce the computational complexity and memory requirement of DNNs, several pre-processing algorithms have
been proposed. The existing methods generally convert conventional DNNs into compact representations that are
better suited for execution on embedded devices. Examples of such compacting methods include quantization [21, 40],
binarization [10, 53], tensor decomposition [29], parameter pruning [57], and compression with nonlinear encoding [13,
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45]. A higher compression rate might not always translate to better hardware performance as the platform constraints
could interfere with the intended compaction methodology [58].

This paper specifically focuses on nonlinear encoding and provides solutions to tackle the challenges associated
with optimizing physical performance. Encoding network parameters is rather beneficial as it reduces the memory
footprint, i.e., the main source of delay and power consumption in FPGA accelerators. To devise a practical solution for
implementing encoded DNNs, we simultaneously identify and address four critical issues.

DNN memory footprint is imposed by either weights or feature-maps. Figure 1 shows the relative mem-
ory requirements in several popular DNN models. As can be seen, the memory footprint of activations is no-
table; however, contemporary research mainly targets the (static) DNN weights for nonlinear quantization [4,
13, 45]. Firstly, developing online mechanisms for activation encoding can significantly reduce the memory foot-
print of DNN models. Secondly, nonlinear quantization destabilizes DNN training by adding non-differentiable

Fig. 1. Relative memory footprint of weights and activations
for various DNNs, evaluated on 10 samples of ImageNet.

elements to the model. Therefore, novel computation routines
must be developed to approximate gradients for DNN fine-
tuning. Thirdly, specifying the encoding bitwidth across all
DNN layers by handcrafted try-and-error is exhaustive and gen-
erally sub-optimal. Hence, automated and intelligent solutions
for bitwidth optimization are highly preferable. Finally, design-
ing accelerators that are customized per application/hardware
is cumbersome. Thus, easy-to-use tools are needed to ensure low, non-recurring engineering costs.

To tackle the aforementioned challenges, we introduce EncoDeep, a unified framework that facilitates encoding,
training, bitwidth customization, and automated implementation of encoded DNNs on FPGA platforms. EncoDeep
software stack allows users to automatically configure the encoding bitwidth across all DNN layers and retrain the
encoded DNN. The hardware library of EncoDeep provides a set of configurable DNN layers that can be instantiated to
compose a fully-functional DNN. In summary, the contributions of this paper are listed as follows:
• Introducing a novel methodology for the (online) encoding of DNN activations. We establish the gradient
computation routines required to fine-tune encoded DNNs, enabling restoration of DNN accuracy after encoding.
• Introducing an automated algorithm for customizing per-layer encoding bitwidths. Inspired by reinforcement
learning, we establish an action-reward-state system to find a bitwidth configuration that minimally affects DNN
accuracy while maximally reducing memory footprint.
• Establishing a hardware library for the bit-flexible implementation of customized encoded DNN layers. Activation
encoding lowers memory footprint and facilitates the use of streaming buffers for inter-layer feature transmission.
• Providing an API for fast and easy hardware implementation of encoded DNNs. Developers describe the DNN as
high-level Python code which is then automatically converted to Vivado_HLS.
• Performing extensive evaluations on various datasets and DNN architectures. On MNIST, SVHN, and CIFAR-10,
EncoDeep demonstrates an average of 4.65× throughput improvement compared to stand-alone weight encoding.
To uncover the benefits of encoding, we compare EncoDeep with six fixed-point FPGA accelerators on ImageNet,
showing an average of 3.6× and 2.54× improvement in throughput and performance-per-watt, respectively.

2 OVERVIEW AND INSIGHTS

EncoDeep design flow is composed of an interlinked optimization scheme where algorithmic DNN compaction methods
and hardware-level customization are performed in sync. In this section, we describe EncoDeep insights in high-level
and look at the main components of our framework.
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2.1 Streaming-based On-chip Execution

Traditional DNN accelerators store the weights and activations (features) of layers in the off-chip DRAM since commodity
FPGAs are often limited in terms of on-chip memory capacity. Figure 2 (top) demonstrates the computation flow of
DNNs in such settings. Alternatively, the weights and computed activations could be stored and accessed within the
FPGA design using streaming buffers as depicted in the bottom of Figure 2. The benefits of the latter approach are
three-fold: (i) it avoids the power-hungry and high-latency access to off-chip DRAM. (ii) The computation engines
responsible for each DNN layer can be customized to comply with the pertinent layer. (iii) The streaming buffers allow
pipelining for the computation engines to increase throughput. Although on-chip execution of DNNs is beneficial in
many aspects, the memory requirement for weights and activations of DNN layers is often beyond the (limited) capacity
of commodity FPGAs. To address this, EncoDeep employs nonlinear quantization to reduce memory footprint such that
the weights/activations can be accommodated within FPGA block-RAMs.

Fig. 2. The workflow of traditional vs. streaming-based
DNN inference. The top diagram shows the conven-
tional approach where all resources are allocated to one
computational engine and layer input/outputs are con-
tinuously read/written from/to off-chip memory. The
bottom diagram presents a streaming-based approach
where each layer is allocated a different computational
engine and communications with off-chip memory are
limited to the first/last layer.

2.2 Memory Compression

(a) Fixed-point (b) Nonlinear

Fig. 3. Histogram of data samples and the quantization bins in
fixed-point and nonlinear quantization. In this example, there are
4 quantization bins and scalars are encoded with 𝐿𝑜𝑔2 (4) = 2 bits.

Quantization allows a reduction in memory footprint by
approximating numerical values. To perform quantiza-
tion, a finite set of best representatives (a.k.a. bins) are
selected and each value is approximated with the closest
bin. Perhaps the most popular quantization is fixed-point
approximation. Figure 3-a depicts the bins for an unsigned
fixed-point quantization. In this setting, quantization bins
are fixed to certain points (e.g., {0.00, 0.25, 0.50, 0.75}), re-
gardless of data distribution. Alternatively, in nonlinear
quantization, the bins are carefully selected to best repre-
sent the data as shown in Figure 3-b. In this example, both fixed-point and nonlinear quantizations require the same
number of bits to represent the (approximated) data: each real-valued signal can be represented with 2 bits when there
are 4 quantization bins. However, the approximation error associated with the nonlinear scheme is drastically lower.

Fig. 4. Nonlinear quantization error ver-
sus bitwidth for two Gaussian data dis-
tributions with 𝜎 = 1 and 𝜎 = 5.

For a fixed nonlinear quantization bitwidth, the approximation error increases
as the standard deviation 𝜎 of the data increases. Nevertheless, this error can be
compensated by increasing the number of quantization bits; Figure 4 shows that
for a large enough number of bits (𝑏 > 6 in this example), the error converges
to zero. DNNs inherently have a low standard deviation due to specific measures
taken during training to ensure convergence. In particular, to avoid exploding
gradient values and promote a smooth convergence, contemporary DNNs com-
prise batch normalization which normalizes layer activation values. Moreover,
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to prevent over-fitting and drastic neuron transitions, weight regularization is used during training to suppress large
weights. We empirically demonstrate this property in Figure 5 by plotting the 𝜎 range across DNN layers for all our
benchmarks. Such small 𝜎 range allows low-error estimation of DNN parameters/activations with very few bits.

Fig. 5. Standard Deviation (𝜎) range for
activations (left) and weights (right)
across DNN layers. Here, the black dot
represents the mean 𝜎 for each bench-
mark.

Fig. 6. The global flow of EncoDeep framework. User provides a high-level Python description of a pre-trained DNN to the software
stack, which is responsible for weight/activation encoding, layer-specific bitwidth configuration, and model fine-tuning. Our compiler
converts the Python code into a hardware description. The hardware stack then uses a customized library for FPGA synthesis.

2.3 Global Flow

Figure 6 depicts the global flow of EncoDeep framework. EncoDeep is composed of three interlinked design units,
namely the Software Stack (also referred to as the Encoding Engine), the Compiler, and the Hardware Stack. EncoDeep
aims at alleviating the complications of DNN implementation on FPGAs by incorporating an automated design stack
that separates users from the details of hardware design and optimization. We implement an end-to-end automated
framework that eliminates all hand-optimizations and delivers a customized accelerator implementation for various
DNN architectures and FPGA platforms.

EncoDeep leverages a novel and fully automated learning algorithm to output a maximally efficient DNN architecture
in terms of memory footprint while adhering to the accuracy constraints provided by the user. The key insight of
EncoDeep is capturing the trade-off between the classification accuracy and memory footprint of model parameters
and feature maps (activations). We use the popular neural network development API, PyTorch, to describe the DNNs in
the software stack. To implement the inference engines on FPGA, we choose Vivado High-Level Synthesis (HLS) which
enables faster development as well as portability. To fill the bridge between the software and the hardware stacks, we
develop a compiler unit in Python. Below, we elaborate more on the incorporated design units.

Software Stack. The software stack is responsible for weight/activation encoding, layer-specific bitwidth configuration,
and model fine-tuning. This step analyses the input DNN and applies nonlinear quantization (encoding) to layer
weights/activations. EncoDeep encoding scheme reduces memory footprint at the cost of a small reduction in inference
accuracy. We devise an automated algorithm to determine the number of encoding bins in each layer for the weights
and activations such that the memory footprint is maximally reduced and/or the accuracy is minimally affected. The
following steps are performed sequentially in the software stack:

• Activation Encoding. This step takes as input a pre-trained DNN described in Pytorch format and generates a
network with encoded activations.
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• Weight Encoding. This step takes the DNN from the activation encoding step as input and generates a network
with encoded weights and activations.

Both the activation and weight encoding steps consist of three tasks: (i) network profiling where the accuracy-memory
trade-off is captured by calculating the correlation between accuracy loss and memory footprint reduction (Section 3.3).
(ii) Bitwidth selection where the bitwidth of encoded activations/weights is customized based on the user-defined
accuracy/memory budget primitives (Section 3.3). The encoded activations/weights are then inserted in the DNN graph
to replace the full-precision values (Section 3.1). (iii) Model re-training where the encoded DNN is fine-tuned to improve
classification accuracy (Section 3.2). The output of the EncoDeep software stack is an encoded architecture and the
trained encoded network’s parameters.
Compiler. To ensure ease-of-use and design automation, we design a customized compiler. This unit takes as input the
high-level DNN graph description in PyTorch format and converts it to C++ code (as used in the Vivado HLS tool).
EncoDeep compiler produces a configuration file that specifies the customized encoding bitwidths for the weights
and feature maps of different DNN layers. The network description in C++ together with the configuration file enable
instantiation of core layer template modules. The compiler further converts the trained encoded network’s parameter
into a format ready to be loaded to the on-chip memory of the FPGA upon execution.
Hardware Stack. The hardware description of the DNN is rendered using Vivado_HLS, which is a standard high-
level-synthesis tool that enables faster development as well as portability. EncoDeep accelerator enjoys full-precision
calculations while maintaining low memory footprint using the encoded values. We provide a library of template
modules that can realize different DNN functionalities. An arbitrary architecture can be described by instantiating the
corresponding core layer templates in a network description file. Each template module has customized configurable
primitives such as the number of input/output neurons of the layer, the bitwidth of the weights/activations, and the
parallelism factors for execution. The output of the hardware stack is a bitfile that can be used to efficiently execute the
desired DNN on the FPGA. We will elaborate more on the hardware in Section 4.

3 ENCODEEP SOFTWARE STACK

In this section, we elaborate on the utilized concepts for non-linear encoding of DNN parameters/activations. Section 3.1
explains EncoDeep weight/activation encoding. Our gradient computation for encoded network training is formulated
in Section 3.2. Finally, our automated bitwidth selection routine is explained in Section 3.3.

3.1 Encoding Scheme
Our encoding scheme aims to estimate the parameters of a DNN layer with a subset of representatives, i.e., the codebook.
In the rest of this section, we delineate EncoDeep encoding method for DNN weights/activations.

Fig. 7. Illustration of EncoDeep weight encoding. left: original
matrix𝑊 , middle: approximated matrix𝑊 , right: encoded ma-
trix𝑊𝑒𝑛𝑐 along with the codebook.

3.1.1 Weight Encoding. Let us denote the weight param-
eters in a certain DNN layer as𝑊 . In order to encode𝑊 ,
we first find an approximation𝑊 ≈ 𝑊 such that the el-
ements of 𝑊 are restricted to a finite set of real-values,
®𝑐 = {𝑐 [1], . . . , 𝑐 [𝐾]}, i.e., the codebook. The encoded weight
matrix is then constructed by replacing all elements with
indices of the corresponding codebook values. We denote
the encoded𝑊 as𝑊𝑒𝑛𝑐 . Figure 7 illustrates this approximation for a 4× 4matrix𝑊 using a codebook of 𝐾 = 2 elements.

To approximate 𝑊 , we use the well-known K-means clustering [13]. While K-means can effectively solve the
aforementioned problem for a fixed codebook size, specifying the codebook sizes in different layers of a network is
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a challenge yet to be solved. Specifically, different layers require different codebook sizes to capture the statistical
properties of their parameters. To tackle this, EncoDeep proposes an automated bitwidth selection algorithm explained
in Section 3.3. Note that weight encoding is performed only once in an offline pre-processing step. The per-layer
encoded weights and codebooks are then stored in binary files to be loaded in the FPGA memory.

3.1.2 Activation Encoding. EncoDeep activation encoding is performed in two phases: (i) offline phase performed in
the software stack, where the layer codebooks are generated using the K-means algorithm. (ii) Online phase performed
during inference where each feature is encoded by its closest codebook value.

Offline Encoding. Algorithm 1 summarizes our methodology for computing DNN activation codebooks. First, a
subsampled data set, {®𝑥𝑛}𝑁𝑛=1, is used to generate the layer feature-maps, which we denote by ®𝑦 𝑙 . Next, ®𝑦 𝑙 is flattened
into an array, ®𝑎 𝑙 . For an arbitrary activation function, the K-means clustering is applied on all values of ®𝑎 𝑙 . For the
especial case of 𝑅𝑒𝐿𝑈 activations, since the ReLU non-linearity produces many 0-valued outputs, we only perform
K-means on non-zero elements of ®𝑎 𝑙 to reduce the K-means clustering runtime. The (𝐾𝑙 − 1) cluster centers along with
the appended 0 value form the codebook for the 𝑙𝑡ℎ layer.

Using a subsampled dataset for finding the cluster centers enables for a fast and efficient search over the space of
possible codebook sizes, i.e., encoding bitwidths (see Section 3.3). To ensure that the obtained cluster values are truly
compatible with the distribution of layer feature-maps, we later fine-tune the cluster center values via customized
gradient operations explained in Section 3.2.
Online Encoding. Online encoding is performed during FPGA execution. The value of a feature 𝑦 is compared with
the elements of the corresponding layer’s codebook ®𝑐 𝑙𝑎𝑐𝑡 to compute the encoding as 𝑦𝑒𝑛𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛( |𝑦 − ®𝑐 𝑙𝑎𝑐𝑡 |). This is
implemented by a linear search on a small memory block containing the codebook values (Section 4.1).

Algorithm 1 Offline Activation Encoding

Inputs: input samples {®𝑥𝑛}𝑁𝑛=1, per-layer codebook sizes {𝐾𝑙 }𝐿
𝑙=1

Output: per-layer codebooks for activations {®𝑐 𝑙𝑎𝑐𝑡 }𝐿𝑙=1
1: for l = 1, ..., L do
2: ®𝑦 𝑙 ← 𝐷𝑁𝑁 𝑙 ({®𝑥𝑛}𝑁𝑛=1)
3: ®𝑎 𝑙 ← 𝑓 𝑙𝑎𝑡𝑡𝑒𝑛( ®𝑦 𝑙 )
4: ®𝑎 𝑙 ← 𝑛𝑜𝑛𝑍𝑒𝑟𝑜𝑠 ( ®𝑎 𝑙 )
5: ®𝑐 𝑙𝑎𝑐𝑡 ← 𝐾𝑀𝑒𝑎𝑛𝑠 ( ®𝑎 𝑙 , 𝐾𝑙 − 1)
6: ®𝑐 𝑙𝑎𝑐𝑡 ← {0, ®𝑐 𝑙𝑎𝑐𝑡 }
7: end for

3.2 Training of Encoded Networks
Encoding weights/parameters often results in a drop in accuracy. To compensate for such accuracy loss, the codebook
entries are fine-tuned after encoding using a customized back-propagation scheme. In this section, we explain the
details for fine-tuning encoded neural networks via Stochastic Gradient Descent (SGD) [28]. For weights, the averaged
gradient method [4, 13] is applied. For activations, we develop new gradient computation methods.

Feature encoding can be viewed as a non-linear transformation, 𝑓 (𝑦) = 𝑦∗, where𝑦∗ and𝑦 represent the approximated
and original values, respectively. As depicted in Figure 8, the non-linear encoding function is made up of multiple step
functions, rendering it non-differentiable. Given the gradient of the loss function with respect to the encoded values,
∇𝑦∗ = 𝜕L

𝜕𝑦∗ , we aim to compute the partial derivatives with respect to the non-encoded values (∇𝑦 = 𝜕L
𝜕𝑦 ) and the

derivatives with respect to the codebook (®∇𝑐 = 𝜕L
𝜕𝑐 ).
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Computing ∇y. Given the partial derivative ∇𝑦∗ , the gradient ∇𝑦 can be obtained by applying the chain rule:

∇𝑦 =
𝜕L
𝜕𝑦

=
𝜕L
𝜕𝑦∗
× 𝜕𝑦

∗

𝜕𝑦
. (1)

This formulation, however, is not stable since the function 𝑓 (·) is non-differentiable. To address this issue, we propose
to approximate the derivative of 𝑓 (·) as:

𝜕𝑓 (𝑦)
𝜕𝑦

=


1 𝑖 𝑓 𝑐 [1] < 𝑦 < 𝑐 [𝐾]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (2)

where 𝑐 [1] and 𝑐 [𝐾] are the smallest and largest codebook values, respectively. During forward propagation, 𝑦∗ is
computed as shown in Figure 8-left, whereas the backward propagation assumes the smooth function in Figure 8-right.
Computing ∇c. Given a scalar gradient element ∇𝑦∗ , the gradient with respect to 𝑐 [𝑘] is computed as:

®∇𝑐 [𝑘] = 𝐼 (𝑐 [𝑘], 𝑦∗) × ∇𝑦∗ , (3)

with 𝐼 (𝑎, 𝑏) = 1 if 𝑎 = 𝑏 and zero otherwise (identity operator). Given a vector of features ®𝑦∗ and the corresponding
vector of gradients ®∇𝑦∗ , the derivative is:

®∇𝑐 [𝑘] =
∑
𝑗

𝐼 (𝑐 [𝑘], ®𝑦∗ [ 𝑗]) × ®∇𝑦∗ [ 𝑗] . (4)

Using the partial derivatives, standard back-propagation algorithms can fine-tune DNN parameters. We incorporate
the customized gradient computation routines into EncoDeep software stack to support fine-tuning for encoded DNNs.
As shown in the evaluations, the fine-tuning incurs negligible overhead compared to original training.

Fig. 8. Example encoding non-linearity with a codebook of 𝐾 = 4 ele-
ments. (Left) Non-linear function applied in the forward propagation.
(Right) Smooth approximation of encoding used in backward propagation
for gradient computation.

3.3 Automated Bitwidth Selection

ModernDNNs are composed of many layers with high dimensional input/output parameter space. In order to successfully
reduce the memory footprint of such networks while minimally affecting the classification accuracy, one is required to
customize the memory compression rate on a per-layer basis. EncoDeep automated bitwidth selection aims to adjust the
encoding bitwidth (determined by the codebook size) for each layer such that the network’s overall memory footprint
is minimized while adhering to the user-provided accuracy constraint. To this end, an efficient algorithm is desired that
can search the space of possible bitwidth configurations for the optimal solution.

Recent advances in Reinforcement Learning (RL) provide a powerful automated tool for effective search. In high-level,
RL approaches traverse a series of states 𝑠 by taking subsequent actions 𝑎 = 𝜋 (𝑠) based on a policy function 𝜋 (·). Here,
𝜋 (·) corresponds to a probability distribution over actions given states. Applying an action 𝑎 at state 𝑠 triggers a state
transition 𝑠 → 𝑠 ′ and results in a reward 𝑟 (𝑎, 𝑠) from the environment. In the training phase of RL, the goal is to find
a series of actions that return the best discounted sum of future rewards. This is achieved by tuning the policy 𝜋 (·)
to incorporate the long-term return (reward) in the action-selection process. During RL training, the policy model is
learned over a series of episodes {𝐸1, 𝐸2, . . . }; each episode consists of all transitions form the initial state to the final
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state, given the policy 𝜋 (·):
𝐸𝑖 : 𝑠1

𝜋𝑖 (𝑠1)−−−−−→ 𝑠2
𝜋𝑖 (𝑠2)−−−−−→ . . .

𝜋𝑖 (𝑠𝑁−1)−−−−−−−→ 𝑠𝑁 .

Training the RL policy can generally be time-consuming as it requires many training episodes and evaluations. To
overcome this challenge, we propose an algorithm inspired by RL that does not learn probabilistic policies and relies
solely on immediate rewards. Our method comprises only one episode where the path from the initial state to the end
state is traversed deterministically by choosing greedy actions:

𝐸𝑔𝑟𝑒𝑒𝑑𝑦 : 𝑠1 → 𝑠2 → · · · → 𝑠𝑁 .

In this context, greedy actions are those with the maximum immediate reward when transitioning from state 𝑠𝑖 to
the next state 𝑠𝑖+1. By incorporating immediate rewards, EncoDeep can solve the multi-objective optimization problem
at hand in a fraction of pure RL optimization time. Similar to RL, we define a state-action-reward system where the state
is the encoding bitwidth in DNN layers at the current iteration of the algorithm. In the beginning, all layers are encoded
with a maximum bitwidth (e.g, 4 bits for a 16-element codebook). The action-space for each state 𝑠 , corresponds to
all permissible actions that can be taken from that state. Each action chooses a layer 𝑙 and reduces the corresponding
bitwidth 𝑏𝑙 to 𝑏 ∈ {1, 2, . . . , 𝑏𝑙 − 1}. The action-space thus encloses all bitwidth configurations where only a single
layer’s bitwidth differs from that in state 𝑠 . The reward for each action is formulated as follows:

𝑟 (𝑎, 𝑠) = 𝑚𝑒𝑚(𝑠) −𝑚𝑒𝑚(𝑠′)
𝑎𝑐𝑐 (𝑠) − 𝑎𝑐𝑐 (𝑠′)

, (5)

where 𝑎 is the action, 𝑠 is the current state, 𝑠
′
is the state after taking action 𝑎,𝑚𝑒𝑚(·) and 𝑎𝑐𝑐 (·) denote the total

memory footprint and accuracy at a given state, respectively. The accuracy is computed by evaluating the (encoded)
network on a validation dataset and the total memory for encoded weights is formulated as:

𝑚𝑒𝑚(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) =
𝐿∑
𝑙=1

𝑠𝑖𝑧𝑒 (𝑊 𝑙 ) × 𝐿𝑜𝑔2 (𝐾𝑙 ) + 𝐾𝑙 × 𝑏 𝑓 𝑖𝑥 , (6)

where the 𝑠𝑖𝑧𝑒 (·) operator returns the number of elements, 𝐾𝑙 is the weight codebook size corresponding to the 𝑙-th
layer, and 𝑏 𝑓 𝑖𝑥 is the fixed-point bitwidth of each codebook element. With 𝑌 𝑙 being the output feature map of the 𝑙-th
layer, the total memory footprint for the activations of the neural network is computed as:

𝑚𝑒𝑚(𝑎𝑐𝑡𝑠) =
𝐿∑
𝑙=1

𝑠𝑖𝑧𝑒 (𝑌 𝑙 ) × 𝐿𝑜𝑔2 (𝐾𝑙 ) + 𝐾𝑙 × 𝑏 𝑓 𝑖𝑥 , (7)

Taking an action in a given step will decrease both memory footprint and accuracy. Hence, the reward function
is always positive. At each state, all actions in the action-space are evaluated and the one with maximum reward is
chosen. Such a greedy approach is particularly beneficial for the problem statement at hand, i.e., bitwidth configuration,
as the value of each state transition can be independently evaluated without relying on the end state and the long-term
return. Compared to pure RL, which includes many episodes of policy training, our greedy approach renders drastically
lower computation time. Moreover, EncoDeep is able to extract the memory-accuracy Pareto curve with only one state
traversal (episode). Rather, in conventional RL settings, policy training must be repeated once for each target memory,
further increasing runtime.

We visualize EncoDeep search method in Figure 9. Here, we use an example 2-layer neural network that is initialized
to 3-bit encodings for both layers. At state 0, there are 4 possible actions, each of which has a certain reward that can be
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computed using Equation 5. At this state, the second action renders the maximum reward and therefore the next state’s
encoding bitwidths are selected as 3 for the first layer and 1 for the second. This process continues until either the
accuracy drops below the user-defined threshold or all layers are encoded with 1-bit values.

Fig. 9. Automated bitwidth selection for a 2-layer perceptron.

Note that, after choosing the optimal action at each step of the algorithm, all actions resulting in a memory footprint
higher than the new state are eliminated from the search space. This enables a diminishing search cost per iteration of
the bitwidth selection method. We also emphasize that the iterative bitwidth selection algorithm does not perform any
re-training of the DNN in between the steps. As a result, the (offline) computational overhead of bitwidth customization
is drastically smaller than that of RL techniques.

The pseudo-code for the EncoDeep automated bitwidth customization is presented in Algorithm 2. The inputs are
the starting encoding bitwidth 𝐵 for all layers, a minimum threshold \ for the classification accuracy, and a pre-trained
DNN model 𝐷 . The algorithm then gradually decreases the bitwidths, one layer at a time. The algorithm outputs a
set of configurations that specify per-layer bitwidths. These configurations capture the tradeoff between memory and
accuracy: the first configuration has the highest memory and accuracy whereas the last configuration has the lowest.

Algorithm 2 Automated Bitwidth Customization

Inputs: maximum bitwidth 𝐵, minimum accuracy threshold \ , DNN model 𝐷
Output: list of bitwidth configurations {cfg1, cfg2, . . . } that render the optimal accuracy-memory tradeoff.
1: cfg ← {𝑏1 = 𝐵, . . . , 𝑏𝐿 = 𝐵}
2: AllConfigs← {cfg}
3: 𝐴 = 𝐴𝑐𝑐 (𝐷 |𝑏1, . . . , 𝑏𝐿)
4: 𝑀 = 𝑀𝑒𝑚(𝐷 |𝑏1, . . . , 𝑏𝐿)
5: while 𝐴 > \ do
6: for 𝑙 = 1, . . . , 𝐿 do
7: for 𝑏 = 1, . . . , 𝑏𝑙 − 1 do
8: 𝐴(𝑙, 𝑏) = Acc(D |{b1, . . . , bl = b, . . . , bL})
9: 𝑀 (𝑙, 𝑏) = Mem(𝐷 |{𝑏1, . . . , 𝑏𝑙 = 𝑏, . . . , 𝑏𝐿})
10: 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑙, 𝑏) = 𝑀−𝑀 (𝑙,𝑏)

𝐴−𝐴(𝑙,𝑏)
11: end for
12: end for
13: {𝑙, 𝑏} ← argmax𝑙,𝑏 𝑟𝑒𝑤𝑎𝑟𝑑 (𝑙, 𝑏)
14: cfg ← {𝑏1, . . . , 𝑏𝑙 = 𝑏, . . . , 𝑏𝐿}
15: 𝐴 = Acc(D |cfg})
16: 𝑀 = Mem(D |cfg})
17: AllConfigs← {AllConfigs, cfg}
18: end while
19: return AllConfigs
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4 ENCODEEP HARDWARE STACK

Fig. 10. Interconnections between EncoDeep accelerator
and the host CPU.

There are several components for DNN inference on FPGA as
shown in Figure 10, namely, the processing system (PS), pro-
grammable logic (PL), external memory Double Data Rate (DDR),
and (on-chip) streaming buffers. The PS and PL are interconnected
via an AXI4 bus. Fortunately, modern design tools such as Xilinx
SDx enable automatic instantiation of memory interfaces and mem-
ory management logic, e.g., the AXI Interconnect and AXI DMA. As
depicted in Figure 10, the execution flow starts when a user runs
a host code within the host CPU. This host code may call a kernel
function, which is run by the FPGA core, i.e., the PL. We have implemented two main kernels for EncoDeep execution:
weight/bias initialization and DNN inference. The former kernel initializes the weights in specific SRAM blocks (a.k.a.
BRAMs) of the FPGA. The initialization values include DNN layer parameters as well as the input/weight codebooks,
which are gathered by EncoDeep compiler and stored on the DDR, along with the input data. The initialization kernel is
triggered from the PS after providing the desired write values and the target memory indices via the AXI bus. For our
accelerator, the weight/bias initialization is done once before DNN inference and afterward, the accelerator can run
multiple inferences without parameter re-initialization.

EncoDeep inference kernel adopts a streaming-based architecture that facilitates pipelining and overlays the com-
putational overhead of subsequent layers to increase overall throughput and minimize latency. Figure 11 presents
such pipelined execution for a 3-layer DNN. Due to this streaming-based on-chip design, during the inference kernel
execution, PS and PLmerely perform two rounds of communication: the PS sends the input image to the PL and receives
the output logits from the PL once the whole-network computation is finished. The input and output are transmitted in
AXI4 streaming format, controlled by the AXI Direct Memory Access (DMA) module.

Fig. 11. Pipelined execution of layer computations in a
streaming-based architecture increases throughput.

Our accelerator is specifically designed to accommodate low-
bitwidth encoded networks while supporting full-precision compu-
tations. Figure 12 compares the computational flow of EncoDeep
with conventional fixed-point accelerators. In the conventional
design (top), a convolution (CONV) or Fully-Connected (FC) layer
receives the inputs and weight parameters in fixed-point format.
Each layer starts the computation as soon as its preceding layer
starts generating output. The streaming buffers and the weight memory should thus accommodate high bitwidth
full-precision values (e.g., 32 bits in Figure 12). In practice, due to the low capacity of the on-chip memory in off-the-shelf
FPGA platforms and the high number of parameters/features in state-of-the-art DNNs, it is not feasible to accommodate
all weights and/or streaming buffers inside the FPGA. In response to this issue, we propose the encoded DNN data flow
presented in the bottom schematic of Figure 12. Here, the weights are stored in the encoded format to save memory.
The computed outputs of each layer are also encoded before being sent through the streaming buffer to enable use of
low-capacity buffers. The CONV and FC layers of the DNN are therefore equipped with encoder and decoder modules.

EncoDeep is equipped with a hardware library described in high-level synthesis language that allows FPGA imple-
mentation of encoded DNNs. Our hardware library consists of the essential building blocks to implement encoded
DNN layers (e.g, convolution, max-pooling, etc.). Each layer-type is implemented as a template function with certain
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Fig. 12. Computational flow of a conventional DNN (top) and our proposed DNN with encoded weights and activations (bottom).

computing engines that are customized to the specifications of the pertinent layer such as the input/output dimensions.
By means of this tailoring, EncoDeep exploits the benefits of FPGA reconfigurability and delivers a bit-flexible design.

To ensure portability and efficiency, we chose an open-source framework [53], i.e., FINN, from Xilinx as the base
of our hardware accelerator. The FINN library was originally intended for the execution of binary neural networks
and cannot be used for encoded DNNs as is. We thus extend the library to support customized streaming buffers that
can accommodate flexible bitwidths rather than binary values across layers. We further design a data scheduling unit,
dubbed the Sliding Window Unit, that reorders and populates layer input buffers in accordance with the underlying
bitwidth. We implement new processing engines that support operations on encoded parameters/weights and fixed-
point Multiply-Accumulate (MAC) operations, which replace the 𝑋𝑛𝑜𝑟𝑃𝑜𝑝𝐶𝑜𝑢𝑛𝑡 operations required in BNNs [53].
Using our proposed encoding scheme, EncoDeep enjoys the benefits of on-chip buffering and high-precision MACs.

Figure 13 depicts the flow diagram of the EncoDeep accelerator for implementing an encoded DNN on FPGA. The
Sliding Window Unit (SWU) reorders the convolution layer input feature-maps to generate appropriate streaming
buffers for the Matrix-Vector-Activation Unit (MVAU). The MVAU is the core computational module of CONV and FC layers
which performs the matrix-vector multiplication, activation, and batch normalization. The Max-Pooling Unit (MPU)
performs max-pooling over the feature-maps. In the following, we discuss the core modules in EncoDeep Hardware.

Fig. 13. EncoDeep accelerator schematic for en-
coded DNN inference. SWU reorders the input
buffer; MVAU and MPU perform core computa-
tions and max-pooling, respectively.

4.1 Matrix-Vector-Activation Unit (MVAU)

The MVAU in EncoDeep hardware library is instantiated in convolution (CONV) and fully-connected (FC) layers to
generate output features using the corresponding layer’s specifications. Figure 14 illustrates the MVAU computational
flow. This module performs three core tasks required in state-of-the-art DNNs, namely matrix-vector multiplication,
batch normalization, and applying non-linear activation. Internally, the MVAU is composed of an array of Processing
Engines (PEs) which accept a shared lane of SIMD inputs in parallel. In addition, EncoDeep MVAU has customized
encoding/decoding cores for processing the outputs, inputs, and weights.
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Fig. 14. (Top) Computational flow of En-
coDeep MVAU. This unit performs matrix-vector
multiplication, batch normalization, and a
non-linear activation. To increase throughput,
the core computations in the MVAU are dis-
tributed across parallel PEs. The MVAU is further
equipped with an input decoder, an output en-
coder, and several weight decoders (one per-PE)
to comply with EncoDeep encoded DNNs.
(Bottom) Internal configuration of a PE. Each
PE performs parallel MAC operations over SIMD
operands.

Matrix-Vector Multiplication. The main operations performed in linear DNN layers can be represented as a series of
matrix-vector multiplications. The matrix-vector multiplication core in EncoDeep MVAU offers two levels of parallelism
to facilitate throughput control across DNN layers.

• Layer output generation is distributed among several PEs working in parallel. In this setting, each PE is responsible
for generating the output of multiple feature-map channels (neurons) in a CONV (FC) layer. For instance, in a CONV
layer with 64 output channels and 16 PEs, each PE is responsible for computing 4 output channels.
• Each PE operates in single-instruction-multiple-data (SIMD) mode: MACs in a PE are parallelized across SIMD lanes.

The MAC operations in EncoDeep are performed in fixed-point on decoded input/weight values, implemented using
DSP slices. The per-layer encoded weight matrix is stored in the on-chip memory of the FPGA and is partitioned among
all PEs within the pertinent layer. This partitioning allows all PEs to simultaneously access their share of weights. Note
that the computations performed inside each PE are independent of those performed in the neighbor PEs. Thus, there is
no need for inter-PE communication. We elaborate on the internal configuration of a PE in Section 4.1.1.

Decoder Modules. The encoded features/weights of EncoDeep are converted into the equivalent fixed-point format
before being used in matrix-vector multiplication. Each layer in the encoded DNN contains two decoding codebooks
corresponding to the inputs (activations) and weights. This functionality is implemented by a memory containing all
cluster centers (codebook values) stored in fixed-point format (e.g, 32 bits). For an encoded value 𝑦𝑒𝑛𝑐 ∈ {1, . . . , 𝐾} the
corresponding fixed-point approximation 𝑦∗ can be obtained by feeding 𝑦𝑒𝑛𝑐 as the address of a memory block storing
the cluster centers {𝑐1, . . . , 𝑐𝐾 }. Note that the cluster centers incur a negligible memory footprint since 𝐾 is small.

The decoder modules are implemented via register files, rather than SRAM blocks. This design choice allows for
simultaneous decoding of SIMD inputs, in parallel. To achieve maximum efficiency, the input decoder is implemented
inside the MVAU. This enables us to share the decoded inputs among all PEs within one MVAU. Unlike inputs which are
shared among PEs, the weights for each PE are different. Therefore, to facilitate parallelism, each PE owns a copy of the
corresponding weight decoder (codebook). Upon execution of multiply-accumulate operations, the replicated codebooks
can be accessed in parallel to decode weights. The replication of weight codebook across PEs incurs a negligible memory
overhead which is a reasonable cost for the throughput and performance gains obtained.
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Equation 8 shows the overall weight memory saving for an arbitrary DNN layer, after wight encoding. Here, 𝑁
denotes the number of weights, 𝑏 𝑓 𝑖𝑥 is the number of bits used to represent the fixed-point values, and𝐾 is the codebook
size. As shown in the experiments (Section 5), 𝐾 takes a value equal to or smaller than 64 while 𝑁 is in the order of 106.
As such, (𝑏 𝑓 𝑖𝑥 × 𝐾 × 𝑃𝐸) ≪ (𝑏 𝑓 𝑖𝑥 × 𝑁 ) and the denominator in Equation 8 remains smaller than the numerator.

𝑚𝑒𝑚𝑜𝑟𝑦 (𝑊 )
𝑚𝑒𝑚𝑜𝑟𝑦 (®𝑐) +𝑚𝑒𝑚𝑜𝑟𝑦 (𝑊𝑒𝑛𝑐 )

=
𝑏 𝑓 𝑖𝑥 × 𝑁

𝑏 𝑓 𝑖𝑥 × 𝐾 × 𝑃𝐸 + 𝐿𝑜𝑔2 (𝐾) × 𝑁
(8)

Encoder Module. The encoding module compares the distance of each computed feature 𝑦 to all elements of the
codebook (i.e., |𝑦 − 𝑐 [1] |, . . . , |𝑦 − 𝑐 [𝐾] |) and outputs the index of the closest element as the encoded value:

𝑦𝑒𝑛𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖

|𝑦 − 𝑐 [𝑖] | , 𝑖 ∈ {1, . . . , 𝐾} (9)

The encoded value is then sent through the output streaming buffer to be processed by the next layer. Most contemporary
DNNs use ReLU activation. The encoder module inherently implements ReLU functionality when the first codebook
value is set to 0. To implement other activation functions, we keep the encoding functionality of Equation 9 and merge
the activation function into the next layer’s input decoder. In other words, the input decoder of the next layer stores
𝐴𝑐𝑡 (𝑐 [𝑖]) rather than 𝑐 [𝑖] with 𝐴𝑐𝑡 (·) being the desired activation function. This modification is performed offline
when the codebook values are loaded to FPGA memory.

4.1.1 Processing Element (PE). Figure 14-bottom shows the hardware architecture of a PE inside the MVAU. Each
PE is responsible for performing MAC operations on SIMD parallel input lanes. To this end, each PE is equipped with
SIMD×MULT units implemented using DSP slices. Each MULT performs one fixed-point multiplication on 𝑏 𝑓 𝑖𝑥 -bit values.
The multiplication results are then accumulated in a register (Accumulator in Figure 14) in fixed-point format. The
decoded inputs required for performing MAC are registered in the MVAU and provided to all PEs. Alternatively, the decoded
weights are generated within each PE. The low-bit (encoded) weights are stored in an SRAM block, which is partitioned
to allow SIMD parallel read operations via the weight decoder. To perform decoding, each PE comprises a weight decoder
(codebook) that is implemented using a register file. Once decoded, the weights are written into SIMD registers for
parallel MULT. For each PE, the size of the local memory is:

𝑀𝑒𝑚𝑜𝑟𝑦𝑃𝐸 ≈ (𝐾 + 2SIMD) × 𝑏 𝑓 𝑖𝑥︸                   ︷︷                   ︸
𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟

+

SRAM 𝑏𝑙𝑜𝑐𝑘︷         ︸︸         ︷
𝑁 × 𝑙𝑜𝑔2 (𝐾) (10)

where 𝑁 is the number of encoded weights in the SRAM block of each PE and 𝐾 is the weight codebook size.
At each point of the computation, a control logic keeps track of the matrix-multiplication indices and generates

address signals to the encoded weights memory block accordingly. Whenever computations of one neuron are finished,
i.e., when one vector-dot-product is completed, the control logic resets the accumulator and activates batch normalization
on the computed output. Applying batch normalization to the output of the accumulator 𝑦 is equivalent to computing
𝑦 ← 𝛾𝑦 + 𝛽 . Here, 𝛾 and 𝛽 represent the scaling factor and bias, respectively, which are constants learned during DNN
training. These values are extracted by the EncoDeep compiler from the trained encoded DNN and stored (in fixed-point
format) on registers within each PE. Note that the memory requirement of these parameters is drastically lower than
that of the weight matrices; thus, EncoDeep stores these parameters in the raw (non-quantized) format. After batch
normalization, the output is ready to be encoded and sent to the next DNN layer through the streaming buffer.
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Table 1. Benchmarked DNNs for evaluating EncoDeep effectiveness.𝐶𝑜𝑛𝑣 layers are represented as ⟨𝑖𝑛𝑝𝑢𝑡−𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ⟩
⟨𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒⟩
−−−−−−−−−−−−→

𝑠𝑡𝑟𝑖𝑑𝑒

⟨𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ⟩ and 𝐹𝐶 layers are denoted by ⟨𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ⟩FC.

Conv+BN+ReLU MaxPool Conv+BN+ReLU MaxPool Conv+BN+ReLU Conv+BN+ReLU Conv+BN+ReLU MaxPool Classifier
LeNet [31]
(MNIST) 1

5×5−−−−−−→
stride 1

16 2 × 2
stride 2 16

3×3−−−−−−→
stride 1

32 2 × 2
stride 2 - - - - 256FC

10FC, softmax

VGG7 [10]
(CIFAR-10 & SVHN) [3

3×3−−−−−−→
stride 1

32] ×2 2 × 2
stride 2 [32

3×3−−−−−−→
stride 1

64] ×2 2 × 2
stride 2 [64

3×3−−−→ 128] ×2 - - -
256FC
256FC

10FC, softmax

AlexNet [30]
(ImageNet) 3

11×11−−−−−−→
stride 4

64 2 × 2
stride 2 64

5×5−−−−−−→
stride 2

192 2 × 2
stride 2 192

3×3−−−−−−→
stride 1

384 384
3×3−−−−−−→

stride 1
256 256

3×3−−−−−−→
stride 1

256 2 × 2
stride 2

2048FC
4096FC

1000FC, softmax
ResNet-18 [15]
(ImageNet) 3

7×7−−−−−−→
stride 2

64 3 × 3
stride 2 [64

3×3−−−−−−→
stride 1

64] ×4 - [64
3×3−−−→ 128] ×4 [128

3×3−−−→ 256] ×4 [256
3×3−−−→ 512] ×4 7 × 7

average pool 1000FC, softmax

4.2 Sliding Window Unit (SWU)

The convolutional layers of a DNN compute the dot product between a window of the layer input and the CONV weight
kernel. The window slides over the input image to produce individual elements of the output feature-map. The SWU in
EncoDeep hardware simulates the sliding window operation by reordering the values in the layer input image buffer.
The input image values are then grouped in chunks of SIMD words to be sent to the MVAU sequentially for processing.

4.3 Max-pooling Unit (MPU)

EncoDeep software stack outputs a sorted list of codebook values for the output encoding: higher values are mapped
to larger encodings. This sorting is particularly useful since comparison over encoded values becomes equivalent
to comparison over the original fixed-point values; therefore, EncoDeep performs the max-pooling operation on
low-bitwidth encoded values rather than the full-precision cluster centers. This approach provides two benefits: (i) the
memory overhead of the buffers in the MPU is considerably reduced. (ii) The logic cost of comparison between
low-bitwidth encoded values is significantly smaller than the full-precision counterpart.

5 EXPERIMENTS

To evaluate EncoDeep effectiveness, we perform proof-of-concept experiments on four different classification bench-
marks, namely, MNIST, CIFAR-10, SVHN, and ImageNet. Table 1 summarizes the DNN architectures used in our
evaluations. EncoDeep software stack is implemented in Pytorch and the hardware stack is realized in Vivado_HLS
design suite. All hardware resource utilizations are gathered after performing place-and-route via Vivado Design Suite
2017.2. Throughput values are reported from Vivado_HLS 2017.2.

5.1 EncoDeep Automated Bitwidth Selection

We showcase our bitwidth selection algorithm using the VGG7 architecture trained on CIFAR-10 dataset. Our customiza-
tion algorithm provides a set of configurations, each of which renders a certain memory footprint and accuracy. The first
step of EncoDeep bitwidth customization is to encode the activations while the weights are kept at full-precision. Initially,
the activations are encoded with 4 and 6 bits in CONV and FC layers, respectively. We then utilize our customization
algorithm in Section 3.3 to extract the activation bitwidths. As the algorithm proceeds, both total memory footprint and
DNN accuracy are decreased. The obtained accuracy/memory trade-off is shown in Figure 15-a.

We use a small portion of the training data1, dubbed the validation set, to compute the accuracy during the iterative
bitwidth customization algorithm.We empirically observed that the accuracy measured on the validation set is correlated
with the accuracy measured on the entire test set. Therefore, the validation accuracy can be leveraged as a suitable,
low-cost, proxy for test accuracy during bitwidth configuration. The validation set is small enough to be cached

11000 samples for all benchmarks.
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into the GPU memory to ensure fast evaluations. Note that we do not retrain the model in between iterations to
ensure fast customization. To illustrate the effect of retraining, we also plot the accuracy of each extracted bitwidth
configuration after 1 and 10 epochs of fine-tuning in Figure 15-a. It can be seen that the accuracy is retrieved for
most of the configurations even after 1 epoch, which is a fairly short post processing time compared to the original
(floating-point) training which takes ∼ 200 epochs.

(a) (b)

Fig. 15. Memory and accuracy trade-off for (a) activations and (b) weights of VGG-7 on CIFAR-10 dataset.

In the next step of our customization, one of the configurations for activation bitwidths (the ★mark on Figure 15-a)
is selected and fine-tuned to recover accuracy. We then proceed to the weight encoding step with initial 6-bit encoding
for all layers. During this customization stage, activation bitwidths remain unchanged and only the weight bitwidths
are configured. Similar to activation encoding, we obtain the accuracy/memory curves in Figure 15-b. In what follows,
we evaluate EncoDeep automated bitwidth customization from two perspectives: (i) quality of the end result, i.e., the
obtained bitwidth configuration. (ii) Search efficiency/performance of our heuristic algorithm.

5.1.1 Evaluation of EncoDeep Bitwidth Configurations. We apply bitwidth customization to weights and activa-
tions of various benchmarked DNNs and select several bitwidth configurations. Table 2 compares the total memory
(activation+weights) and test accuracy between the original full-precision models and selected encoded DNNs. EncoDeep
achieves 14.56× memory reduction with 0.026% accuracy loss for MNIST, 7.34× memory reduction with 0.37% accuracy
loss for SVHN, and 6.85× memory reduction with 0.91% accuracy loss for CIFAR-10. On ImageNet, EncoDeep reduces
the model size by 7.9× and 6.6× with 0.43% and 0.8% drop in top-1 accuracy for AlexNet and ResNet18, respectively.

Table 2. Comparison of full-precision networks with EncoDeep models with flexible bitwidths across layers.

Full-Precision
(FP32)

EncoDeep
Configurations

MNIST Memory (×105) 50.67 3.48 2.17 1.89
Test Accuracy (%) 99.28 99.02 98.69 98.31

SVHN Memory (×106) 12.34 1.67 1.21 0.65
Test Accuracy (%) 97.67 97.30 97.15 95.07

CIFAR-10 Memory (×106) 12.34 1.80 1.20 1.02
Test Accuracy (%) 89.05 88.14 87.01 85.06

Full-Precision
(FP32)

Quantized
(INT8)

EncoDeep
Configurations

Im
ag
eN

et AlexNet Memory (×108) 11.14 2.78 1.41 0.53
Test Accuracy (%) 56.3 55.18 55.87 53.21

ResNet18 Memory (×107) 44.76 11.19 6.78 4.45
Test Accuracy (%) 69.70 68.97 68.90 65.40

To investigate whether the solution found by the heuristic method is the absolute best, one needs to perform brute-
force evaluation of all bitwidth configurations. Nevertheless, brute-force evaluation is only viable for small networks as
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the bitwidth search-space grows exponentially in the number of network layers. In particular, for encoding an 𝐿-layer
network with weight and activation bits in the range of [1, 𝐵𝑤] and [1, 𝐵𝑎], respectively, a total number of 𝐵𝐿𝑤 × 𝐵𝐿𝑎
evaluations is required. Here, we evaluate the effectiveness of our heuristic on a small-scale bitwidth optimization
problem. We perform brute-force search on the activation bitwidths of the VGG7 network for CIFAR-10 dataset and
summarize the results in Figure 16. For this experiment 𝐿 = 8 and 𝐵𝑎 = 4, resulting in a total of 216 evaluations (shown
with blue points) which takes ∼ 18 hours on an NVIDIA TITAN Xp GPU. As can be seen, the obtained activation
bitwidths (shown with red points), lie on the memory-accuracy Pareto front, indicating that the heuristic successfully
eliminates the non-optimal solutions and finds near-optimal configurations.

Fig. 16. Memory-accuracy Pareto curve obtained by brute-force evaluation of bitwidth configurations for VGG7 on CIFAR-10
benchmark. EncoDeep generates near-optimal bitwidths by finding configurations that lie close to the non-dominated Pareto front.

Due to the excessive runtime of brute-force search, especially for more complex benchmarks, we provide comparisons
with prior art to evaluate the quality of our obtained bitwidths. Table 3 summarizes the comparison of EncoDeep
configurations with prior methods for training low-bit DNNs in terms of memory, accuracy, and fine-tuning time.
Each of our reported architectures and their corresponding bitwidths in Table 3 are chosen specifically to match the
accuracy and/or memory footprint of the prior art. We visualize the benchmarked per-layer bitwidths for each evaluated
EncoDeep DNN in Figure 17. The memory efficiency of EncoDeep can be attributed to the following main reasons:

(1) Looking at the bitwidth configurations of Figure 17, EncoDeep automatically chooses to have lower bitwidths
for weights of fully-connected layers and activations of early convolutional layers. Doing so helps in minimizing
the overall memory footprint since such layers have more contribution to the DNN memory.

(2) To compensate for the drop in the inference accuracy, prior work in low-bit DNN inference increases the number
of neurons/channels per DNN layer [41]. In contrast, we show that by adjusting the arithmetic encoding bitwidth,
one can achieve comparable accuracy with even fewer neurons per layer. For our AlexNet benchmark, for instance,
we use 2× less neurons in the output of the first fully-connected layer compared to the original architecture (see
Table 1). EncoDeep reduces the memory of AlexNet benchmark using this method, but preserves the accuracy by
using non-linear encoding with flexible bitwidths.

It is worth mentioning that, unlike existing low-bit DNNs that train the whole network from scratch, EncoDeep
extracts several near-optimal bitwidth configurations for a pre-trained DNN in one-shot execution. The benefits of this
approach are three-fold: (i) EncoDeep eliminates the drastic cost of training from scratch per bitwidth configuration.
Using our fine-tuning method explained in Section 3.2, model accuracy is retrieved after a few epochs, e.g., as low as
0.25 epochs for ImageNet. (ii) EncoDeep accuracy/memory to be tuned by picking different bitwidth configurations
across layers. (iii) EncoDeep customization can be readily applied to publicly available pre-trained models.
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Fig. 17. Per-layer encoding bits for evaluated DNNs.

Table 3. Comparison of EncoDeep with state-of-the-art low-bit DNNs. Our per-layer bitwidths are shown in Figure 17. We normalize
the memory footprint of previous works to that of EncoDeep: lower memory and higher accuracy are desirable.

Baselines Architecture Test Accuracy (%) Memory Epochs
Bitwidth

Weight Act

QNN [21]
MLP

99.04 193× 1000 1 1
ReBNet3 [10] 98.25 1.76× 200 1 2
EncoDeep LeNet-I 99.02 1.84× 10 × 2∗ flexibleM

N
IS
T

EncoDeep LeNet-II 98.31 1 10 × 2 flexible
QNN [21]†

VGG7
89.85 5.4× 500 1 1

ReBNet3 [10]‡ 86.98 1.65× 200 1 3
EncoDeep VGG7-I 88.14 1.32× 10 × 2 flexible

CI
FA

R-
10

EncoDeep VGG7-II 87.01 1 10 × 2 flexible
ReBNet3 [10]‡

VGG7
97.00 1.62× 50 1 3

QNN [21]‡ 97.2 2.15× 200 1 1

SV
H
N

EncoDeep VGG7-III 97.15 1 10 × 2 flexible
ReLeQ [5] AlexNet 56.82 2.01× - flexible 32

Im
ag
eN

et

EncoDeep∗∗ AlexNet-I 55.87 1 0.25 × 2 flexible
HWGQ [2]

AlexNet

52.70 1.17× 68 1 2
HBNN [9] 52.00 2.32× - flexible
PQTS [61] 51.60 2.32× - 2 2
QNN [21] 51.03 1.17× - 1 2

DoReFaNet [60] 49.80 1.17× 45 1 2
WRPN [41]‡ 48.30 4.61× - 1 1
XNORNet [42] 44.20 1.15× 18 1 1
ReBNet3 [10] 41.43 1.17× 100 1 3
EncoDeep∗∗ AlexNet-II 53.21 1 0.25 × 2 flexible
ABC-Net [36]

ResNet18
65.00 1.57× - 5 5

ABC-Net [36] 62.50 1.05× - 3 5
EncoDeep ResNet18-I 65.40 1 0.25 × 2 flexible

∗ Fine-tuning for 10 epochs post-activation and 10 epochs post-weight encoding.
† This baseline has 4× more neurons per layer than ours.
‡ This baseline has 2× more neurons per layer than ours.
∗∗ Our architecture has 2× less neurons in the output of the first fully-connected layer (see Table 1)

5.1.2 Evaluation of EncoDeep Search Algorithm. While various hyperparameter optimization methods, e.g., RL
or genetic algorithms, can potentially deliver similar end results, what distinguishes these approaches is the number of
evaluations required to obtain the final result. This, in turn, directly affects the algorithm runtime. In this Section, we
compare EncoDeep search with existing methods in discrete combinatorial optimization in terms of the quality of end
results and the search efficiency (runtime).
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Comparison with Q-learning. Recall from Section 3.3 that one of the main differences between pure RL-based
methods and our search algorithm lies in pursuing reward-based immediate returns in EncoDeep rather than the
traditional long-term returns. Our goal in this part of the evaluation is to show how the immediate-reward optimization
of EncoDeep compares to pursuing long-term rewards in pure RL. Optimizing a long-term reward can potentially lead
to better end results in RL tasks. Due to the nature of our problem, however, an immediate reward is beneficial as the
value of each state transition can be independently evaluated without relying on the end state. More specifically, the
immediate reward can be leveraged to assess the optimality of each intermediate state without the need for traversing
all states to the end. For a concrete comparison, we have implemented Q-learning [56] as an RL baseline with long-term
rewards for comparison. We set the Q-learning reward for state 𝑠 as follows:

𝑟 (𝑠) =

𝑚𝑒𝑚 (𝑠)−𝑚𝑒𝑚 (𝑠0)
𝑎𝑐𝑐 (𝑠)−𝑎𝑐𝑐 (𝑠0) 𝑖 𝑓 |𝑚𝑒𝑚(𝑠) − \ | < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11)

where \ is the target memory and 𝑠0 is the initial state with all bitwidths set to 𝐵. An episode is finished when a state’s
memory drops below \ . We apply Q-learning on the activations of the VGG-7 model trained on CIFAR-10. In this
experiment, we set \ to 0.5 to achieve ∼ 50%memory reduction compared to the initial DNN. We set the tolerance to 0.05
so that any bitwidth configurations resulting in a memory ∈ [45%− 55%] is given a reward during Q-learning. Figure 18
compares EncoDeep with Q-learning. The horizontal axis shows the number of model evaluations, i.e., number of DNN
inference accuracy computations. The vertical axis shows the maximum accuracy seen so far for configurations with a
memory in the range [0.45-0.55]. The ★ represents the configuration with comparable memory, found by EncoDeep.

Fig. 18. Comparison of the acquired accuracy and memory as well
as the number of evaluations between a Q-learning approach and
EncoDeep (★), upon convergence.

Compared to Q-Learning, EncoDeep achieves
slightly higher accuracy and lower memory while re-
quiring fewer number of DNN evaluations. This is due
to the fact that EncoDeep is policy-free and only con-
sists of one greedy state-transition episode by relying
on immediate rewards. Note that for each target mem-
ory and accuracy, policy training, as in Q-learning,
must be repeated from scratch with a different thresh-
old \ (see Equation 11) to extract the optimal bitwidth
configuration. In contrast, EncoDeep extracts the en-
tire memory-accuracy Pareto curve with only one state
traversal (episode). This provides adaptability by allowing users to pick their desired bitwidth configuration based on
various accuracy-memory constraints, without need for re-running the entire algorithm.
Comparison with Genetic Algorithms. Another important baseline for combinatorial optimization is genetic algo-
rithms (GA). Carefully designed GA is shown to deliver similar end results to RL-based methods in various tasks [44].
For comparison, we use the optimization framework in [25], which is a generic tool for compressing DNNs with GA, as
a new baseline. Figure 19 shows the reward2 of the genetic population across GA iterations with an accuracy threshold
of 85% and a genetic population size of 50. As can be seen, GA gradually and iteratively evolves the configurations to
increase the average reward in the population, i.e., lower memory and higher accuracy. The red point on Figure 19
corresponds to the best solution found by GA, which takes 1234 evaluations to find a model with 50% of the original

2Please refer to [25] for details about the utilized reward function for the GA.
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memory and 85.6% inference accuracy. For a similar target memory and accuracy, EncoDeep achieves 50.2% memory and
85.2% accuracy via only 236 evaluations. We attribute this improvement in number of evaluations to the single-episode
greedy execution of EncoDeep, which is specifically designed to find the optimal configuration with very few iterations.

In summary, EncoDeep has the following benefits compared to genetic algorithms:

Fig. 19. Genetic evolution for bitwidth customization of
VGG-7 on CIFAR-10. The reward on the vertical axis mea-
sures bitwidth optimality by combining accuracy and mem-
ory (see [25] for details). Each point on the plot represents an
individual in GA. points with black color have an accuracy
higher than the accuracy threshold \ = 85%.

(1) The success of GA relies heavily on careful design of the
underlying score function used in the evaluation step. Besides,
multiple design choices and hyperparameters, e.g., mutation
and crossover rates, affect the optimization performance. Hand-
tuning such parameters remains a standing challenge that fur-
ther hinders the GA design process. EncoDeep does not include
extra design hyperparameters and allows for easy automation.

(2) To obtain a trade-off between accuracy and memory, one
needs to run GA multiple times with different target accura-
cies in the reward function. Therefore, extracting the memory-
accuracy tradeoff using GA incurs a high timing overhead. In
contrast, EncoDeep extracts all points lying close to the Pareto
front in a single run.

5.1.3 Overhead of Customization and Re-training. We summarize the total runtime of EncoDeep bitwidth con-
figuration and the break-down of different steps for all our benchmarks in Figure 20. Runtime values are gathered
using a machine with a single NVIDIA Titan Xp GPU and an Intel Xeon-E5 CPU. As seen, the overhead of (offline)
clustering at the pre-processing stage (EN-A and EN-W) is negligible compared to other steps. The bulk of runtime is
due to running Algorithm 2 on activations (CU-A) and weights (CU-W), and retraining the customized models (RT-U
and RT-W). Nevertheless, EncoDeep takes only ∼ 254 minutes to customize our most complex benchmark (ResNet 18),
whereas training the original ResNet-18 model on the same machine takes over a day (∼ 1800 minutes). EncoDeep
customization incurs only 14% of the training time even for this many-layer network. Note that the evaluations in
EncoDeep customization steps (CU-A and CU-W) can be distributed across multiple GPUs to further decrease runtime.

Fig. 20. Total time and break-down of EncoDeep opti-
mization runtime for the evaluated benchmarks. Here,
EN-A and EN-W represent (offline) activation and
weight encoding. CU-A and CU-W denote bitwidth
customization for activations and weights. RT-A and
RT-W correspond to the re-training time after activa-
tion and weight encoding.

It is worth mentioning that EncoDeep customization step is much faster than pure reinforcement learning-based
approaches. ReLeQ [5] is an example RL-based method that trains an LSTM model using gradient computation while
our method does not include any RL model training and is thus much faster in terms of runtime (e.g., ReLeQ has 600
episodes3 for LeNet while our method requires only a single episode with 22 iterations to achieve similar results).

3unknown number of evaluations per episode
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5.2 EncoDeep Hardware Implementation

In this section, we evaluate EncoDeep hardware accelerator. We implement one architecture per dataset from Figure 17,
namely, LeNet-I for MNIST, VGG7-I for CIFAR10, VGG7-III for SVHN, and AlexNet for ImageNet. Table 4 summarizes
the evaluation platforms for each DNN architecture.

Table 4. Platform details in terms of block-RAM (BRAM), DSP, flip-flop (FF), and look-up table (LUT) resources.

Application Platform BRAM DSP FF LUT
ImageNet Virtex VCU108 3456 768 1075200 537600
CIFAR-10 & SVHN Zynq ZC702 280 220 106400 53200
MNIST Spartan XC7S50 120 150 65200 32600

Importance of Activation Encoding. We start the analysis by studying the advantages of activation encoding, from
the hardware perspective, versus solely encoding the weights as proposed in [13]. Note that [13] also applies pruning
and Huffman encoding which are the main contributors to the compression rate. Since these methods are orthogonal to
our approach, we do not utilize them in EncoDeep to focus on the analysis of encoding itself. We compare two versions
of encoded DNNs: one with encoded weights and fixed-point activations as proposed in [13], and another with both
weights and activations encoded as suggested in EncoDeep. For each dataset, we separately optimize the per-layer
parallelism factors SIMD and PE for both encoded and fixed-point DNNs to obtain maximum possible throughput. Table 5
summarizes resource utilization and throughput for each of the designs.

Overall, the realization of EncoDeep methodology achieves higher throughput while requiring a lower number of
resources compared to a weight-only encoding approach [13]. The benefits become more prominent for architectures
with higher complexity since the memory implication of activations is higher in complex networks. As seen for MNIST,
CIFAR-10, and SVHN benchmarks, EncoDeep activation encoding improves the throughput by 1.1×, 6.2×, and 6.66×,
respectively. Advantages of activation encoding are most significant for AlexNet: model memory with fixed-point
activations is so large that it cannot fit in the FPGA block-RAM capacity, rendering the design infeasible within platform
constraints. We compare EncoDeep with existing fixed-point accelerators that use off-chip memory in the following.

Table 5. Summary of hardware resource utilization and performance. 𝐸𝑛𝑐𝑜𝐷𝑒𝑒𝑝 presents our model with encoded weights and
activations whereas DNNfix denotes a network with encoded weights and (8-bit) Fixed-point activations.

Resource Utilization Latency
(ms)BRAM DSP∗ FF LUT

MNIST
EncoDeep 33 53 15223 9992 0.39
DNNfix 93 53 25884 12048 0.43
Ratio 2.82× 1× 1.7× 1.2× 1.1×

CIFAR-10
EncoDeep 197 111 53953 31632 3.58
DNNfix 181 35 68255 28433 22.21
Ratio 0.92× 0.32× 1.26× 0.9× 6.2×

SVHN
EncoDeep 146 111 42748 28393 3.39
DNNfix 143 35 67944 27934 22.59
Ratio 0.98× 0.32× 1.59× 0.98× 6.66×

ImageNet EncoDeep 3336 308 159663 82791 25.05
DNNfix Exceeds Platform Constraints

∗25 × 18 DSB array.
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Comparisonwith Fixed-point Accelerators.We perform a comparison between EncoDeep and prior work in Table 6.
Specifically, we consider AlexNet with customized encoding as in Figure 17, which corresponds to hardware results of
Table 5. The reported results include performance, either in terms of throughput (frames per second) or latency. Since
the existing frameworks utilize various FPGA platforms, it is crucial to take into account the instantiated computational
capacity4 and power consumption. Therefore, we compare the frameworks by means of performance-per-resource and
performance-per-Watt. EncoDeep achieves higher normalized performance compared to the prior art. This is a direct
result of using on-chip memory instead of the off-chip DRAM for feature transfer among DNN layers. The streaming
buffers of our design allow EncoDeep to better utilize the arithmetic units by overlapping the execution of DNN layers,
achieving a higher performance-per-resource. EncoDeep power advantage over existing accelerators is also rooted in
the elimination of power-hungry DRAM access.
Table 6. Comparison of Alexnet implementation between EncoDeep and existing fixed-point (FXD) and floating-point (FLT) DNN
accelerators. To account for platform variations, we compare the throughput (images-per-second) and 1

Latency metrics normalized by
computation capacity (CAP). We also compare performance-per-Watt to reflect power efficiency.

Criterion [51] [52] [59] [37] [48] [1] EncoDeep
Precision FLT FXD FXD FXD FXD FXD Flexible
Acc(%) - 55.41 52.4 56.5 - 54.27 53.2
FPGA 690T∗ GSD8† 690T∗ 690T∗ AX115‡ ZU9§ VCU108∗

Freq(MHz) 100 120 150 100 200 300 152
DSP∗∗ 3177 1504 14400 2872 2688 442 308

Img/sec /CAP 0.55× 1 0.88× 2.33× 1.42× 0.49× 3.03×
/Watt 3.14× 1 1.82× 5.00× 1.36× - 4.54×

1
Latency

/CAP - 1 0.05× 0.15× - - 3.03×
/Watt - 1 0.10× 0.32× - - 4.54×

∗Virtex †Stratix-V ‡Arria10 §Zynq
∗∗DSP array size is 25 × 18 for Xilinx and 18 × 18 for Altera/Intel FPGAs.

Fig. 21. Runtime breakdown of EncoDeep accelerator.

Execution Overhead of Encoding/Decoding. We study the runtime implication of online activation encoding by
measuring the number of clock cycles required for different stages of EncoDeep MVAU engine. Figure 21 demonstrates
the runtime break-down for each of the evaluated architectures. For a conventional non-encoded network, the MVAU
would only perform Vector-Dot-Product (VDP) operations. As can be seen, for EncoDeep encoded models, the majority
of clock cycles in MVAU execution still belong to VDP computation while the encoding/decoding overhead is small.

4the computational capacity is defined as CAP = DSP × Arr , where𝐴𝑟𝑟 is the array size per DSP, e.g., 18 × 25 for Xilinx Virtex platforms.
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6 RELATEDWORK

To enable ubiquitous deployment of DNNs, several recent research efforts have focused on DNN acceleration [6, 7, 10–
12, 18, 19, 22, 23, 45, 46, 49]. In a parallel track, designing efficient DNN graphs and architectural optimization has
gained attraction from the community [24–26, 43, 47]. EncoDeep bridges the gap between these two research tracks by
incorporating algorithm-hardware co-design. As neural networks are memory-intensive, devising methods to decrease
the memory footprint can significantly enhance accelerator performance in terms of throughput and power consumption.
Perhaps the most popular method for neural network compression is network pruning, where network parameters
with insignificant contributions to the model’s accuracy are removed. Many researchers have developed valuable work
in DNN compression with pruning using either structured [16, 17, 27, 33–35, 39, 55] or non-structured pruning [14].
Hardware accelerators have also been proposed to perform fast and efficient inference using pruned neural networks,
e.g., [3, 38]. The focus of our paper, however, is another attractive solution for neural network compression: inference
with few-bit encoded values per weight/neuron. In practice, one might employ both pruning and encoding to achieve
better compression results [13]. However, to better discuss the contributions of this paper, in our experiments we focus
solely on the encoding technique.

Several methods for training DNNs with few bits have been proposed in [2, 9, 21, 36, 41, 42, 54, 60]. QNN [21]
was perhaps the first work to suggest extreme neural network quantization with binary (∈ {±1}) parameters and
activations. Following their work, many researchers have proposed low-bit DNNs with improved accuracy. Authors of
XNOR-Net [42] suggest computing the average absolute value of each input vector to the convolution operation in the
forward pass. They show that multiplying this average value by the corresponding XNOR-Popcount result improves
the inference accuracy. WRPN [41] shows that scaling layer widths uniformly can deliver more accurate low-bit DNNs.
One immediate shortcoming of this approach is the quadratic increase in the memory and computational complexity as
the scaling factor grows. ABC-Nets [36] proposes multi-bit binary approximation of weights and activations of DNNs.
Their method shows great accuracy improvement at the expense of training every bitwidth configuration from scratch.
HBNN [9] proposes to incorporate multi-level binarization while enabling heterogeneous level selection across layers.
Although this approach achieves high memory efficiency, it still has limited accuracy due to binary approximation.

Instead of using strict binary values, as proposed by the above works, our proposal uses low-bit non-linear encodings
which allows high-precision arithmetics with a low memory footprint. By leveraging non-linear encoding, we can scale
down layer widths (as opposed toWRPN [41]) to match the memory of a wide binary neural network while still enjoying
higher accuracy. Compared to ABC-Nets’ multiple rounds of training from scratch, our experimental results show that
the one-time post-training approach of EncoDeep can extract better (heterogeneous) bitwidth configurations with higher
accuracy. Additionally, while the above works mainly focus on developing theoretical memory improvements, EncoDeep
adopts hardware-algorithm co-design to show practical performance boost and memory reduction on hardware.

To create more hardware-friendly binary DNNs, ReBNet [10] proposes co-designing a DNN with residual binary
approximation and an FPGA accelerator. LUTNet [54] takes a step forward and directly incorporates hardware char-
acteristics such as the LUT structure of FPGAs into the designed activation function. These methodologies improve
the hardware efficiency of BNNs, yet their accuracy is bounded. Similar to the above work, EncoDeep incorporates
DNN-hardware co-design. However, unlike the above works, EncoDeep specifically configures the bitwidths across
DNN layers by finding the optimal accuracy-memory Pareto front. This customization allows EncoDeep to achieve
higher accuracy by using flexible (heterogeneous) bitwidths across DNN layers. Such heterogeneity is also specifically
supported by EncoDeep modular hardware design and the accompanying compiler.
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DoReFa-Net [60] incorporates specific training procedures to enable fixed-point quantization for both weights
and activations. HWGQ [2] mentions that low-bit approximation of activations is more difficult than weights. The
authors also note that fixed-point quantization with uniformly spaced quantization bins does not deliver the minimum
approximation error. Thus, during the training phase, the authors propose to approximate the distribution of activation
units via a half-way Gaussian prior and find non-uniform quantization bins accordingly. In our work, we show that it is
possible to create a non-uniform quantizer after the DNN is trained, which has several direct benefits: first, EncoDeep
does not impose extra overhead on the original DNN training and therefore training convergence speed is not altered.
Second, EncoDeep does not need to assume a Gaussian prior on the activation distribution and can be applied to
arbitrary distributions. Third, EncoDeep can efficiently tune the number of encoding bits across layers without training
every configuration from scratch.

Nonlinear encoding allows for fixed-point arithmetics accompanied by a low storage requirement. Perhaps the closest
method to this paper is a stand-alone weight encoding, with no activation encoding, originally proposed in [4, 13, 45].
Weight encoding significantly reduces the memory footprint of model parameters but the activation units (especially in
convolution layers) still require a large capacity of memory. To address this challenge, we extend the encoding to the
activations of neural networks and introduce training routines for the corresponding encoded activations. In addition,
prior work utilizes hand-crafted or rule-based heuristics to determine the encoding bitwidth. Such manual methods are
generally sub-optimal and incur a drastic engineering cost. To address this issue, we propose an automated cross-layer
bitwidth selection algorithm that aims to capture the accuracy/memory trade-off.

In a concurrent track, designing automated and easy-to-use tools for FPGA implementation of DNNs has been the
focus of contemporary research [1, 37, 48, 51, 52, 59]. These works aim to maximize the throughput of fixed/floating-
point DNN inference by distributing FPGA resources among parallel computing engines. Although accurate, fixed-point
DNNs are generally memory intensive, where excessive access to off-chip memory becomes a design bottleneck. To
alleviate this problem, authors of [10, 53] propose to perform inference solely using the on-chip memory and utilizing
streaming buffers to realize inter-layer data transfers. These frameworks facilitate the design process of DNNs by
providing configurable template functions in high-level synthesis language. However, [10, 53] are only compatible with
binary DNNs and do not support fixed-point arithmetics. By incorporating activation encoding into DNN computational
flow, EncoDeep hardware simultaneously enjoys the benefits of on-chip streaming buffers and high accuracy arithmetics.
EncoDeep hardware stack supports flexible bitwidths, allowing the implementation of customized encoded DNNs.

7 CONCLUSION
This paper proposes a novel nonlinear quantization scheme to reduce the memory footprint of intermediate activations
in convolutional neural networks’ computation flow. The encoding compresses the activations and allows on-chip
execution of the underlying FPGA accelerator without communicating the computed features with the off-chip DRAM.
To ensure non-recurring engineering costs, an automated algorithm is proposed to configure the encoding bitwidth
across layers of an arbitrary neural network. EncoDeep open-source API enables developers to convert high-level
Pytorch description of a neural network into hardware modules without getting involved with the details of the design.
We hope the provided API can advance research on reconfigurable DNN inference.
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