
Abstract. We have developed the first hardware and software (intellectual prop-
erty) metering scheme that enables reliable low overhead proofs for the number
of manufactured parts and copied programs. The key idea is to make each design
slightly different during postprocessing phase. Therefore, if two identical hard-
ware/software designs or a design that is not reported by the foundry are detected,
the design house has proof of misconduct.
We start by establishing implementation requirements for hardware metering.
We also establish the connection between the requirements for hardware and
software metering and synthesis process. Furthermore, we present mathematical
analysis of statistical accuracy of the proposed hardware and software metering
schemes. The effectiveness of the metering scheme is demonstrated on a number
of designs and programs.

1  Introduction

1.1  Motivation, Key Idea, and Objectives 
Our main goal in this paper is to introduce the first technique for hardware and software
metering. The importance of these techniques is paramount for hardware and software
intellectual property (IP) protection. It is estimated that more than $5B is lost annually to
illegal manufacturing of integrated circuits. The number is significantly higher for illegal
software reproduction related losses. These numbers are bound to increase rapidly, in par-
ticular for the hardware segment.

Hardware, design and semiconductor companies have been historically vertically
integrated. Companies like IBM, Intel and NEC have both leading edge designs as well as
superior foundry facilities. However, in the last five years there have been dramatic
changes. The most profitable and fastest growing semiconductor business models have
been in horizontally focused companies. On one side, pure contract silicon foundries, such
as TSMC, UMC, and Chartered Semiconductor conquered almost 1/3 of all semiconduc-
tor world-wide output. On the other side, fabless design houses, such as Xilinx, Altera,
Broadcom, and Juniper have been by far the fastest growing companies. There is wide
consensus that in the future the horizontally focussed companies will significantly
increase their market share.

One of major obstacles in this business model is that design companies do not have
control over how many copies of their design are made by silicon foundries. Furthermore,
FPGA companies get a significant part of their revenues by selling IPs which can readily
be used on any of their chips without paying proper royalties. The case is even more cru-
cial for software: once the user has the program, the only guarantee for the distributor that
the users would not copy the programs are hardware/software locks and license agree-
ments. It is much harder to find the illegal distributor of software since the reproduction
sources are not limited. It is of utmost importance for the IP provider to meter the users of
its programs. A number of companies consider development of hardware or intellectual
property metering crucial for their business [37]. VSIA (Virtual Socket Initiative Alliance)
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also identified hardware metering as one the key requirements for intellectual property
protection. We propose a new intellectual property (IP) usage metering approach which
allows IP providers to control proper collection of their IP royalties. The key idea of the
hardware metering scheme is to make a very small part of the design programmable at the
configuration time and to consequently configure this part for each manufactured chip in a
unique way. Different configurations correspond to implementations which are differently
scheduled or have different register assignments. Of course, this principle can be applied
to other synthesis steps, including ones during logic synthesis or physical design. 

Once when each manufactured chip or released software has a unique ID, it is rela-
tively straightforward to enforce proper royalty agreements. For example, in hardware
metering, if a foundry produces n chips which IDs are not reported to the design house in
addition to p chips which are reported and approved, the probability that a randomly
selected chip from the field has a non-approved ID is equal to n/n+p. Therefore with rela-
tively few tests one can expect a high probability of detecting unauthorized chips. 

An obvious, albeit naive, alternative to the proposed metering scheme is to just add a
disconnected extra piece of programmable memories which carries the ID mark of a spe-
cific manufactured IC or to add extra identification code to the software. The first advan-
tage of the proposed distributed and integrated within design hardware metering scheme
over this straightforward scheme is that it has lower hardware overhead, since it leverages
a part of don’t-care signals in the finite state machine of the hardware design or an unused
state in the software program. However, since the overall overhead for both schemes is
low, there is a number of much more important advantages. What is common to all these
attacks is that they externally induced controllability or observability. The approach also
provides some level of protection against reverse engineering. For example in hardware,
the presence of programmable control path instead of hard-wired logic makes reverse
engineering more difficult since essentially all reverse engineering schemes require multi-
ple chips to be dissected [1, 24]. Since, now each chip is slightly different but has the same
functionality, the reverse engineering process is more difficult.

Furthermore, distributed programmable resources in the control part have a number of
potential positive side effects. For example, they can be used to facilitate debugging [31]
and engineering change during the design phase or testing once the chip is manufactured
[10].

Finally, it is interesting and important to discuss the relationship of the proposed
hardware metering scheme with fingerprinting schemes for IP protection [5]. For exam-
ple, fingerprinting-based metering solution is to give the manufacturer the number of IPs
as stated in the licensing agreement, each IP has a unique fingerprint and implements the
same functionality [20]. If the manufacturer uses one piece of IP more than once, then
they face risk of being caught by the IP provider from detecting multiple copies of the
same fingerprint. However, this challenges the mass foundry production line since each IP
requires the unique mask and makes tuning of parameters of the foundry line to design
much more difficult. Also, fingerprinting will inevitably introduce a significantly large
overhead since it aims at placing hidden information in all parts of the hardware/software
design and follows random signature driven constraints.

1.2  Motivational Example
To illustrate the key ideas behind the hardware metering approach, consider the sec-

ond order continued fraction IIR filter [9] shown in Figure 1. For simplicity, we assume



that all operations take one control step. The critical path is six control steps long. We
schedule the filter, in the minimum amount of hardware resources using only 1 adder and
1 multiplier. The graph in Figure 2 shows the same filter after being restructured following
the schedule. The same graph also has information about the used variables which are
denoted by (v1, v2,..., v11).

A variable is alive during its lifetime, i.e. between the time it is generated (written)
and the last use (read) of it. The variables whose lifetime do not overlap can be stored in
the same register. Figure 3 shows the interval graph that contains information about life-
times of all variables for the filter. The standard way of variable assignment to registers is
to model it using the graph coloring problem [6, 36]. The interval graph is constructed in
such a way that for each variable, there is a corresponding node in the graph. Two nodes
are connected if the lifetime of the corresponding variables overlap. Now, register assign-
ment can be performed by coloring the interval graph, which is an NP-complete task for
cyclic interval graphs [16,21].

The instance of the graph-coloring problem that corresponds to register assignment of
the filter is shown in Figure 6 (considering only the solid lines). Assigning two variables
to the same registers corresponds to coloring two nodes with the same color. One potential
assignment is also shown in Figure 6. Finally, Figures 4 and 5 show the corresponding
datapath and a path of control unit (FSM) that contains read/write operations to the regis-
ter. Figure 5 shows read control of the register files that is used to store variables. The key
point is that although we can obtain many different solutions (which we discuss in the next
paragraphs) by coloring the graph in different ways, our datapath remains the same for
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every possible solution which uses the minimal number of colors. The only difference is in
terms of the control unit (FSM). Since the datapath is not modified, we can use the same
mask for all layouts. The control unit is a very small fraction of the total layout area and
we implement it by using a programmable technology such as EEPROM. The most
appealing advantage of EEPROM is that it is not programmed during the mask steps, but
can be later configured in a fast and cost effective way.

There are several ways how to produce solutions with identical datapaths and distinct
control paths. For example, one option is to permute the subsets of variables that are
assigned to particular register. There are n! solutions, when n registers are used in the reg-
ister file for a set of variables. Another alternative is that by using degrees of freedom in
assigning the variables to registers or by using redundant states for the same FSM and
adding new constraints to find different control flows during the logic synthesis phase.

We illustrate the first option by adding dashed-lines on the graph in Figure 6. The
example is the constructed from Figure 6 by adding one extra node, u1. The node v1 is
connected to 3 other nodes (this is shown by the dash-lines on the figure). Since we are
using 5 colors to color our graph (since 5 variables are simultaneously alive in control step
5 that is an minimal solution), we have a degree of freedom of 2 to color this node. In the
previous section, we have used R1 to color this node, but now we see that we can also use
R5 to color it. Note that the same effect can be done as preprocessing step as explained in
Section 5.
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During logic synthesis of control path we can create for some states redundant equiv-
alent states. Each of variables will obtain different state assignments, and we can use any
of the assignments of the two equivalent states. If these step is repeated n times, we will
have 2n different solution. The remainder of the paper is organized in the following way:

We first survey the related literature. Next we formulate the metering problem by estab-
lishing objectives and figures of merit. After that, we propose and analyze a number of
hardware and software metering techniques. Probabilistic analysis of the metering tech-
nique and explanation of technological and implementation issues is given in Section 5.
After that we present our synthesis and optimization approach and algorithm. Finally, we
present experimental results and conclude by briefly discussing future potential metering
directions.

2  Related Work
To the best of our knowledge this is the first approach for hardware IP metering.

Related work can be traced within broad fields of cryptography and computational secu-
rity, conceptually related fields of intellectual property protection and licensing and objec-
tive-related field of software, content, and WWW access metering. Recently, SiidTech
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Inc., an Oregon start-up company, has proposed an approach for integrated circuit identifi-
cation from random threshold mismatches in an array of addressable MOSFETs. The tech-
nique leverages on process discrepancies unavoidably formed during fabrication. This
analog technique can be used in tracking semiconductor dies, authentication and intellec-
tual property (IP) tagging. In a recent report of this method’s measured performance[23],
for a 0.35um poly CMOS, for generating 112 ID bits, 132 blocks area used, each with the
area of 252x93um. The IDs proposed by SiidTech are not deterministic and these IDs can
not be deterministically compacted. Also, due to the birthday paradox, there is still a small
probability that two IDs generated randomly have the same value. Component applica-
tions enables the user to trace a particular die on a wafer and store this information for
future usages. There are several advantages of our scheme over the Siid scheme. We have
been able to obtain more than 1.3E12 distinct solutions even in our smallest test cases
which have only 15 registers (Our number of solutions will go exponentially high by using
a few more registers). Furthermore, our IDs are deterministic and therefore they can be
used to contain a defined signature to be used in many cryptographic schemes.

From a more global point of view, intellectual property protection schemes, such as
hardware metering, are traditionally treated within computational security. Cryptography
is the study of techniques related to aspects of information security such as confidentiality,
data integrity and entity authentication [34]. Computational security has even more broad
scope and includes privacy protection, password protection, denial of service, and content
usage measuring.

Modern cryptography started with introduction of one-way trapdoor function-based
public-key cryptographical communication protocols by Diffie and Hellman [11]. In
1978, Rivest, Shamir and Adleman discovered the first practical sound public key encryp-
tion and signature scheme based on exponential computational difficulty of factoring
numbers which are the products of two large prime numbers. A number of excellent cryp-
tographical textbooks are available [35, 34, 25].

Intellectual property protection of audio and video artifacts and hardware and soft-
ware components and systems recently attracted a great deal of attention. For example, the
Virtual Socket Interface Alliance has been making progress on standardizing SoC design
and IP protection [38].

Multimedia watermarking schemes are utilizing minute alternations of audio or video
so that the signature is embedded while human perceived quality of artifact is fully pre-
served. For survey, see [18], Protecting design (hardware and software) IP is a broad and
complex issue. 

One method to enable design IP protection is based on the constraint manipulation.
The basic idea is to impose additional author-specific constraints on the original IP speci-
fication during its creation and/or synthesis. The copyright detector checks whether a syn-
thesized IP block satisfies the author-specific constraints. The strength of the proof of
authorship is proportional to the likelihood that an arbitrary synthesis tool incidentally sat-
isfies all the added constraints [19, 32]. Similarly, to protect legal users of the IP, finger-
prints are added to the IP as extra constraints [5]. Finally, copy detection techniques for
VLSI CAD applications have been developed to find and prove improper use of the design
IP [7,20]. These techniques are effective for authentication. However, since they make
each design unique, it becomes ill-suited for mass-production and cannot be applied, at
least not directly, and without significant modification, to hardware metering.



Another research, to some extent related to our work, is forensic engineering tech-
nique, that has been explored for detection of authentic Java byte-codes [3] and to perform
identity or partial copy detection for digital libraries [4]. Also, forensic analysis principles
are used in the VLSI CAD to demonstrate that solutions produced by strategically differ-
ent algorithms can be associated with their corresponding algorithms with high accuracy
[22].

Sampling and auditing are the two main methods for measuring the popularity of
media channels. Sampling, like the Nielsen Media Research and NetRatings Inc., is based
on surveys among a representing group of users [30]. Web page access metering has been
addressed by a number of researchers and companies. For example, Pitkow proposed tech-
niques to uniquely identify users and to compensate for the usage of proxies and cashes
[30]. Franklin and Malkhi developed the lightweight security WWW page usage scheme
[15]. Recently, Naor and Pinkas proposed a rigorous secret sharing-based WWW page
access method [26]. Another potential alternative is to use micro-payment protocols for
WWW usage [27].

Majority of software vendors currently employ licensing as the primary way of pro-
tecting their software packages, such as text formatting and CAD tools. Licensing soft-
ware ensures the vendor with a certain degree of control over the distributed software. For
example, licensing software may prevent unauthorized duplication of software packages
or Licensing is a major enabling component for software distribution. For example, over
$40 billion of installed third party software uses GLOBEtrotter’s Electronic commerce for
software technology FLEX1m. Today’s dominating software licensing mechanism is
based on license key concept. A key is encrypted by using a string of data that contains
software package ID and its usage constraints (e.g. expiration date) and the serial number
of the computer where the key is installed. The invocation of the software package is done
automatically when software is invoked by using one of the password schemes [25, 13].

A large number of patented licensing protocols have been proposed. For example,
licenses can be used not only to authenticate the legal users, but also to upgrade the prod-
ucts, and other after-market information transmissions[28] or licensing using smart cards
[29, 2].

3  Preliminaries

3.1  Problem Scenario
Consider the following scenario that requires hardware metering: a start-up design

company A builds a system that outperforms all the similar products on the market. A
gives the VHDL description of the system to manufacturer B and makes an agreement
with B to fabricate 10 million copies. The first 2 million copies sold out almost immedi-
ately, then the sale slows down even when company A lowers the price. It seems the mar-
ket has already been saturated. Meanwhile, market survey shows that there are about 12
million similar products in use. A suspects that foundry B has violated the agreement and
fabricated more than 10 million copies without reporting to A. However, for a given prod-
uct, A cannot provide convincing evidence to tell whether this copy is legally sold or not.
Therefore, A fails to recover its R&D revenue.

We observe that the problem comes from the fact that A sells identical products on the
market. If they can give each product a unique identification number, then when two prod-
ucts with the same identification number are found, the existence of unauthorized



becomes obvious. One naive approach is to use a serial number, however, it is visible and
almost trivial to be removed. In this paper, we propose a scheme that embeds a unique
identification number inside of the product.

3.2  Requirements and Objectives
Before the discussion of technical details, we first analyze the requirements and

objectives. Four basic questions have to be answered:
P1 How to create many distinct copies with the same functionality?
P2 Once two identical copies are found, how can we prove our ownership, i.e., how

can we convince others that we are not the pirates?
P3 How many tests we need to conduct before we gain a certain level of confidence

that there are no unauthorized on the market?
P4 If there are unauthorized copies, how can we estimate the number of copies that

they have made? 
The existing watermarking techniques provide solutions to problem P2: During the

design synthesis, we embed our digital watermarks and later on retrieve such watermarks
for authorship [19]. The last two questions are interesting for obvious reasons. P3 esti-
mates designer’s effort to prove foundry’s honesty, while P4 provides valuable on-court
information for the designer. We will build statistical models and address them in the next
section. To end this section, we discuss the requirements for solutions to the first question:
• Correct functionality: Although we want the system to be distinct, they must have 

exactly the same functionality.
• Large number of different copies: The method has to be capable of producing huge 

amount of distinct copies (from tens of thousands to millions) to accommodate to the 
market.

• Low overhead: The degradation of system’s performance due to the large number of 
different copies has to be kept at the minimal level, if zero-overhead is not achievable.

• Transparent to design and test: The creation of different copies has to be transparent 
to the manufacturing and testing. Otherwise, it will make the mass production impos-
sible. For this reason, we suggest post-processing, i.e. keep most components of the 
chip the same and make small changes at the final stage of the fabrication.

• Resilient against attacks: Attempts to making distinct extra copies or duplicated cop-
ies without being caught will be difficult, costly, and time-consuming.

4  Hardware and Software Metering Techniques
In this section, we propose and analyze a number of ways for hardware and software
metering. There are several alternatives for implementing the identification logic within
the control path logic for hardware protection. Our focus is control logic, because in mod-
ern design it is usually a very small percentage of design area, often less than 1%. Each of
the proposed techniques which have certain advantages/disadvantages.

4.1  Sequential Memory-Based Approach
In this approach the required data is stored in a family of PROMs (preferably non-recon-
figurable e.g. OTP EPROMs). This data is then read out of the registers sequentially to
form a control path. The fast improving memory technology is rapidly reducing on-board
programming time and the required extra manufacturing processing steps. The advantages
of this approach includes on-board programmability and small area overhead. However,



the additional required mask steps and erasure of UV light for programming the PROM,
somewhat limits attractiveness of this approach.

4.2  Disconnection Approach
In this approach, an additional finite state machine (FSM) is designed to facilitate design
identification. Checking the ID of the design, requires an unused state of the other FSMs
that are part of the design. Modern designs have a large number of FSM with numerous
unused states/input combinations (don’t cares). The added FSM, is the same for all the
designs in the mask level. In the postprocessing step, lasers burn some of the connections
of this added FSM in each design and thus generates different states and functions of it.
This added FSM is different in each design since we laser burn different connections in
each design to achieve a slightly different control path. The algorithms to decide exactly
where to burn the interconnect in each chip, can be derived from a computer simulation of
the state machine to derive unique ID for each of them. This solution does not need any
extra processing steps and is much faster and more robust than the previous approaches.
Another alternative, is to use BISR mechanism for hardware metering. BISR designs are
designs which have built in self repair fault tolerance that can function properly even if
some parts of the design are faulty [17]. The idea here is to intentionally induce variety of
faults in BISR designs in such a way that each design has different faulty parts. Note that
while repairing circuits using BISR is relatively expensive, inducing faults is relatively
cheap.

4.3  Fingerprinting by using the SiidTech Approach
This solution uses the same methodology as the disconnection approach mentioned in the
last section. The difference is that the added FSM is now reading out the unique finger-
print proposed by the SiidTech Corporation [23].

SiidTech approach, which identifies each chip by detecting imbalances in threshold
voltages-discrepancies unavoidably formed during fabrication. The advantage of this
approach is also that no external programming or special processing steps are needed. A
silicon fingerprint is generated at “birth” - during the fabrication of the die - and is carried
throughout the silicon’s useful life. The disadvantages of this approach are the same as for
the generic Siid technology that was elaborated in Section 2. 

4.4  Software Metering
The proposed hardware metering techniques are directly applicable to software metering.
Actually, it is significantly easier to create software tracking techniques, since there is no
technological constraints associated with integrated circuit manufacturing process. One
alternative is to just add static variants in software executables, by imposing constraints
during compilation. The constraint can be either local or global.

Another alternative for hardware and software metering is to use dynamic data struc-
tures as ID carriers. This approach has been already used for software protection through
watermarking [8]. The authors propose a combination of code obfuscation with creation of
multiple versions for a set of dynamic data structures created during the program execu-
tion.

The idea of dynamic creation of ID can be applied for software metering. We propose
radically different approach to this task. We add an extra software module which is the ID
carrier. For each copy this module is differently configured. The module is invoked from



the main flow of the program when a special function is invoked from command or highly
unlikely data input. Our preferred mode is to use don’t care conditions in the control flow
of the program to enter the ID module. Program obfuscation can be used to protect the
module isolation and altering against attacks. The module may have either dynamic data
structures as information carrier or can just create a particular output sequence.

In addition to mechanism differences, there two other key differences between the
schemes discussed in [8] and the one just proposed. The first is that our goal is different:
instead of watermarking, we want only creation of distinct copies. This condition makes
not only the software mutation task easier, but also induces low size and/or performance
overhead. The second difference is even more important. Our primary technical goal is to
enable rapid ID authentication for a software component/product. Therefore, the idea is to
create versions that rapidly create different IDs that can be verified against database of
produced copies. Note that our technique can be used, with straightforward modification,
also for software watermarking. The final alternative to software metering which we dis-
cuss is conceptually most complex, but also potentially most rewarding. The idea is to
alter software in such a way that each output produces by different version of the software
which differs from each other. This can be easily achieved by postprocessing the final out-
put within the software. More interestingly, it can be demonstrated that in many cases one
can systematically alter software in such a way that the functionality is essentially pre-
served. Typical example include word processing, large scale optimization and computer-
aided design packages.

5  Detection: Mathematical Model and Results
In this section, we will address problems P3 and P4 proposed in Section 3. Suppose the
design house asks the foundry to fabricate n copies and N Š n is the number that the
foundry really makes. P3 asks the expected number of tests to find a duplicate if N > n or
the number of tests to convince designer that N = n. P4 requires an estimation of N once
the first unauthorized is found. We take the dishonest foundry’s best strategy in that he
makes  duplicates for each original copy. It is proven that for a fixed , the
dishonest foundry has the best chance to survive in this equiprobable case.
Theorem 5.1. Draw l from  objects which consist of k copies of n distinct ones,
the probability that there is no duplicate, denoted by Prob[n,k,l], is

(1)

which has an upper bound

(2)

where .
Prob[n,k,l] is the probability that there are no unauthorized parts found after l random

tests (without replacement), provided that there are k copies for each of the n originals. It
decreases as k increases, since when the population (N) grows, it becomes more difficult
to find duplicates; it also decreases as l, the number of tests, increases.

The quantity 1-Prob[n,k,l] is the confidence that the designer can achieve from l con-
secutive successful tests. Success means that no duplicate is found. Table 1 shows some
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examples for the case n=1000. For instance, after checking 50 products and not finding
any duplicates, the designer believes that there does not exist another copy of 1000 chips
with a 46.64% confidence. With the same result, the probability that the foundry makes
10000 instead of 1000 is less than 33% (1-67.37%). The designer’s confidence goes up
quickly as more tests are conducted. After 100 successful tests, the designer will be
92.62% convinced of the foundry’s honesty. 

One implication of Theorem 5.1 is the “Birthday Paradox” problem: among 24 peo-
ple, with probability larger than one half, there will be two who share the same birthday,
assuming all birth dates are equally distributed over the days in the year.

Theorem 5.1 not only gives formula on the designer’s confidence about foundry’s
honesty, it also answers problem P3. As we mentioned, 1-Prob[n,k,l] measures the
foundry’s honesty and it increases as l increases. For a designer to gain a desired level of
confidence α, we need to find the smallest l such that . Unfortu-
nately, there is no exact closed form for formula (1), however, the solution can be always
found numerically and there exist good approximation formulas when n is large [14].   

We assume that k is equally distributed and derive Theorem 5.2 which answers prob-
lem P4 immediately.

Theorem 5.2. The probability that the first unauthorized is found at the l+1st test is 

(3)

Corollary 5.3. The expected number of tests to find the first unauthorized is

(4)

Corollary 5.4. If the first failure occurs at l, then the expectation for k is

(5)

6  Global Design Flow
In this section, we address how to create many different copies of the systems that have

the same functionality.1 We illustrate our approach using two problem instances that are
heavily used in the VLSI CAD, namely: graph coloring, and boolean satisfiability.

Table 1: Designer’s confidence after l consecutive successful tests

l  k=2  k=3  k=4  k=5  k=10

10  2.24%  2.97%  3.33%  3.55%  3.98%
20  9.15%  12.00%  13.38%  14.20%  15.82%
50  46.64%  56.62%  60.87%  63.21%  67.47%
75  76.34%  85.25%  88.33%  89.86%  92.33%
100  92.62%  96.84%  97.73%  98.39%  99.02%
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6.1  Graph Coloring
The NP-hard graph vertex coloring (GC) optimization seeks to color a given graph with as
few colors as possible, such that no two adjacent vertices receive the same color.

Given a graph, our objective is to create as many as possible high quality solutions
that are relatively close. By high quality, we mean that if the optimal solution is known,
then all the solutions that we generate will not use any extra color. Therefore, the finger-
printing techniques for GC cannot be used in this case, because they usually introduce
overhead although they are very effective in creating new solutions.

The following steps illustrate our algorithm for GC solution generation.
1. Apply a graph coloring heuristic to color the given graph  and obtain a k-color 

scheme as the seed solution.
2. For each node , calculate c(v), the number of different colors that v’s neighbors 

get.
3. Sort the nodes V in the increasing order of c(v).
4. For each node  with , change v’s color and report  differ-

ent solutions.
5. For all pairs of nodes (u,v) with  and , try different coloring 

schemes for nodes u and v and report the new found solutions if any.
In next section, we will demonstrate the performance of this algorithm by experimen-

tal results. It turns out that this simple strategy works very well in real-life graphs. Notice
that no extra colors will be used in our approach, i.e., all the derived solutions will have
the same quality as the seed solution. And these solutions differ from the seed solution
only at the colors of one or two nodes.

6.2  SAT
The boolean satisfiability problem (SAT) seeks to decide, for a given formula, whether
there is a truth assignment for its variables that makes the formula true. We necessarily
assume that the SAT instance is satisfiable and that there is a large enough solution space
to accommodate multiple solutions.

We use pre-processing techniques to create different but close solutions for the SAT
problems. In particular, before we solve the SAT instance, we delete a selective subset of
variables and essentially make them “don’t-cares”. Suppose we introduce k such “don’t-
cares”, then we should be able to build 2k distinct solutions from one seed solution if it
exists. Moreover, these 2k solutions will assign exactly the same value to the variables that
are not selected, i.e., they are close.

We select the variables to be deleted iteratively and greedily based on the following
criteria: for each variable v, let nv be the number of clauses that contains either v or v’, and

let si be the length of the ith such clause. Define

(6)

1. For each variable v in formula F, calculate c(v) and unmark v.
2. Select a unmarked v with the smallest c(v), delete both v and v’ from F to create a new 

formula F’.
3. Apply a SAT solver to solve F’.
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4. if  (F’ is satisfiable)
F = F’ and goto step 1.

5. else
mark v and goto step 2.

We select variable v greedily in step 2 and modify the formula in step 3. We use SAT
solver to solve the new SAT formula (the one without variable v), if we fail to find a truth
assignment, we put v back and select the variable that has the second smallest c(v). If the
new formula is still satisfiable, then we recalculate c(v) for the remainder variables in the
modified formula F’ and select the next one. We continue this process until we find
enough “don’t-cares” to create the desired number of different solutions.

7  Experimental Results
In this section we analyze the ability of the proposed metering scheme to generate a large
pool of designs with unique ID. We first show our results for hardware metering. The last
part of this section illustrates the analysis for the software metering approach.

Table 2 shows the results of the application of the scheme on generating numerous
graph coloring (register assignment). The first column indicates the name of design from
the Hyper benchmark suite [33]. The second and third column indicate the number of vari-
ables and registers in the designs. Two final columns indicate the number of the unique
solutions which can be obtained using the following two methods. The first one (column
4) is the assignment of exactly the same subset of variables to different registers in their
physical instances. The last column indicates the number of different solutions produced
using the technique presented in Section 5. In both cases, even for the smallest design, the
number of solutions is very high. The key reason for this situation is that it is well known
that the interval graphs for all known designs are very sparse and it is very easy to color
them in many different ways using the minimal number of colors.

In order to test the technique in a much more demanding scenario, we applied the
hardware metering scheme on the SAT problem. The experimental results are shown in
Table 3. The first column indicates the name of DIMACS benchmark [12] and the middle
column indicates the number of used variables. The last column indicates the number of
solutions that were generated using the technique presented in Section 4. Although, the
number of the generated solutions is smaller than in the case of graph coloring, it is still
very large and much higher than required in any of today’s designs. 

Table 2: Generated number of distinct solutions for the register assignment-based metering scheme

Design Variables Registers #of solutions

8th CD IIR 35 19 1.2E17 1.1E21
Linear GE Ctrl 48 23 2.6E22 5.0E36
Wavelet 31 20 2.4E18 9.4E17
Modem Filter 33 15 1.3E12 5.9E18
2nd Volterra 28 15 1.3E12 9.0E16
D/A Converter 354 171 > 1E200 5E123
Echo Canceler 1082 1061 > 1E200 6E202



8  Conclusion
We have developed the first hardware and software (intellectual property) usage metering
scheme. The scheme enables design companies to securely control licensing rights for
their IP. The utilizes a small percentage of a design implemented using configurable tech-
nology to embed a unique ID to each manufactured design instance. This scheme is gener-
alized in a number of ways and applied to both hardware and software metering.

We also presented mathematical analysis for detection accuracy of the proposed
scheme. We demonstrated the ability of the scheme to implement very high number of
chips with different ID. The main result of the paper is that we established generic connec-
tion between the scheme and synthesis and compilation tasks.
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