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Abstract—We introduce a unified approach for calculating
nonparametric shape constrained regression. Enforcement of
the shape constraint often accounts for the impact of a physical
phenomenon or a specific property. It also improves the model’s
predicability and facilitates subsequent optimizations. The re-
gression models are built by transforming the problem into the
combinatorial domain where the shape constraints are imposed by
bounding the combinatorial search space. We start by addressing
isotonicity shape constraint using a dynamic programming al-
gorithm and demonstrate how the problem can be mapped to
the graph combinatorics domain. Next we show how a number
of other important shape constraints including unimodality,
convexity, limited level set, and limited slope can be addressed
using the same framework. The flexibility of proposed framework
enables solving the shape constrained regression problem with an
arbitrary user-defined error metric. This flexibility is exploited
to add robustness against outliers to the model. The algorithms
are described in detail and their computational complexity is
established. The performance and effectiveness of the shape
constrained regression is evaluated on traces of temperature and
humidity measurements from a deployed sensor network where a
high degree of accuracy and robustness is demonstrated.

Index Terms—Convex, isotonic, nonparametric, robust regres-
sion, shaped constrained regression, unimodal.

I. INTRODUCTION

I N many real world phenomena, it is often observed that a
group of variables are dependant on a hidden variable and

a change in the hidden variable causes a proportional change in
other dependent variables. In such scenarios, addition of the iso-
tonicity (monotonicity) constraint by integrating the directional
change into the models accounts for the existence of hidden co-
variate(s) and improves the predictability of the learning sce-
nario [1]. More complicated relationships could be addressed
by employing more intricate models. For example, if an increase
in one variable invokes an increase in another variable which is
subject to saturation, a concave model may be appropriate; or,
if the interdependent variable increases to some point and de-
creases thereafter, one should use a unimodal constraint.
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Modeling such relationships has been a challenging task.
Statistical models are generally classified as nonparametric
and parametric. Nonparametric statistical models pose very
mild assumptions on the form of the functional relations.
Parametric models on the other hand, assume known full form
of the functional dependency, except for a few parameters.
Shape constrained regression could be viewed in the context of
nonparametric regression where the fit’s shape and structure are
constrained. Parametric modeling assumptions for addressing
shape constrained regression become inefficient in practice.
In most previously developed nonparametric methods, model
shape is not specified a priori but is instead determined from
the data.

Shape constrained regression finds many applications in di-
verse areas including kernel density estimation, classification,
nonlinear filtering and other tasks in signal processing, statistics,
and machine learning. In signal processing, for example, locally
monotonic regression has been used as the optimal counterpart
of iterated median filtering [2]–[4]. An important and recent ap-
plication domain is sensor networks, where the sensor nodes
measure variations of sources of stimuli [5]. In sensor networks,
typically a multitude of sensing devices are deployed in different
spatial coordinates to capture the variations of a sensed phenom-
enon (stimuli). Sensor readings from the nodes exposed to the
same source of stimuli such as temperature often encounter the
same variations; i.e., if the temperature goes higher, both sensors
would measure a higher temperature value. For an observer un-
aware of the stimuli properties, the measured value by sensors
follow a monotonic relation.

A large body of research has addressed most shape con-
strained models such as locally monotonic [2] piecewise
monotonic [6], [4], constant runlength [3], unimodal and
oligomodal [7] on some error functions. However, a unified
framework for shape constrained modeling has not been ad-
dressed so far.

We introduce a generic combinatorial framework that facil-
itates creation of polynomial time algorithms for a variety of
shape constrained regression models with arbitrary user-de-
fined error functions. The framework can address a number
of important shape constraints including isotonic, unimodal,
convex (or concave), limited number of level sets, and limited
slope shape constraints using dynamic programming. Limiting
the number of level sets is beneficial since regular nonpara-
metric regression methods often require a large number of
parameters for model description and thus, are not suitable for
optimizations and efficient storage. Furthermore, the bias-vari-
ance tradeoff often implies simpler models [8]. The method
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Fig. 1. Consistency (%) of monotonicity of readings at sensors 1 and 2 for
temperature (left) and humidity (right).

is made robust against outliers by utilizing kernel smoothing,
robust M-estimators by taking advantage of the flexibility in
choosing the error function.

The remainder of the paper is organized as follows. In the next
section, we motivate the need for the new unified framework
by performing exploratory data analysis on sensor traces. In
Section III, we survey the related literature. Section IV presents
the basis of the framework by introducing and addressing uni-
variate combinatorial isotonic regression and provides a graph
combinatorial mapping of the problem. Section V further ex-
plores the flexibility of the new approach to provide solutions
to several generalizations of the problem. Before we conclude
the paper, we evaluate the performance and effectiveness of
methods on sensor traces in Section VI.

II. MOTIVATION

Assume that we have a sensor network whose nodes are sam-
pling a physical phenomena in the lab (e.g., temperature). Since
the network deployment is rather dense in the lab, there are spa-
tial and temporal correlations among the readings of different
nodes. If two sensors and are exposed to related sources
of stimuli, any changes in the sources will affect the readings
at both sensors in a similar way. For example, an increase in
the stimuli value will result in higher readings at both and

. We incorporate this observation into our prediction model
by adding the isotonicity requirement such that as the measured
values at sensor increase, the predicted values for sensor
increase and vice versa.

We have tested the monotonicity hypothesis on the node pairs
in the Intel lab [5]. We computed the consistency of isotonicity
as follows. If and , or if

and , then our count of consistency increases
by one (for time ). The final consistency is presented as the
percentage of consistent measurement pairs for all considered
time slots. In order to allow for small amounts of noise in the
measurement process, we also consider a pair of readings to
be consistent if and , or if

and , where is a small noise
tolerance parameter. The consistency of monotonicity between
two sensors versus tolerance is shown in Fig. 1. We see that
even with zero noise tolerance, the consistency of monotonicity
is very high: % for temperature and % for humidity
measurements.

III. RELATED WORK

Calculation of the isotonic regression has a long and rich his-
tory. In this section, we briefly survey the most important contri-
butions with respect to isotonic regression, and the related prob-
lems of unimodal, and convex (concave) regression and their
robust versions.

Robertson et al. [1] discuss a number of applications that ben-
efit from imposing the isotonicity constraint. More recently, ap-
plications of isotonic regression in statistical modeling of the
sensor network data has been demonstrated [5]. Such models
can be utilized to address different sensor network problems
including density estimation for the sensed phenomena, cali-
bration [9], [10], compression [11], [12], and query processing
[13], [14].

One of the earliest and most widely used techniques in non-
parametric isotonic regression is Pool Adjacent Violators algo-
rithm (PAV) proposed by Brunk in 1955 [15]. The approach is
designed for univariate regression and works by sorting the ex-
planatory and then averaging the responses that violate the iso-
tonicity requirements. The technique was the first to give the
minimal results with respect to error norms and to have a
computational complexity of . A drawback of the PAV
algorithm is that if there are outliers or aberrant observations
the PAV algorithm will produce long, flat levels and inaccurate
models.

In 1964, Kruskal published a paper that in context of his
multidimensional scaling solved the monotonic regression
problem [16]. The theoretical complexity of Kruskal’s algo-
rithm is loosely upper bounded by . The approach is
similar to the PAV algorithm and has been often referred as
the up and down block (UDB) algorithm. It has been used and
refined by a number of researchers and eventually, combined
with algorithms for fast computation of prefix constrained
structure and resulted in a fast alternative to the PAV algo-
rithm—prefix isotonic regression proposed by Stout [7]. Prefix
isotonic regression can be used for finding the optimal unimodal
regression for and norms in and ,
respectively, where is size of the data sequence.

Sager and Thisted [6] proposed a method for finding the
best isotonic regression path by employing the dynamic pro-
gramming paradigm for variables with a finite alphabet. The
complexity of this algorithm is , where is the size
of the alphabet. Restrepo and Bovik [2] studied locally mono-
tonic regression as the optimal counterpart of iterated median
filtering and developed a mathematical framework for studying
the problem. They proposed an algorithm to the problem that
was exponential in .

Sidiropoulos [3] considered digital locally monotonic regres-
sion and provided a dynamic programming (Viterbi) algorithm
for solving the locally monotonic regression. Local mono-
tonicity of degree is concerned with local subparts of the
signal that are increasing (decreasing) while there might be
constant levels of signal that at most have a length of .
The complexity of the proposed local monotonic regression is

, where is the size of the alphabet and is the
length of data sequence.
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Boyarshinov et al. [17] take a step forward by introducing an
isotonic regression that can be performed in .

They also show that if input values fall in the range of
and given , an approximate isotonic regression
with error at most the optimal plus could be solved in time

. An isotonic regression is also
solved in linear time.

Finding a convex isotonic regression for a convex cost
function is a shape-constrained modeling problem that can be
solved using convex optimization methods. Ahuja and Orlin
[18] present a convex optimization algorithm that solves the
problem in , assuming that the inputs were sorted.
Melanie and Holger also studied the problem of estimating a
convex function for nonparametric regression.

Recently, there has been a great deal of interest in developing
new algorithms for isotonic regression [19], [20] and in general-
izing the basic shape-constrained paradigms for developing sta-
tistically more sophisticated formulations that include isotonic
regression constraints [21]–[23].

Even though the method presented in this paper employs a
dynamic programming approach that was also utilized in [6],
[3], and [4], there are several important new aspects. First of all,
the new method employs a generic framework to solve different
shape constrained problems by minimizing an arbitrary objec-
tive function. It embraces isotonic, unimodal, convex (or con-
cave) shapes while it has the flexibility to limit the slope range
in the shape. Although being a nonparametric method, as we
will show, it can impose a restriction on the number of param-
eters which simplifies the description of the regression models.
This is suitable for subsequent storage and optimization tasks
being conducted in sensor networks and to other environments
with computational and storage constraints. Second, the algo-
rithms perform in a time efficient manner, mostly in linear time.
With a reduction in alphabet size, the time complexity can be
enhanced significantly. Third, the degrading effect of outliers
can be suppressed by integrating robustness into the method.

IV. UNIVARIATE COMBINATORIAL

ISOTONIC REGRESSION (CIR)

In this section, we introduce the univariate CIR approach. We
start by presenting the generic dynamic programming algorithm
for CIR. Next, we show the mapping from the isotonic regres-
sion problem into a combinatorial shortest path problem and dis-
cuss the flexibility that can be exploited at the graph level.

A. Problem Formulation and CIR Approach

In univariate isotonic regression, the goal is to model the re-
sponse given the measured data from the predictor

, at time index , while the model sat-
isfies the isotonicity constraints. Specifically, we are given
real data values , with nontrivial real-weights

, where and are each drawn from a finite alphabet
of size . The values of can be ordered as

, where , thus a number of consecutive
values of can be equal. For each value of , there is a cor-
responding value of that denotes the value of the response

, measured at the same time epoch as . The cost function
for measuring the prediction error is denoted by .

The -isotonic regression of the data is defined as the set
that minimizes the error measure

subject to nondecreasing isotonic constraint:

(1)

The CIR approach is independent of the form of the cost func-
tion . Commonly used forms of are the norms of the
error that are shown in (2).

(2)

Since , the ordered set contains redundancies. To
reduce this ordering to a strict order, we eliminate redundancies
by grouping the same values together, and thus generate an order

. Thus, we have distinct possible
values for the stream . The notation indicates that
variable at time has the value where denotes the th
value in the ordered set of readings. We also produce the strict
order for the data stream so that ,
where denotes the number of distinct values (alphabet) for
stream . Note that the size of the alphabets for the streams
and is assumed to be the same for simplicity of the notation
and does not have to necessarily be the same. Generalization to
the cases where and are drawn from two sets with different
alphabet sizes is straightforward.

The generic dynamic programming method for addressing
the isotonic regression consists of four steps: (i) a relative im-
portance matrix is created; (ii) based upon , an error ma-
trix is built; (iii) a cumulative error matrix is constructed
using a dynamic programming based algorithm; and (iv) an op-
timum path that yields the minimum cumulative error is found
on . We explain the steps in detail below and use the example
in Fig. 2 to illustrate each step.

i) We start by using the data tuples to form a relative impor-
tance matrix where each indicates the number of
times when stream has value and stream has the
value at the same time. We define to be

The elements of the matrix are calculated using equa-
tion: . In the example in Fig. 2, the al-
phabet set is and each stream can have one
of five different values . The matrix is in fact a
histogram of the entire set of for .

ii) In this step we populate the error matrix whose ele-
ments each indicate the error that would be made
if the prediction of was selected to be whenever
stream had the reading . For example in Fig. 2,
whenever we have , the most common observa-
tion at is . Hence, the predictor is not always
correct and error may arise for the prediction. In Fig. 2,
we use the error function
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Fig. 2. Small example showing the steps for building a CIR model for a
response stream � from the data at stream � , where each stream has only
5 possible values. The bottom left matrix shows how the trace backing is
accomplished.

which corresponds to the error norm. The weight
indicates how often the particular error oc-
curs. We could define any other cost function, based on

, but for clarity of presenta-
tion we limit ourselves here to the norm. In Fig. 2, we
show how the matrix is constructed. The figure high-
lights and illustrates how it is computed using the first
column of the matrix as weights in the cost function:

.
iii) The goal of the isotonic regression (i.e., finding

) is to find a nondecreasing path that traverses the
matrix while experiencing the minimum possible error
along the path. The path starts at the point with
some y-intercept, and moves in nondecreasing fashion
across the space of values to . This path should
accumulate the minimum error and visit each column ex-
actly once. To find this path, we construct a cumulative
error matrix in which each element holds the min-
imum error incurred so far along the isotonic path to that
point. We start filling the cumulative error matrix by
copying the first column of matrix. The matrix is
then filled column by column, from left to right. Each
value of is the sum of its corresponding element in
the matrix , namely , and the minimum value of the
elements located below and in the previous column, i.e.,

. In our example, we show how
is computed by adding and the minimum of its
lower or equal values in the previous column of . The
candidate values are highlighted in light gray; the min-
imum is which lies in the darker square. For
each value in the matrix, we also keep the index that

Fig. 3. Pseudocode for the dynamic programming algorithm for finding the
isotonic model between data streams � and � .

Fig. 4. Duality between the matrix computation for finding the isotonic model
and the shortest path problem on a graph is shown on the small example of Fig. 2.

identifies the minimum value in its previous column that
led to the current estimate of the cumulative error.

iv) Once the cumulative matrix is fully constructed, we
find the minimum value in the last column of (index

for this example) and extract the associated index
(denoted by mini) to the previous column (in our ex-
ample ). Finally, the procedure backtracks over
the columns updating the mini value at each step (lines
9–13 in the pseudocode 3). For each column, the value of

is stored as the best predicted value for . The
final mapping is shown by the dark highlighted boxes in
Fig. 2.
The procedure used for steps 3 and 4 is a dynamic pro-
gramming solution to the problem of finding an isotonic
regression that minimizes the error. Our pseudocode
given in Fig. 3 specifies the detailed procedure. The run-
time of the procedure is dominated by the two nested
loops in steps 3 and 4 which runs for times.

B. Interpretation in Graph Combinatorics Domain

So far, we have presented a dynamic programming algorithm
that takes the error matrix as its input. The error matrix can be
also interpreted as a graph. In Fig. 4, we illustrate mapping of
the example shown in Fig. 2 into the graph combinatorial do-
main. The graph corresponds to the error matrix, where the
vertices of the graph show the elements of the matrix . The
number assigned to each vertex is the error value for its corre-
sponding element in the error matrix. The edges of the graph
present the possible directions a path can take on the error ma-
trix. Since the path can never be decreasing, there are only di-
rected edges going to the right and up on the graph. The graph
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also has two added vertices, initial (denoted by ) and final (de-
noted by ), each with an edge with the incident value of 0.
The problem of finding the isotonic model for the response
based on the readings from the explanatory variable now cor-
responds to finding the shortest path in the error graph from the
initial vertex to the destination vertex . Finding an ar-
bitrary shortest path for two points in a general graph with V
edges, using the Dijkstra’s algorithm [24] has the complexity
of . However, since the error graph has a special
sparse structure, the Dijkstra’s algorithm has runtime.

V. FROM UNIVARIATE CIR TO A GENERIC FRAMEWORK

In this section, we show how CIR regression method can be
generalized to constitute a spectrum of other shape constraints.
The first important shape constraint we discuss is limiting the
number of level sets in the isotonic model. We show how uni-
modality and convexity, two widely utilized shape constraints,
can be addressed within the same framework. We also introduce
the use robust M-estimators and kernel smoothing to create a ro-
bust regression method.

A. Limiting the Number of Level Sets

Isotonic regression consists of level sets of nondecreasing
values. However, the number of obtained level sets from an iso-
tonic regression can be very large, preventing simple description
for the model. To address this problem, a number of heuristic
isotonic regression methods and methods based on combining
isotonic regression and smoothing techniques have been pro-
posed [25]–[29]. For improving the parsimony of the models
we impose a constraint on the maximum permissible number of
level sets. We find an isotonic fit that is optimal with respect to
a given cost function for a fixed given number of level sets in a
polynomial runtime.

The terms level set and breakpoint are used interchangeably,
although the number of levels is greater than the number of
breakpoints by unity. The limited level set isotonic regression
method virtually follows the same steps as CIR. The algorithm
calculates CIR with a restricted (prespecified) number of level
sets and a maximum local slope of by (i) building the rel-
ative importance matrix, , (ii) generating an error matrix
based on (iii) constructing a structure containing lists that cor-
respond to the error matrix elements (iv) finding the indices of
best path that yields the minimum cumulative error.

Steps (i) and (ii) are the same as the CIR algorithm. (iii) The
main difference between CIR and the procedure in this step lies
on how cumulative error values are generated. In CIR there was
only one optimum isotonic path that terminated at a given entry
of the error matrix. However in limited level set CIR, there are
multiple optimum paths each of which collects the least possible
error on the way while having a certain number of breakpoints
and local slopes. Therefore, the method must keep track of two
other attributes in addition to the cumulative error values: local
slope and the number of breakpoint so far. To attain this goal, a
list is created for each entry of . The list associated with the
entry holds groups of three-element state vectors ,
where ce corresponds to the cumulative error resulting from the
best CIR mapping that ends at and de-
notes the number of breakpoints along the path, and refers to

Fig. 5. Pseudocode for the dynamic programming algorithm for finding the
limited levelset isotonic model between data streams � and � .

the slope of the final segment of the path. We choose the nota-
tion to denote the element in the
state vector within the list associated with the entry . Thus,
the state vector elements , and hold cumu-
lative error, slope value, and breakpoint count, respectively. The
number of state vectors in each list may differ from one list to
another and is determined dynamically by the algorithm. The
algorithm starts by assigning states to the first column of , i.e.,

for . We start filling the cumula-
tive error values (ce) by copying the first column of matrix.
The prior slope for the entries of the first column are set to a
default zero value. The same applies to the number of break
points in the first and second columns (since it takes at least three
columns to define a breakpoint). Therefore,
and for . At each step, the algo-
rithm looks back at the entries in the pervious column that are
located below or at the same level and also not farther than
entries away. Then, it adds up the cumulative error value (i.e.,

for all and l) and the cor-
responding value in the matrix , namely . Meanwhile, it
sets the arrival slope value to the level difference, . At each
stage, the algorithm compares the current slope value with that
of the previous entries. If there is a change, it increments the
number of breakpoints, , by one and stores it in the current
state; otherwise, it takes as the current breakpoint count (lines
10–15 in Fig. 5). The cases where the breakpoint count exceeds
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Fig. 6. Figure shows how the states are created for the first three columns of the 5� 5 example during the limited level set isotonic regression process.

Fig. 7. Pseudocode for finding the isotonic limited breakpoint path indices.

are avoided by not storing their state vectors in the list (lines
17–20). Once each list is fully generated, to ensure local opti-
mality, we need to do a local minimum search within each list on
the ce values of the vectors having the same slope and number of
breakpoints, and replace them with the minimum value. Lines
23–33 in Fig. 5 show the corresponding steps. Fig. 6 illustrates
the resulting lists and states for the first three columns of the ex-
ample presented in the previous section.

(iv) The backtracking procedure carried out in this step is
shown by the pseudocode in Fig. 7. We arrive at the final solu-
tion by finding the minimum of the cumulative error values by
doing a search over the first elements of all state vectors within
the lists in the last column . Once the min-
imum is found, its associated arrival slope, , and the breakpoint
count , are extracted (line 4). Meanwhile the current minimum
cumulative error, ce, is subtracted from the corresponding ele-
ment in the error matrix and updated to the new value (line 5).
These three values specify a unique predecessor state
which has a cumulative error value exactly equal to ce, a break-
point count , if having the same slope or a breakpoint count

, if otherwise (line 7). This process is repeated until the al-
gorithm reaches the first column and all of the path indices
are obtained.

1) Complexity: The complexity of the limited level set iso-
tonic regression is dominated by: (1) the two nested loops in
lines 4 and 5 that scan all of the list entries, and (2) the two
nested loops in lines 6 and 7 that check the states in the pre-
vious list entries. The local search performed by loops in lines
24 and 25 has the same run time as (2). The loops in (1) iterate

times. The for loop in line 5 repeats times in the worst
case, except for the entries close to the bottom of . Also the
list entries roughly contain state vectors. Therefore, the
two nested loops in line 5 and 6 run in time steps for
large . The overall complexity is bounded by O .

Fig. 8. An example where we constrain the slope to be either 0 or 1. The dotted
edges on the left figure are removed to limit the maximum and minimum per-
missible slopes.

Fig. 9. An example showing the original CIR and the concave CIR fits. The
concave path is a path with segments of nonincreasing slope.

B. Minimal and Maximal Slope

A straightforward modification to CIR is limiting the max-
imum and minimum local slope.

To constrain the slope, it is sufficient to remove the edges that
correspond to high/low jumps in the dual error graph. Fig. 8
shows a small 5 5 example graph that limits the slope to be ei-
ther 0 or 1 by removal of extra edges before solving the shortest
path problem. On the right-side of Fig. 8, we show the isotonic
regression on the original graph and on the slope-limited graph.
As can be seen on this figure, constraining the slope can drasti-
cally alter the regression fit.

A minor modification to the CIR pseudocode in Fig. 3 is
required to include the slope constraint. This can be done by
bounding the search space in lines 5 and 6 for finding the min-
imum of cumulative error values in the previous column
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Fig. 10. Figure shows how the states are created for the first three columns of the 5� 5 example during the concave isotonic regression process.

Fig. 11. Pseudocode for the dynamic programming algorithm for finding the
concave isotonic model between data streams � and � .

where and are the minimum and maximum slope,
respectively.

C. Convexity

The path search space can be bounded in a way to produce a
regression model that follows a concave or convex shape. Fig. 9
shows how the inclusion of concavity constraint alters the re-
gression path. Finding the convex or concave model involves the
same four essential steps as other shape constraints in the frame-
work: (i) creating the relative importance matrix; (ii) building
the error matrix; (iii) constructing lists of state vectors that cor-
respond to the error matrix elements; and (iv) finding the indices
of the best path that yields the minimum cumulative error.

Steps (i) and (ii) are the same for every shape constraint re-
gression defined in the combinatorial framework.

(iii) we associate a list of states to each entry of the error
matrix. Each state holds a cumulative error and segment slope
value. A concave (convex) shape is composed of line segments
with monotonically decreasing (increasing) slopes. We choose
the notation and for the structure containing lists and
state vectors, respectively. Therefore, and refer to
cumulative error and slope values, respectively. The algorithm
starts by initializing states for the lists associated with the first
column of . The prior slope for the entries of the first column
are set to the default value of zero .

The pseudocode for the procedure is specified in Fig. 11. The
pseudocode applies to the concave model but it could be simply
modified to include convexity by reversing the equality sign in
line 8. For each entry on the second column, we need to look

back at the entries located below or at the same level (i.e.,
for all and l). The states whose slope values are
smaller than their previous states are only considered and the
rest are discarded (lines 8 to 10). A local search is performed
over the cumulative error values of the states satisfying this con-
dition to find the minimum. The minimum is added to the cor-
responding value in the matrix, i.e., , and at the same time
the slope value is set to the level difference. (lines 13 to 17). The
concept of local slope could be applied by simply bounding the
search space in line 6 in Fig. 11 to to .
When evaluating the complexity of the algorithm, we will show
how a modification of the search space can exclude redundant
search attempts in order to reduce the runtime.

(iv) The backtracking mechanism is almost identical to
limited breakpoint algorithm in Fig. 7. We look for the
minimum cumulative error in the last column lists, i.e.,

. Once the minimum is found, we look at
its state vector to obtain the corresponding slope, and go back
accordingly to the previous entry and retrieve the list associated
to the entry. We need to do a local search within the states in the
list whose slopes are greater than the forward entry and have
a cumulative error value that matches the forward minimum
cumulative error minus its corresponding error value. The
indices of the entries (that are in fact the indices of the optimum
path) are recorded throughout the process.

1) Complexity: For a sorted input, the algorithm has the
worst case complexity of . The alphabet size is often
much smaller than the data sequence length . In practice, the
maximal allowable local slope is also typically much smaller
than and the runtime of the procedure reduces to .
Since , the runtime of the combinatorial convex iso-
tonic regression procedure is typically smaller than the runtime
of the algorithm presented in [18]. However, the main benefit of
using this model is in its inherent flexibility to solve the convex
regression problem for any given cost function, regardless of the
convexity of the cost function.

D. Unimodality

In unimodal regression, the goal is to find a model that has a
single local maximum (minimum). The unimodality constraint
can be formally expressed as

(3)

where is the peak or trough of the model. The point
is called the crossover point; it is where the mode

of the regression function changes from an increasing trend
to a decreasing trend. In general, the cross-over point for an
optimal unimodal fit is not unique. The procedures followed
in [30]–[34], take a point, , as the crossover point and
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fit a monotonically increasing curve to the previous values
and a monotonically decreasing curve to the

proceeding values . The process is repeated for
each , in , and the point with the smallest regression
error is the optimal solution. The critical observation is that each
iteration involves two calls to isotonic regression algorithm
which significantly increases the complexity of the algorithm.
Our algorithm is able to determine all of the error values in a
single iteration using a dynamic programming approach instead
of resolving the problem for each new individual crossover
point.

The algorithm for computing the unimodal regression is op-
timal with respect to any given error norm. To find the unimodel
regression, we run the dynamic programming method described
in Fig. 3 twice. For the first run, the model is built exactly as
shown in Fig. 3, where the cumulative error matrix is built from
left to right (i.e., from , to ). For the second run,
a small modification is applied to the original algorithm such
that the dynamic programming procedure builds the cumulative
error matrix from right to left (i.e., from to ).
In other words, the second run generates the cumulative error
matrix required to construct a monotonically decreasing model.
Meanwhile, two vectors whose elements correspond to the min-
imum of values in each column of s are created. The minimum
value for each column of the right-to-left (left-to-right) ma-
trix obtained from the first (second) run represents the smallest
possible regression error for the best monotonically increasing
(decreasing) model that ends on (begins from) that column.

Next, we add up the two vectors element by element and
form a sum vector. The minimum value and its location in the
sum vector, respectively, represent the minimum unimodal re-
gression error and the column index on which optimal crossover
point lies. In other words, the minimum value in the sum vector
indicates the sum of isotonically increasing regression error
before the optimal crossover point plus isotonically decreasing
regression error after this point. Due to the possibility of
multiple optimal crossover points, there might exist multiple
minima with the same values.

1) Complexity: The presented approach for finding the uni-
modal regression has a runtime of . Stout [7] has pro-
posed an algorithm for unimodal regression based on a prefix
isotonic regression that can be solved in for and
norms.

E. Robust Regression

1) M-Estimators: It is also possible to create a robust re-
gression by making adjustments to the framework. The robust
regression approach is used when there are large outliers. A
common robust regression method proposed by [35] is to find
LMS (least median of squares) defined as

subject to the regression constraint, where . How-
ever, implementing this method with our regression paradigm
(and other proposed nonparametric algorithms) would be costly
since finding the least median of square of residuals requires an
exhaustive search over the error matrix to find the best isotonic
path that minimizes the objective function.

Robust regression methods are differentiated by the way they
assign weights to the residuals. The most common method of ro-
bust regression is -estimation introduced by Huber [36]. The
M-estimators minimize the sum of a symmetric, positive-defi-
nite function of the residuals , with a unique minimum
at zero. For the least squares method, . Several
functions have been proposed that reduce the influence of large
residual values on the fit. Huber proposed the squared error for
small residuals and the absolute error for large residuals:

Andrews [37] used a squared Sine function for small and a
constant for large residuals. Beaton and Tukey’s [38] biweight
is another example of these functions. Earlier methods to solve
such regressions with error functions are based on iterative
application of reweighted least squares. The weights at each
stage are derived based on the assumed function and the data.
The reliability of the initial guess is of importance and the con-
vergence of the solution was not proven for most functions.
Since our regression paradigm is versatile in terms of the error
function, we can readily employ the M-estimators ( functions)
while constructing the error matrix such that

where refers to the relative importance matrix entry.
2) Kernel Smoothing: Outliers are generally large defective

measurements that appear randomly in the data. It is therefore
unlikely to have repeated outliers with the same amplitude un-
less there is systematic fault in the measurement unit. Since out-
liers appear as solitary entries with low frequency in the relative
importance matrix , we can apply kernel smoothing on to
lessen their weight in calculating the error matrix .

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our CIR algorithms on traces
of temperature and humidity measurements from a deployed
sensor network. The network consists of 54 nodes with capa-
bility to measure temperature, humidity, and light intensity.
Fig. 13 depicts the location of nodes on the measurement field.
We show how inclusion of shape constraints improves the
predicability of the models and also study the effect of level set
limitation and quantization of the alphabet values. Robustness
of the method using robust M-estimators is examined.

A. Comparing CIR to Other Regression Methods

To evaluate the quality of the new CIR approach, we com-
pare prediction error of the combinatorial isotonic regression
(CIR) to prediction errors of (a) ordinary least square (OLS)
linear regression and (b) robust least-square (LOESS) nonpara-
metric regression on sensor network data. We selected these two
models for comparison because: (i) our objective is to compare
the results of isotonic regression to both parametric and non-
parametric family of models; (ii) OLS regression is the most
widely used parametric modeling method; and (iii) LOESS re-
gression with proper parameter selection is widely used as a ro-
bust nonparametric modeling method. Note that the major dif-
ference between CIR and LOESS is the inclusion of isotonicity
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constraint. Therefore, our goal is to gain insight to what extent
we can suppress the prediction error by including the isotonicity
requirement.

To compare the models, we use learn and test, resampling,
bootstrapping and confidence intervals as our statistical vali-
dation and evaluation methods. We first applied learn and test
procedure. Assume that the goal is to model the readings of a
response sensor from the readings of an explanatory sensor

, using data tuples , . We split the
data tuples into two disjoint sets: the learning set that con-

tains tuples and a test set with
tuples. Each model is built using the learning set. After that,
the test set is used to evaluate the accuracy of modeling. For
each value in the test set, the model returns a predicted value

. The residual for each prediction value is defined as
. Thus, from each model we obtain a vector of resid-

uals . We can now compute summary statis-
tics on the residuals vector for each model as an illustration of
the prediction error of the model. Multiple error norms were
used for obtaining the summary statistics of residuals and rela-
tive residuals. The relative residuals indicate the prediction error
in terms of the ratio of the absolute residual to the absolute
response. The error norm for relative residuals is defined
as: , for and

.
We have experimented with a wide variety of error measures,

including and norms of both residuals and relative resid-
uals. The resulting prediction errors comparisons were very sim-
ilar across the different error measures. Due to similarity be-
tween different measures, the results shown in this section are
limited to average error of the relative residuals. The learn
and test results are shown for a case when we use the first day as
the learn data and then we examine the prediction quality on the
data from the second day (test set). The frequency of predic-
tion errors over all possible node pairs in the lab are shown in
Fig. 12 for all three methods: OLS, LOESS, and CIR. It is easy
to see small errors are much more likely for CIR than for the
two other methods and that OLS has a significantly heavier tail
for large errors. Analysis indicates that for both temperature and
humidity sensors the nonparametric LOESS modeling achieves
on average a factor of 2 lower error when compared to OLS
modeling. In our experiments, we used the
for the LOESS modeling method.

Isotonic modeling method achieves on average more than 4
times reduction in prediction error when compared to the LOESS
modeling approach. For example, the frequency of the internode
models with the relative error rate of less than 1% increases by
a factor of more than 6 for isotonic fits, when compared to the
LOESS models. The higher frequency is important for devel-
oping effective sleeping strategy, since the key issue is not the
overall prediction quality in the network, but larger number of
node pairs where one node is a good predictor of another.

One can also interpret the prediction error results in terms of
absolute temperature and humidity values. During the test phase
(i.e., the second day of the experiment), the average tempera-
ture in the lab was 18.76 C and the average humidity in the lab
was 42.17%. A temperature model with relative error measure
of 0.5% can predict the unknown value of the response sensor

Fig. 12. Frequency for prediction error for three different prediction models
on all node pairs in the network for temperature and humidity sensors: ordinary
least squares linear regression, LOESS nonparametric model, and CIR isotonic
regression. (a) Temperature. (b) Humidity.

Fig. 13. The map of the sensor deployment area at Intel Berkeley Lab. The
sensors nodes are shown by hexagons on the map.

with an absolute error (residual) of less than 0.1 C. Similarly, a
humidity model with relative error measure of 0.5% can predict
the unknown value of the response sensor with an absolute error
(residual) of less than 0.2% in humidity reading.

In addition to comparing the prediction error of different
models, we use other standard statistical validation techniques
to assess the quality of the models. We apply resampling and
bootstrapping to find the distribution and confidence intervals
for the prediction errors. Specifically, we uniformly randomly
select 65% of the original two-days data and use this data as a
learning set to build a model. Next, we use the rest of the data
as a test set and find the prediction error on test data.

We perform bootstrapping on the prediction error by repeated
sampling from the original data set and estimating the sampling
distribution of the prediction error. The CI% confidence interval
of the modeling method is directly found from the distribution.
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Fig. 14. The sampling distribution of temperature prediction error for pre-
dicting temperature sensor � from the readings at temperature sensor � : OLS
model (left), LOESS model (middle), and isotonic model (right).

Bootstrapping results are shown in Fig. 14, where the resam-
pling was repeated 100 times. We show the sampling distri-
bution of temperature prediction error for predicting sensor
from the readings at sensor . We present the results for the
OLS model, LOESS model and the CIR model. The confidence
interval of the prediction errors are readily deduced from sam-
pling distribution. For example, we can see that the 95% confi-
dence interval for prediction error is in range [0.0369, 0.0397]
for OLS model, in range [0.0138, 0.0153] for LOESS model,
and in range [0.0039, 0.0045] for CIR model. The significantly
smaller range for CIR (0.0006) than for LOESS (0.0017) and
OLS (0.0038) indicates that CIR does not only produces smaller
errors, but also is a more consistent method.

1) Alphabet Size Reduction: Since the complexity of the al-
gorithm depends heavily on the alphabet size , it is important
to see how further quantization of values can affect the perfor-
mance of CIR.

In our experiments, we varied the number of quanta and cal-
culated the CIR error based on the resulting alphabet set. In
Fig. 15, the vertical and horizontal axes show the regression
error and alphabet size, respectively. They are normalized to the
case where there is no reduction in alphabet set size. Interest-
ingly, the reduction in alphabet size for the sensor data not only
does not have an adverse effect but also improves the regression
error in our application. In and cases the regression error
is the smallest for alphabet sizes equal to 25% and 17% of the
original alphabet size. Further size reduction leads to a faster
runtime but decreases the accuracy of the model.

Fig. 17 illustrates CIR, convex CIR and limited level set CIR
models for two different number of breakpoints. By looking
closely at the regression models, deviations from the expected
shape constraints may be found. For example, in the convex CIR
model, we can find small segments where the model loses its
convexity. This is due to the error introduced at the quantiza-
tion step. Note that the isotonic model only guarantees that if

Fig. 15. The effect of alphabet size reduction on regression error and the accu-
racy of CIR model.

Fig. 16. AIC (y axis) for different number of breakpoints (x axis) in the model.
The boxplots show the model between each node and its best predictor. (a) Tem-
perature. (b) Humidity.

, then . However there might be instances
where while the actual values quantized into and

may not be equal. The coarser the quantization, the larger
deviations from the expected shape and thus larger regression
error will occur. Fig. 18 shows sensor node 10 predicting node
11 based on isotonic (dotted line), convex isotonic (dashed line),
limited level set isotonic (dot-dashed line) models.

B. Limited Level Set CIR

We varied the number of level sets for a pair of nodes
and compared the resulting regression error to that of the
unlimited CIR. Table I shows the relative error value, i.e.,

, for five different number
of breakpoints. In the unlimited case, the CIR model has 24
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Fig. 17. Four different isotonic regression models for temperature readings;
sensor-10 predicting sensor-11 values: original CIR model with 24 breakpoints
(top left); convex CIR (bottom left); limited level set CIR with 5 and 3 break-
points and a local slope of 5 (top and bottom right, respectively); level changes
are indicated by circles.

Fig. 18. Sensor node 10 and 11 measured temperature over time (solid lines).
Sensor node 10 predicting node 11 based on isotonic (dotted line), convex iso-
tonic (dashed line), limited level set isotonic (dot-dashed line) models.

TABLE I
THE REGRESSION ERROR FOR DIFFERENT NUMBER OF LEVEL SETS

NORMALIZED TO THAT OF PLAIN CIR

breakpoints. Note that reducing the number of breakpoints
to 7 only increases the regression error by 3% while we save
2 17 parameters (since each level set is defined at least by
two parameters; one for slope and another for intercept).

The goodness of fit of a model and comparison between dif-
ferent models on the same data set can be quantified through
the use of statistical information criteria, such as Akaike in-
formation criteria (AIC), Bayesian information criteria (BIC),
or deviance information criterion (DIC). We have used AIC
[39] as the goodness-of-fit measure of choice for our models.
AIC uses the logarithm of the model’s likelihood as the good-
ness-of-fit measure, while it also penalizes for the number of pa-
rameters in the model. The AIC is formally defined as,

, where is the number of parame-
ters in the model. Using the AIC criteria, we compare the orig-
inal isotonic model to models where we restrict the number of
breakpoints. The results are shown in Fig. 16(a) and (b), that

TABLE II
IMPROVEMENT IN REGRESSION ERROR USING HUBER ESTIMATOR

shows the AIC of the best predictor of each node for temperature
and humidity, respectively. Each boxplot presents the values
for a defined number of breakpoints in the model. The sensors
have around 1000 discrete values and the unrestricted isotonic
model has on average more than 300 breakpoints. The results
of these two plots shows that according to AIC criteria, limiting
the number of breakpoints to 10 for the case of temperature and
to 15 for the case of humidity produces the best models.

C. Robustness Evaluation

We now evaluate the robustness achieved by using robust
M-estimators. The robust algorithms are applied to the sensor
data after synthetically injecting outliers. The generated outliers
have a Gaussian amplitude distribution with a mean equal to
the original data sample value and variance ten times larger the
original data variance. They are uniformly spread over the mea-
surement data with different densities (i.e., number of outliers
per total number of data samples) for each experiment.

1) M-Estimators: We applied the Huber function with
. Table II shows the improvement achieved by using the Huber
function compared to and objective functions. After the

fits are determined based on the contaminated data samples, we
find the residuals by comparing the fit values to the clean data
sample to see the degrading effect of the outliers on the fit. The
improvement factor is obtained by dividing the absolute sum
of residuals when comparing and Huber and sum of square
of residuals when comparing and Huber. The numbers are
averaged over multiple runs. The factor indicates that the fit is
more resilient to outliers when the Huber estimator is used since
the deviation from the original data samples becomes smaller.

VII. CONCLUSION

We presented a general method for shape constrained regres-
sion that is based on mapping the problem to the combinato-
rial domain. We have illustrated the method by adding the iso-
tonicity shape constraint and used a dynamic programming to
address the problem. We showed how the presented combinato-
rial isotonic regression problem could be mapped to the graph
combinatoric domain. Based on the same concept, we build a
general framework that could be used to integrate other shape
constants, including convexity, unimodality, limited slope, and
limited level sets. The method is independent of the form of the
error norm used. We further used the versatility of the frame-
work to find the robust regression fit. The complexity of each
model was computed and compared to previous works. We pre-
sented performance results for each shape constraint on temper-
ature measurements from a deployed sensor network. Alphabet
size reduction was performed to lower the complexity and its
impact on the accuracy of the model was studied. The robust-
ness was evaluated on data samples contaminated with synthetic
outliers and a high degree of resilience was demonstrated.
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