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Abstract: We introduce a new methodology for determining the difficulty of 
selecting the modeling objective function and estimating the parameters for 
an ad-hoc network data set. The method utilizes formulation of the underlying 
optimization problem instance that consists of an objective function and a set 
of constraints. The method is illustrated on real distance measurement data 
used for estimating the locations of wireless nodes that is the most studied 
and a representative problem for ad-hoc networks estimation. The properties 
of the data set that could affect the quality of optimization are categorized. 
In large optimization problems with multiple properties (characteristics) that 
contribute to the solution quality, it is practically impossible to analytically 
study the effect of each property. A number of metrics for evaluating the ef- 
fectiveness of the optimization on each data set are proposed. Using the well 
known Plackett and Burmann fast simulation methodology, for each metric, 
the impact of the categorized properties of the data are determined for the 
specified optimization. A new approach for combining the impacts resulting 
from different properties on various metrics is described. We emphasize that 
the method is generic and has the potential to be more broadly applicable to 
other parameter estimation problems. 
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1. Introduction 

Wireless adhoc networks consist of multiple wireless nodes distributed in an imple- 
mentation area. To be power efficient, the wireless nodes only directly communicate 
with the nodes in their short local range (neighbor nodes). Communication between 
the non-neighbor nodes is enabled by successive usage of (one or more) local neigh- 
bors as forwarding relays. Several problems in this domain include modeling and 
estimation of data sets that only contain pairwise exchanged data between the 
neighboring nodes. 

Years of continuous research in building statistical models and parameter esti- 
mation has produced a multitude of readily available methods and tools that can be 
employed for the problems in ad-hoc networks [10]. One limitation of the available 
methods is that majority of the ad-hoc modeling and estimation problems concern 
a large body of data and do not conform with typical assumptions needed to an- 
alytically declare the known theoretical optimality criteria. In such scenarios, the 

quality of the modeling and estimation methods are typically evaluated by how they 
perform on sets of real or simulated data. For example, some statistics of the result- 
ing prediction error and/or a defined criterion (e.g., Bayesian information criterion 

(BIC)) is used for experimental evaluation of the method on the adhoc network 
measurements. A relevant question to answer is if indeed modeling and estimation 
of the pertinent data set requires introduction of a new model or an estimator, or 
the data could have been just as well addressed by the other known methods. 

Our objective is to quantify the difficulty of model selection and estimation for 
a given adhoc network data set. This would provide impetus for inventing newer 
modeling and estimation objectives and tools that can address the difficult-to- 
characterize data. Simultaneously, formation of new tools would depend upon find- 

ing truly challenging network data sets that need to be addressed, as opposed to 
building new models that have a limited practical usage. Devising sets of challenging 
data would also build a foundation for comparing the various modeling objective 
functions and estimators for the ad-hoc network data sets. The problem of finding 
challenging data is complicated by variations in properties of the underlying data 
sets collected by different sources. This includes difference in size, format, wireless 
ranges, hidden covariates, and the form of noise present in the collected data. Thus, 
it is not easy to find unique metrics that could be used for comparison of different 
modeling objective functions and estimation methods. 

In statistics literature, sensitivity of estimation error or other discrepancy metrics 
to the underlying noise in data has been widely studied for a number of modeling 
methods [3, 24]. Also, the consistency of estimators based on a number of strong 
assumptions on the distribution of the data has been pursued [14]. However, no 

generic method or tool for determining the difficulty in modeling a data set free of 

imposing strong assumptions - such as normality or other closed-form distributions 
of noise - is available for use in adhoc networks. Note that the runtime complexity 
of a problem is an orthogonal concept. The complexity measures the worst-case 
computational time for the algorithm used for addressing the problem. Analyzing 
the worst-case runtime complexity does not help in understanding the complexity 
of characterizing a specific data set. 

In adhoc network scenario, after the variable selection is done and the noise 
models are assumed, modeling is typically done by selecting a model form (e.g., 
nonlinear regression) and then estimating the model parameters on the data set. 
For analyzing the modeling objective function and estimation performance on the 
data, we study the pertinent optimization problem that consists of an objective 



Challenges of Model Objective Selection and Estimation 335 

function (OF) and a number of constraints. The data set is considered as the in- 

put to the optimization problem. We introduce a number of metrics that measure 
the complexity of the optimization problem based on the problem OF properties 
and constraints. The challenge in most optimization problems is the existence of 
nonlinearities that make the solution space coarse, causing bumpiness and multiple 
local minimums. We propose a number of measures for the smoothness of the OF 
and constraints space that estimate the feasibility of reaching the global minimum. 

To enable studying the effectiveness of the optimization on an adhoc network 
data set, one should characterize the properties of the pertinent data set. The 

properties are specific to each data set and the problem. In this article, we focus 
on the problem of finding the location of nodes (localization) in an adhoc wireless 
network by using erroneous mutual distance measurements between a number of 
node pairs. However, we emphasize that our method is generic and can be used 
for determining the challenge in addressing many adhoc data set model objective 
selection and estimation that includes forming an optimization problem. The lo- 
calization problem is selected for four reasons. First, it is a very well addressed 

problem in the literature and there are several methods that are developed for this 

problem [2, 6, 9, 19, 20, 26]. Second, there are a number of publicly available data 
sets for the measured distance data in the networks [5, 8, 21]. Third, the nonlinear 

relationship between noise in measurements data and the location of nodes makes 
the modeling problem extremely challenging. Fourth, localization problem is an 

NP-complete problem, i.e., in the worst case, there is no algorithm that can solve it 
in polynomial time [6, 25]. Lastly, location discovery is a precursor for a number of 
other problems in ad hoc networks including sleeping coordination [12, 13], sensor 

coverage [15], and sensing exposure [16]. 
We characterize a number of properties of the measurement data set that could 

affect the quality of location estimation. Studying the interaction between the iden- 
tified data properties and optimization metrics requires long simulations and analy- 
sis. We use the well-known Plackett and Burmann [23] simulation methodology to 

rapidly study the pairwise linear interactions of properties. A new approach for 

combining the impacts resulting from different properties of data on various opti- 
mization metrics is described. The sensitivity of optimization with respect to the 
various parameter ranks are presented. 

To the best of our knowledge, this is the first work that systematically studies 
the impact of the adhoc network data set on the optimization employed for finding 
the modeling objectives and estimations. Most of the previous work are devoted to 

modeling and analysis of the worst case complexity. The results of our analysis could 
be directly used for constructing benchmarks for the problem. The proposed work 
aims at creating a unified framework based on real data that can help evaluation 
and comparison of desperate efforts that address the same problem. 

The remainder of the paper is organized a follows. In the next section, location 
estimation problem and our notations are formally defined. In Section 3, we devise a 
number of metrics that are used for OF evaluation. The simulation methodology is 
described in Section 4. In Section 5, we illustrate how the results of different metrics 
can be combined. We have applied the derived method on the measurements from 
a real network in Section 6. We conclude in Section 7. 

2. Preliminaries 

In this section, we present the formal definition of the problem. We also describe 
the notations that are used throughout the paper. 
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Location estimation problem. Given a set of N nodes denoted by V = 
(vl, v2, 

..., 
VNg} 

in Rd (d = 2, 3). For a given subset of node pairs denoted by E c V x V, 
mutual distance of nodes are measured, i.e., for all (vi, vj) E E, l(vi, vj) = d(vi, vj)+ 
ei,j is known; d(vi, vj) is the Euclidean distance between the nodes vi and vj; Ei,j is 
the distance measurement error. This error is only known if the real and measured 
location are both available. Moreover, there is a subset with M(> 2) nodes denoted 

by VB = {v1, ... VM}, VB C V such that the nodes in VB have their exact location 
information (coordinates). The nodes in the set VB are called the beacon nodes. 

Question. find the location of all possible nodes. 

In this paper, we focus on two-dimensional networks. Extension to three- 
dimensional networks is straight forward. Coordinates of the node vi are denoted 

by (xi, yi). 
The location estimation problem can be formulated as an optimization problem. 

The goal is to find the coordinates of K = N - M non-beacon nodes such that the 

discrepancy (error) between the measured distance data and the nodes' distances 
estimated from the final coordinates is minimized. In other words, 

(1) FL(XM+1,YM+1,7xM+2, YM+2,*...XN, YN) 
= 

L(evi,,j), 
(vi,v3)EE 

e , j=l(vi,7vj) - Xj)2 a (y- 2 

Where L : R -* R+ is a function that is typically a metric (measure) of error. 
FL : R2K -* R+ is known as objective function (OF) of the optimization problem. 

Note that the OF of the location estimation problem is not necessarily a linear 
or convex function. There are a number of fast and efficient tools that are developed 
for linear and convex programming. However, there is no oracle algorithm that can 
solve all optimization problems. To find the minimum of a nonlinear problem like 
location estimation, there are a number of heuristic methods that may be employed. 
The nonlinear system solvers have a tendency to get trapped in a local minimum 
and do not necessarily lead to the global minimum. Although there are a variety 
of minimization algorithms, most of them are common in one subcomponent that 
starts from an initial point and follow the steepest decent to reach the minimum. 
The algorithms differ in how they choose the starting point, how they select the 
direction in the search space, and how they avoid local (non-global) minima. Thus, 
the shape of the OF around the global minimum is an important factor in finding 
the solution. 

Data set. The measurement data used in this problem consists of measured dis- 
tances between a number of static nodes in the plane. Measurements are noisy; 
there are multiple measurements for each distance. The true location of the nodes 
is known and will be known as the ground truth. As explained in Section 1, we 

sample the data set to obtain instances with specific properties. 

Parameters. We will define a number of parameters that can be extracted from 
the data set. The sensitivity of the location estimation to the variations in each 

parameter will be studied. The analysis results will be used for identifying the hard 
instances of measurement data. Ten parameters are studied: 

* P1 - Number of nodes (N): the total number of nodes in the network. 
* P2 - Number of beacons (B): the number of beacon nodes with known loca- 

tions. 
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* P3 - Mean squared error (C2): mean squared error of distance measurements. 
* P4 - Maximum allowed squared error (MAXe,2): the maximum squared error 

that can possibly exist in distance measurements. 
* P5 - Percent of large errors (PER,2): percentage of squared distance mea- 

surement noises that are higher than a specific value co. 
* P6 - Mean degree (D): mean degree of the nodes in the network. Degree of a 

node vi is define as number of nodes that have their mutual distance to vi. 
* P7 - Minimum length (MINL): possible minimum length of the measured 

distances between nodes in the network. 
* Ps - Maximum length (MAXL): possible maximum length of the measured 

distances between nodes in the network. 
* P9 - Mean length (1): mean length of the measured distances between nodes 

in the network. 
* Pio - Minimum degree (MIND): possible minimum degree of the nodes in the 

network. 

To study the effect of the parameters, we construct a variety of network instances 
with different properties. The networks are constructed by selecting subsets of an 

implemented network. Having specific values for parameters, we use Integer Linear 

Programming (ILP) to extract each subset such that it meets specified conditions. 
To do so, we model parameter constraints as linear equalities and inequalities. 
Some parameters such as the mean squared error, e2, can be easily stated by linear 

equalities and inequalities. But some parameters such as the mean degree of the 

nodes, D, need a mapping to be stated in linear terms. The description of the exact 
procedure of modeling by linear constraints is beyond the scop of this paper [8]. 

3. Metrics 

In this section, we introduce metrics for error and OF that are used for evaluating 
the importance of different parameters for location estimation. Three error metrics 
and four OF metrics are presented. Thus, a total of twelve combined metrics are 
used to evaluate the importance of parameters. 

3.1. Error Metrics 

The three error metrics studied in this paper are: L1, L2, and the maximum like- 
lihood (ML). L1 and L2 are the common error norms in the Lp family defined 
as: 

1/p 

Lp(ev,vm c E) = 
levnvm Ip if 1 < p < oo. 

(Vnvm)EE 

To find the error metric corresponding to ML, we need to model the noise in dis- 
tance measurements. To model the noise, the probability density function (PDF) of 
errors, fir, for the distance measurements should be approximated. Different meth- 
ods are developed to approximate PDF of noise, 

fm 
[8]. We have used kernel fitting 

that is a simple and known PDF approximation method [10]. To have the maximum 
likelihood estimation for the nodes' locations, we find the nodes' coordinates such 
that they maximize 

(2) 
fm(evnvm) 

= 
exp{ Iln(fm(evnv,,)) 

(vn,vm)EE (n,m ,)EE 
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or equivalently minimize 

(3) - 
ln(fm(ev.,vm)). 

(vnm ,v,)EE 

Note that we assume noise in distance measurements are independently identically 
distributed. Using the same notations as the equation (1) and equation (3), for the 
ML estimation we consider the following error metric: 

(4) LML (evn,vm) = - In(fm(evn,v.)). 

3.2. Objective Function (OF) Metrics 

We describe metrics that are used for evaluating OFs. The metrics are introduced 
based on the properties of OF that are effective in optimization. These metrics are 
such that they assign larger values to the more difficult-to-optimize OFs. For exam- 
ple, if one selects a convex OF, it may be possible to utilize convex programming 
depending on the form of the constraints. In defining the OF metrics, we assume 
that there is a fixed instance of location estimation data. Thus, for a fixed error 
metric, the OF would be fixed. Metrics of OF are denoted by M : C -* R+ where 
C is the functional space that contains all OFs. 

3.2.1. Drifting of Objective Function (OF) 

Since there is noise in distance measurements, true location of the nodes is often not 
the global minimum of the OF. Location of the OF's global minimum is a measure 
of the goodness of the OF. Figure 1 illustrates the effect of noise on the OF. For the 
sake of presentation simplicity, an one-dimensional OF is shown. In this figure, Pc 

a, 

C 
0 
0t 

U, 

.0 
0e 

P1l Pml Pc Pgm Pm2 P12 

FIG 1. Metrics and objective function (OF). 



Challenges of Model Objective Selection and Estimation 339 

is the correct nodes' location. However, the global minimum of the OF is displaced 
at Pgm because of the noise. We consider the distance between Pc and its displaced 
location Pgm as an OF metric and denote it by drifting. 

To find the drifting distance, we start from the true locations as the initial point. 
Next, the steepest descent direction of the OF is followed until a local minimum is 
reached. The Euclidean distance between the true locations and this local minimum 
quantifies the drifting metric (denoted by Mi) for the pertinent OF. 

3.2.2. Nearest Local Minimum 

Having a number of local minimums around the global minimum in an OF may 
cause the optimization algorithm to get trapped in one of the non-global local 
minimums. It is challenging to minimize such an OF since the global minimum 
is hard to reach. Figure 1 illustrates the phenomena. The OF has multiple local 
minima at points Pml, Pml and so on. The steepest decent method leads to the 
global minimum if and only if we start from a point between Pml and Pm2. Hence, 
having a small distance between Pml and Pm2 would complicate the selection of the 
initial starting point. 

We introduce a method to measure the distance of the true locations from the 
local minimums around the global minimum. Because of curse of dimensionality, 
it is not possible to find all the local minimums around the global minimum. We 
randomly sample the OF in multiple directions. The nearest local minimum is 
computed for each randomly selected direction. We statistically find the distance 
to the nearest local minimum by using multiple samples. 

Assume F : R2K - R+ is the OF. A random direction in R2K is a vector in this 
space. Let us denote it by v E R2K. First, we define a new function h : IR+ R+ 
such that h(t) = F(p, + tv) where Pc is a vector containing the true locations of 
nodes. Second, we find the local minimum of h with the smallest positive t and 
denote it by t1. We repeat this procedure for T times and find all ti's. T is the 
number of samples. Finally, since it is expected that the defined metric has a larger 
value for more difficult-to-optimize OF, we define the nearest local minimum metric 
to be 

(5) M2(F) - 1i= 1 

3.2.3. Measuring the Slope of OF Around the Solution 

The Slope of OF (i.e., the norm of OF's gradient) around the global minimum is 
a very important parameter in the convergence rate of the optimization algorithm. 
OFs with a small slope around the true location converge to the global minimum 
very slowly. 

Thus, measuring the slope of the OF around the global minimum can be used 
to quantify the goodness of OF. Again, we measure slope of the OF in multiple 
random directions around the true locations, and statistically compute this metric. 
OFs with sharp slopes around the global minimum are easier to optimize. This can 
be seen in Figure 2 where the right side of the global minimum, Pg,, has a sharp 
slope. If the initial point of steepest descent algorithm is between Pgm and Pm2, 
it converges to the global minimum very fast. However, on the left side of global 
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minimum, Pgm, there is a gradual slope. Thus, the steepest descent algorithm would 
converge very slowly on the left side. We define the true locations' slope metric as 

(6) M3(F) = slope in i-th random direction 
i ----1 

Note that the slope of the i-th random direction, vi, is measured at Pgm + Uvi 
where a is a small number and is a user's defined criterion. 

3.2.4. Depth of the Non-Global Local Minima 

Optimization problems that have an OF with deep local minimums around the 
global minimum are difficult to solve. A number of heuristic optimization methods 
take advantage of the shallow local minimums to avoid non-global local minimums, 
e.g., simulated annealing [11]. In Figure 2, avoiding the local minimum at plI is 
much easier than local minimum at P12. 

We define the forth metric for quantifying the goodness of an OF on the data, as 
the depth of the non-global local minimums. We randomly select T local minimums 
around the true locations. Assuming that mi is the OF value at the randomly 
selected local minimums, define 

(7) M4(F) = -- 
1 

mi 
T 

= 

- 

4. Simulation Methodology 

We find the linear effect of each parameter by studying all combinations of para- 
meters. Assume each parameter has just two values. If we have k parameters then 
we have to study 2k combinations that is computationally intractable. Instead, we 
use Plackett and Burman (PB) [23] fast simulation methodology that is a very well 
known method for reducing the number of simulations. Number of simulation in 
PB is proportional to the number of parameters. Although the PB method has not 
been used for the adhoc modeling and estimation problems, it was used for the 
simulations speedup in a number of other adhoc network problems [1, 22, 27, 28]. 

In PB design, two values are assigned to each parameter: a normal value and 
an extreme value. The normal value is the typical value of the parameter while the 
extreme value is the value that is outside the typical range of the parameter. The 
extreme value often makes the problem either harder or easier to solve. A number 
of experiments with normal and extreme values of parameters are conducted. 

Experiments are arranged based on a given matrix denoted by the design matrix. 
Design matrix has k columns (k is the number of parameters) and s rows where s 
is the number of experiments the should be set up as follows. The elements of the 
design matrix are either 0 or 1. We set up an experiment for each row. Values of the 
parameters depend on the elements on the row: 0 indicates that the normal value 
of the parameter is used and 1 indicates that the extreme value of the parameter 
is used in the experiment corresponding to the row. 

Assume that we have selected an error metric, Li, and an objective function 
metric, Mj. The OF itself denoted by FL, would be fixed. For each row of the 
design matrix, h, we setup an experiment based on the elements of that row and 
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measure the goodness of the objective function Mj (FL() and save it in another array 
element denoted by ri,j,h. The corresponding values are summed up for computing 
the importance factor (IF) of each parameter. For each parameter Pt, we define 

8 

(8) IFt,i,j = 
hr,,h h=1 

where s is the number of experiments (number of rows in the design matrix), and 

ah,t is 1 if the extreme value of the parameter Pt is used in the h-th experiment; 
otherwise, ah,t is -1. The absolute value of IF is used to evaluate the effect of each 

parameter. The largest value indicates the most important parameter. For i-th error 
metric and j-th OF metric, IFt,i,j > IFu,i,j means that the parameter Pt is more 

important than P,. Thus, for each error metric, Li, and for each objective function 

metric, Mj, we can rank parameters based on their effect on the estimated location. 
This ranking is denoted by Ri,j. 

More precise results can be obtained by using the foldover design matrix [18]. In 
the foldover design matrix, all rows of the single design are repeated after its last 
row but Os and is are exchanged in the repeated rows. 

5. Combining Different Ranks 

In this section, we explain how to combine the rankings of the parameters under 

study to obtain a global order for them. Using the ranking method in the previous 
section, we would have different rankings for various error metrics and OF metrics. 
Since there are three error metrics and four objective function metrics, there would 
be twelve different ranking lists for the importance of parameters; each parameter 
may have a different rank in each ranking list. 

Each rank is obtained based on a specific property of the optimization problem. 
As it is explained in Section 3, for each error and objective function metric, the 

parameters are ranked based on the importance factor obtained from PB-design. 
IFs with large discrepancies lead to a stronger ranking compared to IFs with small 

discrepancies. Simply summing up the rankings would not necessarily determine 
which of the importance factors were better differentiating among the parameters. 

For each ranking, Ri,j, and for each pair of parameters, Ps, Pt, we find the 

probability that P, is more important than Pt. Based on the probabilities, we 
construct the global ranking. 

Consider a specific error metric, Li, and a specific objective function metric, 
Mj. Assume that the importance factor of the parameter Pt, IFt,i,j, is normally 
distributed Af(At,i,, Ia2). The observed value of IFt,i,j in a specific experiment is 
denoted by ift,i,j. We normalize the importance factors to have a maximum value 
W. The mean of IFs are assumed to be uniformly distributed in [0, W]. 

For each two parameters, Ps and Pt, given the BP-design experiment impor- 
tance values ifs,i,j, and ift,ij, we find the probability: Pr(A,,i, j ti Fs,i,j = 

ifs,i,j, IFt,i,j = ift,i,j). The conditional probability can be written in the Bayesian 
format as 

s,t,i,j = Pr(As,i,j XAt,i,j IFs,i,j = i fs,i,j, IFt,i,j = i ft,i,j) 

Pr(IFs,i,j = ifs,,, ,IFt,i,j = ift,i,j As,ij 2 At,i,j)Pr(As,i,ij At,i,j) 
Pr(IFs,i,j = i fs,,j, IFt,i,j = ift,i,j) 
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Since there is no prior information about the distributions of A,,i,j and At,i,j, we 
assume that Pr(A,i,, 2 At,i,j) = 1. Furthermore, 

Pr(IF,,i,j - if,,i,j, IFti, = - vt,i,j I ,i, j At,i,j) 

Pr(F,i,j = 
ifs,i,j IFi, 

= 
iftijAsij =, A,i,j z dy dx 

zr =0 = fl =W W 

1 W W 1 
(y-i ,)2 

1 (x-ift . 2 

(10) = 
W2 = 2 

e 2a2 

v22 
2edy dx. W2= z=0Vy 

Similarly, one can find 

Pr(IF8,i,j = i f,i,j),IFt,i,j = ift,i,j) 
= 

Pr(IFs,<,<= 
ifs,i,IIFt,i,3 = ifti, jASi Atl,)Pr(A8,i, At,i,,) 

+ Pr(IF9,i,j = ifsi,,I7 = I=As,i,j < At,i,j)Pr(A8,< < 

Now, for each parameter, Pt, we define the global importance factor, ift, 

Nem Nom Np 

(11) ift = 
E E E st 
i=1 j=l s=l,s#t 

Parameters with a larger ift have a higher probability of being important com- 
pared to the other parameters. We sort the parameters based on their corresponding 
ift values. 

6. Evaluation Results 

We have applied the developed method to real distance measurement data for lo- 
cation estimation problem. Parameters that were described in Section 2 are ranked 
using our methodology. We illustrate how the various ranking lists differ. Then, we 
combine the rankings to obtain a global ranking. 

The distance measurements data from the CENS lab [4] is used to evaluate the 
effect of each parameter. This database is based on the real distance measurements 
for SH4 nodes [8]. 91 nodes are located in fixed locations. Distance measurement 
is done multiple times and in different days. The distance measurements are based 
on the time of flight (ToF) [17] of the signals. In this method, the time of flight 
of an acoustic signal is used to determine the distance between two nodes. It was 
previously shown that the noise in the measurements is strongly non-static [7]. 
Therefore, parametric methods based on optimizing the results according to a fixed 
noise distribution do not yield good location estimations. 

We have used Integer Linear Programming (ILP) to sample the database for 
drawing instances with specific properties. In each experiment, the PB-design ma- 
trix implies a specific value for each parameter. Extreme and normal values for 
parameters are shown in Table 1. The values are determined based on the real 
measurements' error. In all experiments, c2 is equal to 20 (m2). 

The following abbreviations are used in this section. 

* ML: Maximum Likelihood 
* DOF: Drifting of the Objective Function (M1) 
* NLM: Nearest Local Minimum (M2) 
* SMAS: Slope Measurement Around the Solution (M3) 
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TABLE 1 
Normal and extreme values for the parameters 

Parameter Ns Bs 2 MAX2 PERe2 Ds MINLs MAXLs ls MINDS 

Normal 55 12 10 (mi) 200 (m2) 50 10 5 (m) 40 (m) 20 (m) 4 
Value 
Extreme 80 3 50 (m2) 500 (m2) 20 6 10 (m) 60 (m) 30 (m) 3 
Value 

* DNGLM: Depth of Non-Global Local Minimum (M4) 

Table 2 shows the result of PB-based evaluations. Each parameter is ranked based 
on the specific error metric and the specific OF metric. It can be seen that a specific 
parameter has different rankings under various error metrics and OF metrics. For 

example, the total number of nodes, Ns, is ranked 1, 2, 3, 4, 5, and 6 in different 
cases. Thus, a specific parameter does not have the same importance under various 
metrics. It can be seen that the number of nodes, Ns, and the number of beacons, 
Bs, are the two important parameters in most evaluations; PER,2 and MAXLs 
have overall low rankings. 

The comparative ranks of parameter pairs tend to vary as well. Figure 2 shows 
the normalized importance factor (IF) for two cases: DOF and SMAS with L2 error 
metric. For DOF, the number of beacons Bs is strongly more important than the 
mean squared error c2. The mean degree of nodes, Ds, is weakly more important 
than the mean squared error c2. The same behavior can be seen in SMAS. From 
our visual inspections, the number of nodes Ns and the mean degree of nodes Ds 
are the most important while others almost have the same importance factor (IF). 
The ranks of the mean squared error e and maximum edge length MAXLs are 3 
and 10 respectively. However, their importance factors are very close. 

The discrepancy in the rank and comparative ranks confirms our postulation 
that averaging the parameter ranks is not the best way for combining them. Thus, 
we use the combining method that was introduced in Section 5. The probability 
comparisons for the values in Figure 2 are shown in Tables 3 and 4. The tables 

compare the importance of parameters. For example, for the DOF-L2, Figure 2 
states that Bs is strongly more important than PER,2. Table 3 shows that the 

probability that the mean of Bs is larger than the mean of PERE2 is 0.984. Similarly, 
MAX.2 and PER.2 have approximately the same importance. The probability that 
the mean of MAX.2 is larger than the mean of PER,2 is 0.49. This probability 
value is close to 0.5, meaning that there is not enough information to compare the 

TABLE 2 
Importance of different parameters for different objective functions and metrics 

Parameter DOF NLM SMAS DNGLM 

L1 L2 ML L1 L2 ML L1 L2 ML L1 L2 ML 

Ns 4 4 2 6 5 6 2 2 2 3 2 1 

Bs 2 1 1 4 2 3 4 9 4 1 4 3 

1 2 3 2 3 4 3 3 3 5 9 6 
MAXf2 6 8 7 9 10 10 6 4 5 7 7 8 
PER 2 7 9 10 10 8 5 7 8 7 9 10 9 

Ds 3 3 4 1 1 1 1 1 1 2 1 2 
MINLs 8 6 8 7 6 9 8 5 10 4 3 10 

MAXLs 10 10 9 5 9 8 10 10 8 10 5 4 

is 9 5 5 8 7 7 9 7 9 6 6 5 
MINDs 5 7 6 3 4 2 5 6 6 8 8 7 
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FIG 2. Importance of different parameters for different objective functions and metrics. 

values. 
Table 4 compares the importance factors of SMAS for the L2 error metric. Table 

4 confirms the result. The rows corresponding to Ns, and Ds have values close to 
1 confirming the high importance of the two parameters. When comparing other 
parameters, the probability that one parameter is greater than the other is about 
0.5. It confirms our previous postulation that simple rankings are not sufficient for 
concluding the global parameter ordering and the importance factors are significant 
as well. 

The global ranking based on the introduced combining method in Section 5 is 
shown in Table 5. The table indicates that the mean degree of nodes Ds is the most 
important parameter. This result is consistent with Table 2 where the mean degree 
of nodes Ds is the most important parameter in the seven scenarios. 

The global ranking results could be used to improve the goodness of location 
estimations in ad-hoc networks. To deploy a network or on an already deployed 
network, one could exploit the results by considering the analyzed effect of each 
parameter on the estimated location's accuracy. Based on the constraints of the 
problem, the best parameters for improving the estimated locations could be deter- 
mined. For example, when there are limitations for the mean degree of the graph, 
one can increase the number of nodes in the network to increase the accuracy of 
the estimated location. Note that, changing one parameter typically only improves 

TABLE 3 

Drifting of objective function and L2 metric: Pr(Ai,j,s Ai,j,t|Vi,j,s = vij,s, Vi,j,t 
= vi,j,t) 

where the first column is Ps and the first row is Pt. 

Parameter Ns Bs e7 MAX 2 PER 2 Ds MINLs MAXLs ls MINDs 
Ns 0 0.071 0.417 0.725 0.716 0.403 0.708 0.691 0.598 0.748 

BS 0.929 0 0.899 0.993 0.984 0.884 0.977 0.981 0.939 0.984 

2M 0.583 0.101 0 0.787 0.786 0.476 0.756 0.754 0.660 0.798 
MAX 2 0.275 0.007 0.213 0 0.490 0.193 0.464 0.477 0.354 0.515 

PERE2 0.284 0.016 0.214 0.510 0 0.202 0.469 0.499 0.357 0.528 

Ds 0.597 0.116 0.524 0.807 0.798 0 0.785 0.795 0.678 0.821 
MINLS 0.292 0.023 0.244 0.536 0.531 0.215 0 0.519 0.392 0.545 
MAXLs 0.309 0.019 0.246 0.523 0.501 0.205 0.481 0 0.371 0.537 

Is 0.402 0.061 0.340 0.646 0.643 0.322 0.608 0.629 0 0.671 
MINDs 0.252 0.016 0.202 0.485 0.472 0.179 0.455 0.463 0.329 0 
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TABLE 4 
SMAS and L2 metric: Pr(Ai,j,s8 Ai,j,tlV),j, = vi,j,,,Vi,j,t = vi,j,t) where the first column is 

P, and the first row is Pt 

Parameter Ns Bs C2 MAX 2 PER2 DS MINLS MAXLS ls MINDs 

Ns 0 0.947 0.947 0.936 0.944 0.285 0.939 0.931 0.937 0.958 
Bs 0.053 0 0.493 0.506 0.504 0.017 0.501 0.496 0.500 0.504 

62 0.053 0.507 0 0.509 0.505 0.018 0.504 0.516 0.507 0.511 
MAX,2 0.064 0.494 0.491 0 0.505 0.017 0.504 0.506 0.499 0.499 
PERE2 0.056 0.496 0.495 0.495 0 0.017 0.492 0.496 0.502 0.500 

0 

Ds 0.715 0.983 0.982 0.983 0.983 0 0.975 0.984 0.974 0.980 

MINLs 0.061 0.499 0.496 0.496 0.508 0.025 0 0.506 0.501 0.488 
MAXLS 0.069 0.504 0.484 0.494 0.504 0.016 0.494 0 0.502 0.494 
Is 0.063 0.500 0.493 0.501 0.498 0.026 0.499 0.498 0 0.505 
MINDS 0.042 0.496 0.489 0.501 0.500 0.020 0.512 0.506 0.495 0 

the accuracy up to a certain point; further changing the parameter would not yield 
an improvement in the estimation accuracy. 

7. Conclusion 

We introduce a systematic methodology for determining the challenge of modeling 
a pertinent adhoc network data set. The complex modeling problem is studied as 
an instance of a nonlinear optimization problem that consists of an objective func- 
tion (OF) and a set of constraints. The data set is the optimization input and the 
estimated model is the output. We characterize the input by a set of its charac- 
teristic parameters. We define four new metrics that can be used to evaluate the 
goodness of an input for being optimized by a specific OF. The introduced metrics 
are: (1) drifting of the OF, (2) distance to the nearest local minimum, (3) the slope 
of the OF around the solution, and (4) the depth of the non-global local minima. 
We employ Plackett and Burmann simulation methodology to systematically eval- 
uate the linear impact of various input parameters under each metric. Finally, we 
present a method for combining the effect of parameters under different metrics to 
determine the global impact of each parameter. We utilize the new methodology 
for estimating the locations of the nodes in an ad-hoc network where the distance 
measurement data is available. Three common forms of OF are considered: L1, L2 
and L,. Our evaluations show that the mean degree on the nodes and the number 
of nodes in the network are the two most important parameters for estimating the 
locations. 
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TABLE 5 
Global ranks 

Parameter Ns Bs ec MAXE2 PERE2 Ds MINLs MAXLS ls MINDS 
Rank 2 3 4 8 10 1 6 9 7 5 
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