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In this paper, we propose the first method for post-silicon customization of resource binding for
low power application specific integrated circuits (ASICs) design. We devise and implement a new
synthesis framework that generates a diverse set of resource binding candidates where any one of
the candidates could be selected post-silicon. Orthogonal arrays are used to construct multiple
candidates with diversified resource usage patterns. We tune the resource usage to match the
unique power characteristic of each IC by selecting the best binding candidate that minimizes the
pertinent chip’s power consumption. We show efficient methods for embedding multiple binding
candidates inside one design. Experimental evaluations on benchmark circuits demonstrate the
effectiveness and low overhead of the proposed methods. For example, our post-silicon tuning
achieves an average of 10% power savings on the benchmark circuits for variations present in 45nm
technology. The power savings of post-silicon binding customization are expected to increase with
scaling and miniaturization of CMOS feature sizes that inherently incur higher variations.

Categories and Subject Descriptors: B.1.4 [Logic Design]: Design Aids— Optimization, Automatic
synthesis; B.1.2 [Control Structures and Microprogramming]: Control Structure Perfor-
mance Analysis and Design Aids— Automatic synthesis

Additional Key Words and Phrases: High Level Synthesis, Low power, Post-Silicon Optimization,
Resource Binding Customization

1. INTRODUCTION

Continuous scaling of CMOS to nanometer sizes and imperfections of the mask and
process technologies in smaller scales have resulted in increased deviation of process
characteristics from their nominal values. The intra-chip and inter-chip variations
cause fluctuations in dynamic and static power consumption of ICs. The fluctu-
ations are in particular significant for the leakage power that was shown to have
an exponential dependence on some of the environmental and process parameters
[Srivastava et al. 2005]. Several possible optimization techniques for minimizing the
power consumption at all levels of design abstraction are available. Unfortunately,
one-size-fits-all solutions that are based on optimizing the power consumption for
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Fig. 1. The same benchmark with three candidates for task distribution.

nominal process values have a limited effectiveness in presence of variations across
the chips.

Adaptive post-silicon optimization has been shown to be effective by tuning the
design parameters to the specific characteristics of the ICs after fabrication. A
standing challenge is applying post-silicon tuning to power control at different levels
of abstraction since not all design parameters are adjustable at this stage. In
fact, there are rather a few design parameters that have been so far tuned for
low power post-silicon, including adaptive body biasing and standby input vector
control [Alkabani et al. 2008]. Wang et al. [Wang et al. 2008] proposed pre-
silicon module selection that is optimized to be variation-aware with post-silicon
tuning by adaptive body biasing. However, module selection is not adjustable post
fabrication. Presently available approaches for post-silicon power adjustment and
optimization are mostly done at the device, gate or logic level [Mani et al. 2006;
Kulkarni et al. 2006; Wang et al. 2008; Liu and Sapatnekar 2007].

Several studies have revealed the effectiveness of power optimization at a higher
level [Raghunathan et al. 1998]. In particular, a number of approaches for low
power design at the high-level synthesis stage have shown promising results. Early
research on high-level synthesis for low power concentrated on dynamic power op-
timization [Chandrakasan et al. 1992; Raghunathan et al. 1998]. Scaling of CMOS
to smaller sizes is increasing the significance of static leakage power compared to
dynamic power. As a result, the emphasis of power-efficient methods shifted to
leakage minimization in recent years [Khouri and Jha 2002]. We note that design
space exploration during synthesis is usually done by deterministic optimization.
For example, conventional schedules that are optimized and hardcoded in design are
different from (i) the instruction scheduling in heavily pipelined circuit where the
instruction priorities may change [Ndai et al. 2008], (ii) schedule selection in recon-
figurable environments, or (iii) the application-level scheduling of multiprocessors
performed in software [Wang et al. 2008].

In this paper, we introduce a high level synthesis methodology that generates
multiple resource binding candidates instead of one. Each candidate assigns dif-
ferent usage levels to functional units. For example, Figure 1 shows three binding
candidates for the same circuit where the functional units are being used at differ-
ent rates in each candidate (the usage level is illustrated by the degree of darkness
for each functional unit). The multiple candidates are efficiently embedded into
the controller with a low overhead. Using conventional testing methods, the total
chip power for binding candidates could be measured post fabrication. For each
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IC, we select the binding candidate that minimizes the pertinent chip’s power con-
sumption. The best candidate, in effect, is the one that uses the power-inefficient
functional units the least. Note that testing can be performed at runtime such that
the system automatically picks the version that prolongs the battery life.

Our new methodology can be used for a number of other objectives, including
balanced aging and defect tolerance. For instance, in case of failure or malfunction-
ing of a functional unit, the circuit can switch to an alternate candidate that does
not use the defective unit. This can be made feasible by introducing redundancies
in the functional units and using the multiple candidate binding method. The bind-
ing candidates must be designed such that one of the functional units is not used
in each candidate. As another example, in rapidly aging technologies, by switching
among the binding candidates one could provide equalized usage of all functional
units and thus, amortize the aging effects. Multiple binding candidate method is
a realization of N-variant design. The works in [Alkabani and Koushanfar 2008;
Alkabani et al. 2009] explore other applications of N-variant design in security and
temperature balancing. The contributions of this paper are as follows:

—Introduction of the first multiple candidate resource binding framework for ASICs
that allows post-silicon variation-aware selection of the best candidate;

—Efficient formation of a diverse set of resource binding possibilities using orthog-
onal arrays;

—Creation and evaluation of heuristic algorithms that create multiple diverse bind-
ing scenarios for a given set of scheduled operations and number of available
functional units;

—Low overhead embedding of multiple binding candidates into the controller;

—Introducing new methods for low overhead post-silicon power measurement for
cases where the number of candidates is much larger than the number of resources;

—Studies and evaluations of the impact of number of post-silicon candidates and
power savings of the resulting variation aware optimization compared to the best
available low-power pre-silicon binding methods.

The remainder of the paper is organized as follows. Section 2 provides the pre-
liminaries and background. Section 3 presents the new synthesis framework and the
flow of our approach. Section 4 explains the significance and relevance of process
variation and task level assignment. Section 5 introduces the design of multiple
binding candidates to achieve diverse usage profiles across different versions. In
Sections 6 and 7, we present generation of multiple candidates and efficient inte-
gration into the controller state machine respectively. Post-silicon selection of the
best candidate is introduced in Section 8. The evaluation results are presented in
Section 9. Finally, Section 10 concludes the paper.

2. BACKGROUND AND RELATED WORK

High Level Synthesis. When designing complex circuits, it is no longer practical
to start designing from low-level hardware primitives. Designers need high level
tools to provide algorithmic and behavioral description of their designs. Given the
high level description, the tools must automatically convert it to low level avail-
able hardware primitives with minimal input from the designer. Many high-level
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hardware description languages were introduced based on C/C++, Java, or func-
tional programming languages. Other examples of high-level hardware description
languages include SystemC, Bluespec, ImpulseC, and Handel-C.

In general, conversion of high level description to low level hardware primitives
involves (i) compilation and optimization, and (ii) scheduling, assignment, and
binding. Figure 2 shows the generic flow of the high-level synthesis process. First,
the design is described using a high-level language like C/C++. Then, the descrip-
tion is translated into a control dataflow graph (CDFG). The CDFG passes through
initial compiler optimizations to make it ready for hardware implementation. For
instance, loops in the description code are unrolled, and dead codes are eliminated.
Then, the CDFG along with designer’s constraints are used to perform scheduling,
allocation, and binding of the CDFG to generate the hardware. The hardware cir-
cuit is usually composed of a finite state machine (FSM) and a datapath described
in a hardware description language like VHDL or Verilog. In the following, we
briefly explain the CDFG, scheduling, allocation, and binding processes.

High—!e\{el \| Compiler CDFG .
)| Description Front-end Scheduling

Designer Allocation j/
—‘\ Design Binding

Constraints

FSMD

Fig. 2. Block diagram of a general flow for high level synthesis.

In particular a high level description code can be divided into basic code blocks
connected by control modules representing branching and looping. These basic
blocks can be represented as dataflow graphs (DFG). Figure 3(a) shows a sample
DFG. A DFG can be defined as an acyclic graph G4 = (Vy, E4), composed of nodes
denoted by V; and edges denoted by Eyz. Each node V; represents an operation.
Edges E,4 represent the data dependencies between the nodes. In particular, the
input edges represent operands to operations, and the output edges represent the
result. A cyclic DFG can be converted to an acyclic DFG by unfolding and unrolling
the cycles one or more times.

A CDFG shows how the DFGs are connected in code. Figure 3(b) shows a sample
CDFG. The CDFG is defined as a graph with DFG subgraphs. The control nodes
represent conditional switches. Based on the condition, data on the output of DFGy
is moved to one of the two blocks, DFG; and DFGs.

The scheduling involves analyzing the CDFG to decide in which clock cycle what
operations will be executed. The scheduler can minimize the total runtime with a
constraint on the number of resources or vise versa. Allocation involves selection
of different resources from a library provided by the designer to be used for the
hardware implementation. Different resources for the same operation may have a
different area, power consumption, or delay. Binding is the process of mapping
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Fig. 3. Example of (a) dataflow graph (DFG) and (b) control flow graph (CDFG).

different data and operations to the functional and memory units as well as speci-
fying the interconnect binding. The three design stages (i.e. scheduling, allocation,
and binding) can sometimes be combined or interleaved. The terms ‘resource’ and
‘functional unit’ is used interchangeable in the remainder of the paper.

Process variation. Process variation is the fluctuation in the device parameters
and characteristics caused by imperfections and uncertainties in the fabrication
process. The device variability is caused by multiple factors, primarily threshold
voltage variation, thin film thickness variation, line-edge roughness, and energy level
quantization [Orshansky et al. 2007]. The total process variation can be viewed as
the sum of inter-die and intra-die variations. Inter-die variations refer to differences
among the dies and are constant within one die. Intra-die variations, on the other
hand, account for the differences among devices on the same die. The intra-die com-
ponent can be further divided into spatially correlated and uncorrelated random
components. The uncorrelated random variations are caused by the fundamental
intrinsic atomic-scale randomness of devices and materials, while systematic cor-
related components stem from unintentional shifts in processing conditions such
as mask errors, lithographic off-axis focusing and reticle stepper alignment errors
[Orshansky et al. 2007].

Thus, the process variation can be represented by Equation 1, where ®,,,,, is
the nominal parameter value, A®;,+e,, is the inter-die variation component, and
A patial(Ti, y;) and AP, gndom (7) are the spatially correlated (systematic) and ran-
dom components of intra-die variation for device i respectively [Srivastava et al.
2005; Koushanfar et al. 2008; Shamsi et al. 2008]:

P = (I)nom + Aq)inter + A(I)spatial (SCZ', yz) + Aq)random (Z) (1)

Differences in process parameters lead to variations in circuit level electrical prop-
erties, such as timing and power. Fluctuations in power consumption can be de-
composed into variations in static leakage power and dynamic power. Variations
of leakage, in particular, is reportedly much higher than dynamic power due to
the exponential dependance of gate leakage current on process parameters (such
as length, L, threshold voltage, Vg, and gate oxide thickness, Tox). Assuming a
Gaussian distribution for process parameters, leakage variation follows a lognormal
distribution. Dynamic power, on the other hand, is a function of node switching ac-
tivities and associated node capacitances. Since gate capacitances linearly depend
on device dimensions (L,W) that are typically assumed to be Gaussian, dynamic
power exhibits a Gaussian distribution.
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System-level power reduction techniques. For saving the dynamic power,
two methods are typically used: Dynamic power management (DPM) and dynamic
voltage scaling (DVS). DPM works by shutting-off the system components that
are not in use. DVS runs different computations at different clock frequencies and
voltages to fill-in the idle time slots in the schedule. Another approach for static
power reduction is called input vector control [Abdollahi et al. 2004; Alkabani et al.
2008]. In this method, the input vector to a functional unit is fixed to a pre-defined
value when the functional unit goes idle. The input vector is chosen such that it
minimizes the leakage current of the corresponding unit. The proposed method in
[Abdollahi et al. 2004] uses the built-in scan-chains in a VLSI circuit to drive the
chip with the minimum leakage vector when it enters the sleep mode.

In our approach, DPM is used for saving the dynamic power during the schedule
steps when a functional unit is not used. DVS is orthogonal to our approach and can
be implemented in conjunction with our method but we did not employ it in this
paper. For saving the static power, in addition to DVS, input vector control (IVC)
can be used. We utilize the approach suggested in [Abdollahi et al. 2004; Alkabani
et al. 2008] for applying the minimum leakage inputs to a sequential circuit.

3. FLOW

Figure 4 presents the flow of our approach. Our new methodology for generation
of several binding candidates is integrated within the design flow. Assuming the
input is in form of a CDFG, the method schedules the operations with a minimum
number of resources to achieve a fixed pre-specified timing constraint.

Our new multi-candidate resource binding method creates a number of diverse
binding choices (candidates) and simultaneously embeds the candidates into the
controller with a very low overhead. The remaining steps of the design flow after
binding are performed in the conventional way. The resulting GDS-II of the design
is sent to a fabrication house. The chips are noninvasively tested post-silicon and
the power profile of each chip is found for each binding candidate. Next, the
power profile of the chip is compared against the available candidates and the
best candidate for minimizing the chip’s power profile based on its characterized
properties is selected. To save test time and effort, we present a learning approach
that alleviates the need for power measurement of each candidate if the number
of candidates is much larger than the number of resources. Lastly, post-silicon
selection could be stored on a small nonvolatile memory on the chip. Alternatively,
burn-in fuses could be used for one-time programming of binding selection.

4. PROCESS VARIATION AND USAGE LEVEL ASSIGNMENT

A circuit typically consists of functional units and controller that schedules the
operations. Each functional unit consumes both dynamic and static power. The
dynamic power consumption of a functional unit is a linear function of its usage
rate. A static current flows through the functional unit as long as it is on. By
using DPM techniques, such as input vector control or power gating, a functional
unit can enter leakage power saving mode when not actively used. In this case,
leakage would also be linearly dependent on the usage rate. Therefore, the total
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Fig. 4. The flow of the proposed approach.

power consumption of each functional unit can be formally expressed as:

Pl =1 —a)xBx Pl +ax(Ply+ Pd]c;n)’ (2)

where Pt);?al is the total power consumption of a given functional unit; Pl);Zk and

Pf;n are the leakage and dynamic power of the functional unit while fully utilized;
« is the usage rate of the functional unit and it is a number between 0 (never being
used) and 1 (always being used); § in Equation 2, represents the leakage saving
factor when the units are idle; § is a number between 0 and 1, where 0 corresponds
to the case where units are completely shut down when being idle and 1 implies
there is no leakage saving mechanism. The total chip power consumption can then
be written as
Nru

Ptotal = Pcnt + Z Pt{;:al(i)a (3)
1=1

where Npy is the number of functional units (i.e. ALUs, multipliers, dividers,...),
and P,.,; is the controller’s average power consumption. In presence of manufac-
turing process variations, power consumption of functional units deviate from the
nominal values. Therefore, it is desirable to assign less tasks to a unit that has a
higher power consumption. Since, power usage is not known prior to fabrication,
our proposed method creates a set of multiple binding candidates that have a di-
versely different usage profiles and chooses the one that achieves the lowest overall
power consumption. The selection phase requires testing a set of candidates and
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Fig. 5. An example of a 2-level orthogonal array with 7 factors and strength 2

choosing the best one based on the collected data. In the next section, we explain
how to make a group of binding candidates, each imposing a distinct usage level on
each functional unit.

5. DESIGN OF BINDING CANDIDATES

We now discuss how to design a diverse set of resource binding candidates to en-
able post-silicon tuning of usage levels that match the specific underlying power
variations of each functional unit. Individual adjustment of resource usage levels
is not feasible, because of the following challenges. First, increasing the number
of binding candidates would increase the overhead and the complexity of the ap-
proach, eventually defeating the savings of post-silicon tuning. Second, the CDFG
constraints allow us to only heuristically assign the functional unit usages. Third,
in resource constrained environment, all the functional units may always be needed
to meet the application demand, leaving very little degree of freedom to change the
usage assignment of the heavily used functional units.

To address the challenges of complexity and overhead, we employ orthogonal
arrays to efficiently devise orthogonal and distinct task distribution scenarios for
each circuit. Assuming that one (or a group of) functional units is controlled by
one factor, then the usage rate of the unit can be defined by a factor level (e.g., low
and high). By assigning independent factors to each functional unit, the bindings
can be performed in a way such that functional units with assigned high usage
factor level are used more often than those with assigned low usage factor level.
A full factorial design is one that has all the possible combinations of factor level
assignments to functional units. Such a design can be prohibitively large. For
example, a full factorial design with 7 factors controlling 7 functional units with
two usage levels requires 27 combinations of factor levels.

A fractional factorial design consist of a portion of full factors such that the
factor-level assignment is done by an orthogonal array. An example of orthogonal
array (of strength 2) with 7 factors and two levels for each factor is shown in Figure
5. Strength 2 means that for every two columns of the array, all combination of
different factor levels (—, +-, -4, ++, -:low, +:high) occur equal number of times.
Orthogonal arrays provide the most parsimonious (in the sense of the lowest number
of combinations) set of design levels for studying the main effect of combination
of a set of factors. Orthogonal arrays find usage across a diverse set of fields, the
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theory behind them has been fully developed, and the orthogonal array tables can
be readily adopted [Hinkelmann and Kempthorne 2007].

6. GENERATION OF BINDING CANDIDATES

In this section, we describe the methodology to construct the binding candidates
that satisfy given task distributions. We present a heuristic method that attempts
to achieve the closest task distribution that matches the desired input usage levels
for each functional unit. The inputs to the algorithm are the circuit’s CDFG, and
target task distribution among the available functional units. The input task distri-
butions are in fact the experiment runs (rows) of the orthogonal array. Therefore,
the input task distribution specifies different relative usage levels for each functional
unit (two levels in this case, i.e., low and high usage).

Alg. 1 Scheduling of operations.

Input: CDFG
Output: Scheduled[type, cycle], for cycle = 1,2,...,Neycie

1 for type € {mult,alu}

2 Find min Niype using list scheduling;

3 Find the mobility of each operation;

4 Ready < Operations without predecessors;

5 cycle = 1;

6 Scheduled|type, cycle] = 0;

7 while there exists an unscheduled operation

8 if the number of type operations in Ready < Niype

9 Remove the scheduled operations from Ready

10 Scheduled|type, cycle] = Nyemoved;

11 if the number of type operations in Ready > Niype

12 Remove the scheduled operations from Ready giving
priority to operations with least mobility;

13 Scheduled[type, cycle] = Niype;

14 Ready < Operations whose predecessors are done;

15 cycle = cycle + 1;

16 end

17 end

Before performing task assignment to the available functional units, the opera-
tions are scheduled. In this work, we assume that operations are single-cycle. Al-
though the method is demonstrated and evaluated on acyclic CDFG benchmarks, it
can be easily generalized to CDFGs containing cycles. Cyclic CDFGs can be trans-
formed into a pseudo-acyclic CDFG by unrolling the entire CDFG one or more
times [Bhatia and Jha 1998]. The method needs to only determine what operations
have to be performed in each cycle so that it can bind operations to resources to
achieve a desired work balance and usage profile. In other words, the input to the
binding algorithm is merely a list of operations to be performed in each cycle.
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The scheduling algorithm outlined in Alg. 1 determines the lower bound on the
number of functional units (Ny,) for each type of available functional units (i.e.,
Nty = Npuit + Na) that satisfy the timing constraints (Line 2). The mobility
of each operation is separately determined by performing ASAP (i.e. as soon as
possible) and ALAP (i.e. as late as possible) scheduling on the CDFG (Line 3).
The scheduling algorithm then initializes the set of operations ready to be scheduled
based on the dependencies of operations in CDFG (Line 4). Next, it selects the
operations with smaller mobility to schedule first. The scheduled operations are
removed from the set Ready and the number of scheduled operations are stored
in array Scheduled at each cycle. The number of schedules operations that are
removed from the Ready set at once is always smaller than the total of number of
available functional units. As a result, if the number of ready operations of a given
type is larger than available functional units of the corresponding type, then Nyype
of them are schedule and the rest are postponed to be scheduled in the next cycles.
The algorithm stops when all the operations are scheduled (Lines 7-14).

After scheduling, we would have (i) the total number of operation cycles Neycies,
and (ii) the number of operations to be performed by each type of functional units
at each cycle, i.e., Scheduled[type, cycle]. As an example, if Scheduled|mult,5]=
3, then it means three multiplications that must be performed in cycle 5.

Alg. 2 Binding the operations to achieve input usage level.

Input: TD and Scheduled[type, cycle]
Output: Bound{type, cycle}

1 for each resource type

2 for cycle = 1,2,...,Ncycies

3 Bound{type, cycle} = ¢;

4 Free = set of available functional units;

5 while Scheduled[type, cycle] # 0 i.e. an unassigned operation exists
6 Pick a functional unit randomly; i € Free;

7 if the functional unit i accepts the operation

8 Bound{type, cycle} + i;

9 Remove i from F'ree;

10 Scheduled[type, cycle] = Scheduled[type, cycle] - 1;
11 end

12 end

Now by passing the matrix Scheduled[type, cycle] to the binding algorithm, Alg.
2, it assigns the operations to the available functional units to satisfy a given input
task distribution (7'D). TD is a binary vector whose size is equal to the number of
functional units (Ny,,). In effect, each element of T'D corresponds to one functional
unit. If an element in 7'D has a value of one, then its corresponding functional unit
is going to be used more than those whose corresponding values in TD are zero.
The presented algorithm follows a probabilistic approach in distributing the tasks
to the functional units. If a functional unit, as specified by TD, is expected to have
a high usage rate, then the algorithm would assign a high accepting probability
value (pp,) to it; otherwise, it would give the unit a low accepting probability value
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(p1)- The algorithm randomly visits functional units at each cycle. The associated
probability states the chance a functional unit accepts an operation at a given
visit. For example, a probability 0.2 means that the functional unit would accept
to perform the operation in five visits on average. If a functional unit accepts to
do an operation, it would not be visited again in that cycle.

Lines 3 and 4 of Alg. 2 initialize an empty set denoted by Bound{type, cycle}
and a set of all available functional units denoted by Free. In Line 6, the algorithm
picks a functional unit randomly from the set F'ree. Line 7, based on the assigned
probability, checks to see if the functional unit i is willing to accept the operation.
If so, the functional unit would be moved to the Bound{type, cycle} set (Line 8)
so it would not be visited in that cycle again (Line 9). The while loop (Line 5)
continues until there are no operations to be assigned in that cycle. The same
is repeated in the the next cycles and unit types (Lines 1 and 2). Note that the
functional units with a higher level of willingness (higher probability of accepting
the operation) end up having more tasks assigned to them.

Alg. 3 Generation of multiple binding candidates

1 Schedule CDF@G using Alg. 1;

2 Nfacto'r = Nyt + Nalu;

3 OA < Design OA ( Nyfactor, Nrun, Nievel);
4 forv=1,2, ..., Neun

5 for f =1, 2, ..., Ntactor

6 if OA(v, f) = high

7 Accepting Prob(f) = ps;
8 TD(f) = 1

9 if OA(v, f) = low

10 Accepting Prob(f) = pi;
11 TD(f) = 0;

12 end

13 Bind the operations using Alg. 2;
14 end

So far, we described the algorithm that binds the operations to functional units
to achieve a pre-specified task distribution. Next, we use this algorithm to make
diversely different binding candidates for a given circuit. As discussed earlier, we
take advantage of orthogonal arrays to make the diverse candidates. We choose
to control the usage level of each functional unit by a separate factor. For larger
benchmark circuits, we group functional units and adjust each group’s usage level
by a single factor. Alg. 3 shows how different binding candidates are created for
a given CDFG. Alg. 3 calls Alg. 2 to perform binding for the expected task
distributions dictated by an orthogonal array. Line 1 schedules the operations and
determines how many operations of each type are required at each cycle. Line 2 sets
the number of design factors Ngqctor, to the total number of functional units, i.e.,
the number of multipliers (Nyq0¢) and ALUs (Ngp,,). An orthogonal array with a
specified number of factors (Nygctor ), toWs (Nyy, which is equal to the total number
of candidates), levels (Njeper which equals two in this case for low and high) will
be initialized at Line 3. Each row of the orthogonal array represents one binding
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candidate. Low and high accepting probabilities are assigned based on the factor
levels dictated by orthogonal array values in Lines 4, 5, 6, 7. The operations are
assigned to functional units according to the assigned probabilities using Alg. 2.
The same steps are repeated for the subsequent rows of the orthogonal array. Each
iteration yields a unique binding candidate.

7. HARDWARE INTEGRATION OF BINDING CANDIDATES

In this section, we describe how the different binding candidates can be efficiently
integrated and hard coded into one finite state machine (FSM) denoted by Fi
that simultaneously implements the multi-candidate binding. As shown in Figure
6 (a), Fiot accepts a special input for selecting the candidate to be enabled. We use
F, to refer to the FSM that controls one of the candidates. One of the candidates
is chosen at random for this FSM. The FSMs for the different candidates are going
to have the same inputs and the same number of control steps. The only difference
between the various candidates is the output control signals that dictate which
functional unit should be activated. The signal Output yields the correct control
step for the selected candidate.

Therefore, a combinational mapping is constructed using a truth table that takes
the candidate number and the control signals of F§ as inputs. Note that for example
if Fs is built based on the first candidate, then when candidate selection input is
equal to ’1’; the output of mapping logic is going to be the same as its input (i.e.
the mapping acts like a wire). The following steps show how we generate Fiy¢:
(i) Generate the hardware FSM for one of the candidates (Fy). (ii) Construct a
mapping (truth table) that at each cycle, given the candidate number, maps the
output control signal of F to the target control signal. (iii) Generate and optimize
the combinational circuit (G) described by the mapping and connecting it to Fj.

Figure 6 (b) shows a sample truth table. The leftmost column values in the table
shows the output of the reference FSM Fj, for each operation cycle. The values on
the subsequent columns shows the Fi,; expected outputs for each target candidate.
The binary values indicate which functional unit must be active at a cycle. Notice
that connecting the mapping logic to F will increase the worst case delay of the
controller and introduces extra fan-out effect. In datapath-intensive designs, the
speed of operation is dominated by the speed of functional units in the data path
and corresponding bus interconnects. In such systems, a slight increase in latency
of controller does not significantly affect the overall speed of operation. As a result,
our method works best for datapath-intensive designs.

For maximum flexibility, we assume global registers are connected to functional
units through on-chip busses. The busses are MUX-ed to enable the functional
units to read their inputs from and write their outputs to the registers. The input
to the MUXs are controlled by the controller which decides what operations to be
done on which variables inside the registers.

8. POST-SILICON BINDING SELECTION

After fabrication, the total power consumption of a chip needs to be measured or
estimated for each binding candidate. The best binding candidate that minimizes
the power consumption would be then chosen. However, exhaustive testing of
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Fig. 6. (a) Efficient integration of multiple binding candidates into the controller. (b) Sample
mapping truth table.

all candidates would be tedious, incurring a high test time for a large number of
candidates. To save the test time and effort, we present a method that learns and
characterizes the power consumption of each functional unit by only testing a small
subset of candidate bindings. Once each functional unit’s power characteristic is
estimated, the method finds the best candidate by forming a linear combination of
its functional units power consumptions and their usages.

To do the post-silicon power characterization, we select a subset of binding can-
didates and measure the average total power consumption for each candidate by
applying a series of test input vectors to the circuit. Since the total power is a
weighted sum of each functional unit’s leakage and dynamic power as expressed by
Equation 2, one can solve a system of linear equations to estimate each functional
units’s average (leakage and dynamic) power consumption. The solution to system
of linear equations ( i.e., P\, and P, fori=1,..,Ny,) can be found by solving
a linear programming optimization that minimizes lo norm of the measurement
error e, (for measurement m), i.e., min /). g€, subject to Equation 4 for
all m € §, where S C V and V is a set of all binding candidates. Assuming lin-
ear independency of the equations which is automatically established by the full
rank of orthogonal array, Ng > 2 X Nyesouces number of binding candidates will be
sufficient to characterize each functional units leakage and dynamic power:

Nygu
Py = Z(l —T") X Bi X Plog + @i X (Plogi, + Piyn) + €m. 4)
=1

After estimating the power of each functional unit, we can evaluate other can-
didates by linear combination of the functional units’ power consumptions/usages.
The best candidate is the one achieving the least total power for the chip char-
acteristics. However, in addition to power consumption criteria, we must check
whether the interconnect delay affects the closure time for the selected candidate
or not. During design and scheduling, we construct our candidates such that their
delays (including the interconnects) statistically satisfy the desired circuit timing
closure. Post-silicon timing characterization can identify those statistically rare
binding candidates that violates the timing constraints due to the significant devia-
tion of interconnect delays from their nominal values caused by process variations.
A binding candidate that does not satisfy the timing closure will not be selected.
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Fig. 7. The plots of expected (bottom) and achieved (top) task distributions for different candi-
dates of aircraft benchmark for the multiplier (left) and ALU (right) modules.

9. EXPERIMENTAL RESULTS

We evaluated the proposed multiple binding method on HYPER benchmarks [Rao
and Yi 1990]. The first column of Table I shows the benchmark names. The bench-
mark circuits arai, pr, wang, lee and dir perform 8 point fast discrete cosine with
different algorithms. arai implements Arai-Agui-Nakajima algorithm. pr performs
DCT based on planar rotation transformation. wang benchmark is Suehiro-Hatori’s
version of the Wang Wang sparse planar rotation-based matrix factorization. Lee’s
recursive sparse matrix factorization algorithm is implemented in lee benchmark.
dir represents the direct generic definition of DCT-I algorithm. mem is an opti-
mized version of dir with reduced number of multiplication. honda and aircraft
are two mechanical controllers of industrial strength.

We used NOA (Near-Orthogonal Array) tool from Gendex DOE toolkit [DOE
Toolkit 6 | and S-plus to generate orthogonal arrays of desirable sizes. As mentioned
earlier, the number of factors directly depends on the number of functional units.
The number of candidates (rows of the orthogonal array) for a complete orthogonal
array depends on the strength and number of factors. NOAs can be generated
for any given number of runs (candidates). The algorithms presented in Section 6
were evaluated on the benchmark circuits and different candidates were extracted
accordingly.

Figure 7 shows the functional unit usage rates for different binding candidates of
aircraft benchmark for both multipliers and ALUs. The two lower matrices are the
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Fig. 8. Three binding candidates for the honda benchmark each satisfying a pre-imposed usage
level pattern.

corresponding orthogonal arrays. The rows and columns in each array correspond
to a binding candidate and a functional unit respectively. In other words, each row
of the orthogonal array is one binding candidate. The white (dark) pixels in the
orthogonal array implies that the associated functional unit is forced to be used
(less) more frequently in the given version. The top plots show the resulting usage
rates after enforcing the factor levels on the benchmark. The darkness level indicate
the usage level of a functional unit in the resulting binding. It can be observed
that the task distributions for different candidates (rows) are closely following the
expected behavior dictated by the NOA. The left and right correspond to multipliers
and ALUs respectively. The high and low accepting probabilities of Alg. 3 are set
at pp, = 0.8 and p; = 0.1.

Figure 8 illustrates the different resulting binding candidates for honda bench-
mark. Each row of a binding candidate corresponds to a cycle of operation and each
column corresponds to one ALU. The black pixels indicate that the ALU is being
used on the specific cycle. The imposed usage levels for each version is depicted by
the vector below each binding candidate. The red color in the vector suggest that
the associated functional unit is forced to take more tasks in all operation cycles.
Notice how the operations are redistributed for each candidate in order to match
the imposed usage levels.

Ideally, in an unconstrained system with unlimited number of functional units,
the ones with an assigned high level usage are always used and those with assigned
low level usage are always skipped and never used. But in presence of structural
dependencies and limited number of resources, it could be impossible to hit 0% and
100% usage levels. It is, however, desirable to achieve the maximum usage level
separation between the functional units with high and low assigned usage levels.
Figure 9 shows for each benchmark and functional unit type, the distribution of
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Fig. 9. The low and high usage levels across different versions for ALU and multipliers with
pr=0.5 and p,=0.8.

low and high usage levels for different versions, i.e.,

Ui =A{uiv | i € High, v €V}, (5)
Un ={u;v | i € Low, v € V},

where, u; , is the usage of the i-th functional unit in the v-th binding candidate.
High and Low are the sets of functional units with high and low assigned usage rates
respectively, and V is the set of all binding candidates. The experiment is repeated
for accepting probabilities p;,=0.5 and p,=0.8 while p;=0.1 as defined in Alg. 3.
The distribution of U; and Uj, are illustrated using boxplots. On each box, the
central mark (the encircled dot) is the median, the edges of the thicker line are the
25th and 75th percentiles, the thinner lines or whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually by circles.
As it can be seen, a large difference between p;, and p; causes a larger separation
between the resulting low and high usage rates. arai benchmark multipliers have
the smallest task level separation meaning that all multipliers in this benchmark
are being used almost at the same rate. In other words, the multiple candidates
act similarly. A closer look at arai benchmark reveals that the two multipliers in
this small benchmark are used for only three cycles while both are simultaneously
used for two of the three cycles, leaving a limited degree of freedom. The amount
of usage level separation will directly affect the amount savings achieved by the
proposed method.
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Benchmark pr=0.5 pr=0.8

Name | PA | M| #C WV PIMW) e e e [ g
lee 4 | 4 | 10 | 12 | 1004 | 898 | 1054 | 895 | 108

aria 8 | 2 | 9 | 16 | 408 | 381 | 67 | 319 | 7
or 6 | 10 | 7 | 20 | 1161 | 1067 | 811 | 1066 | 8.8
wang 6 | 10 | 8 | 20 | 1329 | 1245 | 927 | 1197 | 9.9
honda | 12 | 8 | 8 | 24 | 2097 | 2017 | 382 | 2014 | 3%
mem 13 | 9 | 9 | 24 | 1707 | 1610 | 569 | 1602 | 612
dir 11 | 11 | 9 | 24 | 2483 | 2399 | 341 | 2396 | 35
arcrat | 15 | 16 | 17 | 24 | 3473 | 3233 | 693 | 3204 | 7.73

Table I. The amount savings achieved for different benchmark using the proposed method.

To demonstrate the efficacy of multiple binding candidates for power reduction,
we simulated the basic ALU and multiplier units to capture static and dynamic
power component variations in 45nm technology. We selected an 8-Bit ALU (¢880)
and 16x16 multiplier (c6288) from ISCAS-85 benchmark. The ALU has 60 inputs,
26 outputs and 383 gates while the multiplier has 32 inputs, 32 outputs and 2406
gates. The circuits were synthesized and mapped to OSU FreePDK45 standard cell
library [Stine et al. 2005] by the Synopsys Design Compiler. The HSPICE netlist
for each unit was extracted by using Cadence Analog Artist. The 45nm predictive
technology model (PTM) was used in HSPICE simulations. The circuits were
simulated at operational frequency of 250MHz and Vpp=1V. We performed 100
Monte Carlo simulations on each circuit by applying 1000 random inputs. Multiplier
average dynamic and leakage power were extracted as 2.4 mW and 1.55 mW. The
ALU has an average dynamic and leakage power of 235u4W and 140uW respectively.
We observed around 10% variation (with respect to the nominal value, i.e., 3xc/pu)
in dynamic power and 20% fluctuations in leakage power.

Next, we investigate the amount of power saving by choosing the best candidate.
Functional units are assumed to go into stand-by mode by input vector control
when they are not being used. In our HSPICE simulations, we find the input (from
1000 inputs) for which the leakage power is minimum and assume at stand-by mode
this vector is being fed to functional units. The average leakage power of the ALUs
and multipliers for the chosen input vector is 10% of the average leakage of normal
operation mode. We calculate the total power consumption of each benchmark for
different candidates according to Equations 2 and 3, and derive the minimum power
consumption across the candidates. This step is repeated for 1000 circuit samples.

Table I shows maximum power savings achieved with minimum number of func-
tional units compared to the case where all the functional units have nominal power
consumption. The first column of Table I shows the benchmark name. The sec-
ond and third columns contain the number of ALUs (#A) and multipliers (#M).
Columns 4 and 5 contain the number of operation cycles (#C) and binding candi-
dates (#V) for each benchmark. Columns 6 shows the nominal total power con-
sumption for the benchmarks. The total power using the best candidate, and the
savings in percentage are shown in the remaining columns for two design parameter
values pr=0.5 and p,=0.8. In both cases p;=0.1.

lee and dir benchmark circuits show the largest (10.8%) and smallest (3.5%)
percentage of savings in Table I. Notice that the savings are smaller for p,=0.5.
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Leakage/dynamic | Leakage power Dynamic power
Technology power ratio variation (3o) variation (3c)
45nm 40% / 60% 20% 10%
32nm 50% / 50% 30% 15%
25nm 60% / 40% 40% 20%
Table II. The predicted amount of variations in dynamic and leakage power.
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Fig. 10. The predicted amount of savings for 45nm, 32nm and 25nm technology nodes.

The decrease in power savings can be explained by the smaller low and high usage
level separation as indicated in Figure 9. The same explanation can be directly
applied to benchmark arai. The limited degree of freedom in ara: benchmark
which causes the small usage level separation in Figure 9, is responsible for the
decrease in the overall power savings for this benchmark.

The amount of power savings primary depends on the following factors: (i) The
degree of freedom in the scheduled operations and the average usage of functional
units in all cycles. For example, if all the units are used in all cycles in a circuit
then obviously all the candidates would behave the same way. (ii) The number
of candidates. The larger the number of candidates, the chance of reaching the
optimal scenario would be higher. However, increasing the number of candidates
would impose hardware and power overhead on the controller that would eventually
overshadow the power savings by post-silicon tuning. (iii) The amount of present
variation for leakage and dynamic power.

Since the amount of leakage and dynamic power and their variations are con-
stantly increasing in the state-of-the-art and future technologies, we performed a
predictive analysis to determine how much savings the proposed method can achieve
as the device sized keep shrinking. Table II shows the predicted amount of dynamic
to leakage power ratios along with the amount of variations in each technology
according to International Technology Roadmap for Semiconductors (ITRS) [rep
2004]. Using the values from Table II, we predicted the amount of total savings in
each technology node as shown in Figure 10. The results suggest that the savings
can reach above 15% for some benchmarks.

To study the effect of using multiple binding candidates on the hardware area
overhead, we used ABC synthesis tool to estimate the area overhead of a single
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binding and the multi-candidate binding. The area overhead is shown on Table III.
The first column shows the benchmark name. The second, third and fourth columns
illustrate the number of ALUs, multipliers and candidates for each benchmark.
Column 5 and 6 show the area overhead for the chip using a fixed single binding
denoted by orig and the area for the new method denoted by new. Finally, the
last column represents the total area overhead of the new method. The larger
benchmarks naturally incur a higher overhead. As the overhead results in Table
IIT suggest, a large number of binding candidates can be simultaneously realized
with a relatively low overhead on the controller. Note that the size and power
consumption of the controller is significantly smaller than the functional units and
the data path [Hennessy and Patterson 1996]. Therefore, the small overhead on the
controller has a negligible effect on the total power consumption. In other words,
even large overheads in terms of size and power consumption in the controller will
be still negligible compared to the savings achieved by the proposed method. This is
particularly true since the more complicated circuits in Table III have proportionally
larger data paths and number of functional units.

Table III. Area overhead of integrating the binding candidates in Table I in the controller.
Name A M V orig(lit) new(lit) %

lee 4 4 12 83369 83969 0.7
arai 8 2 16 99738 109420 0.3
pr 6 10 20 163421 171592 5

wang 6 10 20 153823 167755 2.7
honda 12 8 24 211627 217537 2.8
mcm 13 9 24 232476 238533 2.6
dir 11 11 24 229201 237967 3.8
aircraft 15 16 24 322173 356728  10.7
chem 20 10 24 320727 337269 5.2

Finally, it is worthwhile to notice that it is extremely difficult to quantify the
accuracy of the power saving estimation without comparing the results to power
measurements taken off an actual manufactured chip. However, there are certain
factors and approximations that could slightly affect the accuracy of our estimation:
(1) The spatial correlation in variations of process parameters can theoretically in-
troduce correlations among the power consumption of functional units, which can in
turn lower the power savings achieved by the multiple binding candidate method.
For example, suppose that variations are highly correlated, such that the power
consumption of all functional units on the same chip are similar (100% correlated),
while their power consumption across different chips are different. In this extreme
case, the savings would drop to zero (all functional units would have similar per-
formance). However, in practice this is not the case. The spatial correlation dies
out across a few gates. Work on modeling spatial correlations using grid-based ap-
proaches [Agarwal et al. 2003; Chang and Sapatnekar 2007], treat the gates inside
the same grids as 100% correlated, cells in neighboring grids are slightly correlated,
and the rest are completely uncorrelated. Typically, each grid contains less than
ten gates. Since the functional units are composed of hundreds of gates, it is safe
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to assume their total power consumptions are spatially uncorrelated; (2) Further-
more, we assume the power overhead of the controller is negligible; because of two
reasons: first, the incurred overhead on the controller according to Table III is rel-
atively small; second, the size of the controller is significantly smaller compared to
the size of the data path and the functional units; (3) IR drops across the power
rails and second order effects such as self-heating can further increase the variations
in the power consumption of functional units, which can potentially further increase
the savings; and (4) finally, inaccuracy of device models in SPICE simulation can
slightly affect the predicted power saving.

10. CONCLUSION

We presented a new method for customizing the resource binding to the unique
characteristics of each IC post-silicon. Multiple binding candidates with diversely
different resource usages were constructed. The construction method utilized or-
thogonal arrays to diversify the task distributions across different candidates. We
showed how multiple candidate can be embedded into the controller with a low
overhead. The evaluation results on benchmark circuits suggest that savings in the
order of 10% can be achieved for benchmarks with larger degree of freedom in their
scheduled operations.
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