2460

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

An Energy-Efficient Last-Level Cache
Architecture for Process Variation-Tolerant
3D Microprocessors

Joonho Kong, Member, IEEE, Farinaz Koushanfar, Member, IEEE, and
Sung Woo Chung, Senior Member, IEEE

Abstract—As process technologies evolves, tackling process variation problems is becoming more challenging in 3D (i.e.,
die-stacked) microprocessors. Process variation adversely affects performance, power, and reliability of the 3D microprocessors,
which in turn results in yield losses. In particular, last-level caches (LLCs: L2 or L3 caches) are known as the most vulnerable
component to process variation in 3D microprocessors. In this paper, we propose a novel cache architecture that exploits
narrow-width values for yield improvement of LLCs (in this paper, L2 caches) in 3D microprocessors. Our proposed architecture
disables faulty cache subparts and turns on only the portions that store meaningful data in the cache arrays, which results in high
energy-efficiency as well as high cache yield. In an energy-/performance-efficient manner, our proposed architecture significantly
recovers not only SRAM cell failure-induced yield losses but also leakage-induced yield losses.

Index Terms—3D microprocessor, last-level cache, leakage energy optimization, narrow-width value, process variation, yield

1 INTRODUCTION

MPLOYING advanced process technologies is a natural

way to improve performance and power efficiency of
microprocessors. However, process variation (PV) is a chal-
lenging problem in deep submicron process technologies
since it adversely affects performance (mainly clock fre-
quency) as well as power consumption, which in turn
results in yield losses. Without any preventive technique,
one inevitably faces severe yield losses.

Three-dimensional integration technology is one of the
promising technologies (though thermal problems are chal-
lenging in 3D chips [1]). It vertically stacks several dies,
enabling power and chip footprint (area) reduction, and
performance improvement due to wire length reduction.
However, 3D microprocessors' are not also free from process
variations since die manufacturing process is same as 2D chip
manufacturing process. Moreover, 3D chips are even more
vulnerable than 2D chips since the typical 3D manufacturing
process bonds different planar dies. It means that 3D micro-
processors may suffer from both die-to-die (D2D) and within-
die (WID) variation in one microprocessor. In other words,

1. We refer to the microprocessor implemented by using the 3D die-
stacking technology as a ‘3D microprocessor’.

o . Kong is with the School of Electronics Engineering, Kyungpook National
University, Daegu 702-701, South Korea. E-mail: joonho.kong@gmail .com.

o F. Koushanfar is with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77005. E-mail: farinaz@rice.edu.

o S.W. Chung is with the Department of Computer and Radio Communication
Engineering, Korea University, Seoul 136-713, South Korea.
E-mail: swchung@korea.ac.kr.

Manuscript received 30 July 2013, revised 1 Feb. 2104; accepted 6 Nov. 2014.
Date of publication 4 Dec. 2014; date of current version 12 Aug. 2015.
Recommended for acceptance by H. Lee.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2014.2378291

3D microprocessors would have a wider range of parameter
fluctuations compared to 2D microprocessors.

On the other hand, the components that are composed of
SRAM cells are known to be most vulnerable to process var-
iation. By looking into a component-level in 3D microproc-
essors, last-level caches (LLC: L2 or L3 caches) are known to
be the most vulnerable component. As presented in [2],
over half of the 3D microprocessors have their critical path
in the L2 cache under process variations. Even worse, since
LLCs are typically composed of several layers (dies) due to
their huge capacity, LLCs are much more vulnerable to pro-
cess variation compared to the other components that can
be implemented within a layer (i.e., D2D+WID variation
versus only WID variation).

Another important factor for vulnerability of LLCs to
PV (process variation) is that the LLC consumes huge
leakage power. Despite of employing high-V}; (threshold
voltage) devices for SRAM cells residing in LLCs, PV
may incur a large fluctuation in leakage power consump-
tion across the SRAM cells. Since a huge number of
SRAM cells exist in the LLCs, this leaves a possibility of
excessive leakage power consumption in LLCs. As highly
leaky chips cannot be used (i.e., the quality of these chips
is far less than the quality standard), they also lead to
yield losses. Not only for yield improvement, energy-effi-
ciency itself is also crucial since energy is becoming a
more scarce computing resource among the available
resources. Considering the fact that LLCs are the most
dominant leakage source in a microprocessor, leakage
energy reduction techniques for LLCs are desirable.

In this paper, we propose an energy-efficient PV-aware
3D LLC architecture. By exploiting an architectural insight
referred to as narrow-width values, our novel cache archi-
tecture saves many faulty cache lines under severe process
variation, which results in significant yield improvement in

0018-9340 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KONG ET AL.: AN ENERGY-EFFICIENT LAST-LEVEL CACHE ARCHITECTURE FOR PROCESS VARIATION-TOLERANT 3D...

a highly energy-efficient manner with only a small perfor-
mance loss and area overhead. By referring to the data val-
ues actually stored in the LLC arrays, our architecture
applies Gated-Vdd to the ‘0’-stored portions in the cache
arrays as well as faulty cache portions as in [3]. A significant
leakage energy saving is expected, which in turn contributes
to the leakage-induced yield loss reduction.

Though many techniques have been proposed for leak-
age reduction of the cache memories [4], [5], [6], [7], [8], [9],
[10], the main contribution of our technique is addressing
both SRAM failure- and leakage-induced yield losses under
process variation in 3D microprocessors. To the best of
our knowledge, this is the first work which considers both
SRAM failures and leakage-induced yield losses in 3D microproc-
essors. Moreover, most of the previous studies have been
largely ignoring an yield impact of the leakage reduction.

For the sake of generality, our proposed architecture is
mainly aiming at yield improvement of the SRAM-based
LLC due to its prevalence in commodity microprocessors.
In fact, general SRAM-based LLC architectures would
gain benefits of wire length reduction by stacking the
SRAM array dies, which in turn enables performance
improvement and energy reduction [2], [11]. On the other
hand, using 3D die-stacked architecture is also beneficial
for integrating the dies manufactured from different pro-
cess technologies (e.g., stacking DRAM arrays on the top
of microprocessors [12], [13]). It enables an excessively
large LLC which is suitable for high-performance sys-
tems. Note that our proposed architecture can also be
adopted to DRAM-based LLCs with only a small modifi-
cation from our SRAM-based architecture.

Our main contributions include:

e We propose a novel leakage-optimized PV-aware
LLC architecture with a small area overhead (~10
percent), which enables yield improvement and cache
energy saving with a small performance overhead;

e Our new architecture enables near-optimal leakage
energy savings in the LLC by considering the data
type information and turning on cache portions that
store meaningful data;

e Our design-time technique for leakage-induced yield
loss recovery further improves microprocessor LLC
yield by up to 10 percent compared to our previously
proposed architecture [3] and shows considerable
elimination of the leakage-induced yield losses;

e We provide energy and performance evaluation
results with various fault rates. The results in the
case of the high fault rates enable a futuristic projec-
tion for our cache architecture (i.e., in the case of
using more advanced process technologies).

The rest of this paper is organized as follows. In Section

2, we provide essential background for process variation in
3D microprocessors and narrow-width values. In Section 3,
we explain our preliminaries. In Section 4, our novel PV-
aware energy-efficient 3D LLC architecture is presented. In
Section 5, we explain our evaluation methodology. In Sec-
tion 6, we provide the evaluation results in terms of yield,
energy, performance, and area. In Section 7, we briefly
introduce related work relevant to our 3D LLC architecture.
Lastly in Section 8, we conclude this paper.

2461

2 MOTIVATION AND BACKGROUND

2.1 Process Variation in 3D Microprocessors

For microprocessor design and manufacturing, process
variation is a major challenge in deep-submicron process
technologies. In the meantime, many studies have been
focusing on mitigating process variation in 2D microproces-
sors [8], [10], [14], [15], [16], [17], [18]. On the other hand, in
3D microprocessors, process variation is much more severe
than in 2D microprocessors. The main reason is that a 3D
chip is composed of several different dies. It may cause
severe D2D (i.e., inter-die) variation in a microprocessor,
which can be another major source of parametric variations
in 3D chips.

Among the major components in the microprocessor,
caches are known to be most vulnerable to parametric varia-
tion. 6T SRAM cells are exposed to many kinds of failures
such as delay, read, write, and leakage failures. A recent
study already revealed that over 52 percent of the 3D micro-
processors have their critical paths in L2 caches (LLC) [2],
which imposes a vulnerability to the delay failure of SRAM
cells in the LLCs. Moreover, 6T SRAM cells are not free
from read and write failures, which may also contribute to
the cache yield losses.

Another major problem of LLCs in 3D microprocessors is
that LLCs are typically constructed by using several differ-
ent dies; LLCs are composed of several layers in 3D micro-
processors due to their large capacity. It means 3D LLCs
face both D2D and WID variation within an LLC while 2D
LLCs only encounter WID variation. For instance, assuming
several different dies (layers) constitute LLC and only one
layer among the LLC layers is severely affected by PV, the
entire microprocessor may be accounted for as a yield loss.
In addition, it implies 3D LLCs would exhibit a larger
parameter fluctuation than 2D LLCs. Thus, employing pre-
ventive techniques is necessary for 3D LLCs to avoid severe
yield losses.

Apart from the SRAM failure mechanisms explained
above, LLCs are also vulnerable to leakage failures (leak-
age-induced yield losses) since the LLC is a huge source of
leakage power in microprocessors, which may also lead to
huge leakage fluctuation across chips due to process varia-
tion. The leakage failure in the LLC occurs when the leakage
power consumption of the LLC is higher than the pre-
defined leakage cutoff boundary. The chips that have a leak-
age failure are discarded and regarded as yield losses. For
the microprocessors used in energy-constraint systems (e.g.,
battery-powered devices), leakage-induced yield losses are
becoming more severe due to more strict standards for leak-
age failures during the testing procedure.

2.2 Narrow-Width Values

The narrow-width value contains a meaningful data portion
in the LSB side while the remaining bit portion in the MSB
side is filled with all ‘0’s. Thus, only storing the meaningful
portion of data values is enough and the remaining part of
the data values can be filled by using the zero-extension
logic. The main benefit by leveraging the narrow-width
value is that it makes a storage utilization more efficient. In
other words, with a same storage capacity, one can store
more data by only storing the meaningful bit portion to the

2462

0 64-bitfull D48-bitnarrow M 32-bitnarrow M 16-bitnarrow

100%
90%
80%
70%
60%
50%
40%
30%
20%
10% -

0%

Ratio

Benchmarks

Fig. 1. The ratio of three types of narrow-width values and full-width val-
ues that are actually accessed in the L2 caches.

storage. In fact, an efficient exploitation of the narrow-width
values have been widely explored for soft-error protection
or power/performance efficiency in register files or L1
caches [19], [20], [21], [22], [23]. However, the narrow-width
value feature can also be used in process variation-aware
3D LLCs. The details will be described in Section 4.

In this paper, we classify data words into four types:
16-bit narrow-width, 32-bit narrow-width, 48-bit narrow-
width, and 64-bit full-width. For example, 16-bit narrow-
width value has its meaningful bit portion in 16-bits of the
LSB side and the remaining 48-bits (in the MSB side) of data
areall ‘0’s.

We provide a simulation result regarding a ratio of the
narrow-width values for a motivational purpose. Note that
architectural evaluation framework is presented in detail in
Section 5.3. To examine the ratio of the narrow-width val-
ues, whenever the LLC (in this case, L2 cache) is accessed,
we check the type of the accessed data words and count
their appearance over the execution of benchmarks. The
most L2 cache sensitive eight benchmarks (astar, bzip2, gcc,
gobmk, h264ref, mcf, perlbench, and omnetpp) [24] from SPEC
INT CPU 2006 are used for our evaluation. As shown in
Fig. 1, the ratio of the accessed narrow-width value is over
75 percent, on average. Particularly, in four benchmarks
(gcc, gobmk, h264ref, and omnetpp) the ratio of the accessed
narrow-width values is over 90 percent. It means that one
can sufficiently gain the storage advantage by using the nar-
row-width value feature.

3 PRELIMINARIES

3.1 Our Base 3D Integration Model and Cache
Configuration

The base 3D integration model is shown in Fig. 2a. In this
paper, we assume that four layers (from the layer 1 to 4)
constitute the LLCs. In the layer 0 (the lowest layer), there is
a microprocessor core (or cores). There are also through sili-
con vias (TSVs) for interconnection among the layers. It is a
widely used 3D architecture that was already introduced in
[12], [13]. Though we restrict base 3D integration model
shown in Fig. 2a, our architecture can be applied to any
other 3D integration models where the LLC is composed of
several layers (dies). For example, in case that the processor
cores and L2 cache arrays reside in the same layer (as shown
in [2], [11], and [25]), our architecture can also be applied
with little modification.

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 64, NO.9, SEPTEMBER 2015

Cache line (64-byte)

Layer4 LLC -
[[T T T 1T 1]
Layer3 LLC LIN_ T T T T 11
Layer2 LLC I—I I \l\ I I I I I
[IN T T 11
Layerl LLC AN

[cache bit subblock 16-bit) |

L 0 i
ayer Microprocessor core (s) ‘1 Cache word subblock (64-bit) I

(a) Base 3D layer architecture (b) A cache subblock hierarchy of

constructing one cache line

Fig. 2. Our base 3D layer architecture and cache subblock/line
hierarchy.

In this paper, we assume that the L2 cache (LLC in our base
processor model) is eight-way set-associative with 64-byte
line size and the total capacity is 1 MB (each layer has 256 KB
data array size). Accordingly, the total number of cache sets is
2,048. Since commodity mobile and embedded processors
(e.g., ARM Cortex-A [26] and Intel Atom [27] series) have the
LLC capacity of 512 KB ~2 MB, our assumption on the cache
capacity is reasonable. Note that our cache architecture is scal-
able to any LLC capacity as we will explain in Section 4. In the
rest of this paper, we use the term ‘L2 cache’ instead of ‘LLC’
to avoid misunderstanding since the L2 cache is the last-level
cache in our base processor model.

3.2 Layer Partition Schemes for 3D L2 Caches
Another important design decision is which layer-partition
scheme is used for constructing the 3D L2 caches. There can
be several possible ways to divide cache structures into
each layer (i.e., which layer-partition scheme is used) in the
3D microprocessor. In this work, we introduce three layer-
partition schemes: set-partition, way-partition, and bit-par-
tition. The set-partition scheme divides cache sets into four
layers. Thus, each of 512 sets is mapped to each layer. The
way-partition scheme divides cache ways into four layers,
mapping each of two ways to each layer. The bit-partition
scheme divides each 64-bit word into four layers, mapping
16-bit in each word to each layer. The bit-partition scheme
is similar to the 3D architecture introduced in [25], where
the microprocessor has four layers and each layer has 16-bit
data paths.

3.3 A Block Hierarchy for the Inside of a Cache Line
Fig. 2b describes a block hierarchy constructing one cache
line. A ‘cache line’ is 64-byte size and it can be divided into
eight ‘cache word subblocks’ (64-bit size). In each cache
word subblock, one word is stored and it can be further
divided into four ‘cache bit subblocks” (16-bit size). In this
paper, we use the terminology introduced in this section to
avoid misunderstanding.

3.4 A Naive Way-Reduction Scheme

Due to negative impacts of process variations, there can be a
huge amount of faulty SRAM cells in L2 caches. Without
any preventive technique (i.e., baseline), only a single faulty
SRAM cell in a chip may lead to a yield loss. In order to
reduce yield losses, the simplest method is to discard (i.e.,

KONG ET AL.: AN ENERGY-EFFICIENT LAST-LEVEL CACHE ARCHITECTURE FOR PROCESS VARIATION-TOLERANT 3D...

do not use) the cache line that has faulty SRAM cells, which
will be referred to as a ‘naive way-reduction scheme’ in this
paper. In this case, the available number of the cache lines
in a cache set decreases.

If there is no available cache line in any cache set (i.e., in
at least one cache set), this chip is regarded as a yield loss.
One could also discard the faulty cache sets and access the
main memory instead of the L2 caches when accessing the
specific memory addresses which correspond to the faulty
cache sets. However, in this case, one may suffer from
severe performance loss due to frequent main memory
accesses, which hurts performance of the microprocessor.
For example, if an application frequently accesses the spe-
cific memory address that corresponds to the faulty cache
sets, we may suffer from approximately 10 x performance
loss in the worst-case. Typically, the main memory access
latency is much higher than the L2 cache access latency
(more than 10x longer). It can also be more deteriorated if
there is a severe bus/interconnect contention. Moreover, to
support such kind of the L2 cache bypassing schemes, we
need additional logic which may be another burden. Thus,
there should be at least one non-faulty cache line in each
cache set, so that the chip works well without severe
performance loss.

To reduce energy consumption, the unused (faulty)
cache lines are permanently power gated. Power gating can
be simply implemented by using Gated-Vdd [4] (PMOS
power gating has negligible area overhead with leakage
energy reduction of 86 percent).

The naive way-reduction scheme needs the fault bitmap
(where fault bits reside) to record which cache lines are
faulty. Hence, one needs a fault bit for each cache line. Note
that ‘1" in the fault bit means that the corresponding cache
line is faulty, and vice versa. Though the naive way-reduc-
tion scheme can reduce yield losses compared to the base-
line, it hurts performance due to the reduced number of the
available cache lines.

4 OuUR ENERGY-EFFICIENT 3D L2 CACHE
ARCHITECTURE FOR PV-TOLERANCE

First, we describe our PV-aware data storing mechanism [3]
in Section 4.1. We then explain our leakage optimization
technique which can be built on the top of our PV-aware 3D
L2 cache architecture [3].

4.1 Storing Data to the L2 Caches for PV-Awareness
We explain how to store the data value to the cache consid-
ering PV-awareness in this section. Our PV-aware architec-
ture operates in a finer-grain manner compared to the naive
way-reduction scheme. As we explained in Section 3.4, in
the naive way-reduction scheme, the discarding decision is
made in a cache line (64-byte) granularity. On the other
hand, in our architecture, the discarding decision is made in
a cache bit subblock (16-bit) granularity to exploit the nar-
row-width value feature. Obviously, our architecture needs
a larger fault bitmap compared to the naive way-reduction
scheme. However, overall area and energy overhead is
insignificant. As in the naive way-reduction scheme, we
also adopt Gated-Vdd [4] to the faulty cache bit subblocks
in our architecture for energy-efficiency.

2463

TABLE 1
Possible Types of Data Words that Can Be Allocated
According to the # of ‘0’s in the Fault Bits (4-bit)

The # of ‘0’s in fault bits of
the cache word subblock

Possible types of the data word
that can be allocated to the cache

word subblock
0 N/A (the entire cache line is not
used and turned off)
1 16-bit narrow-width value

16-bit, 32-bit narrow-width value
16-bit, 32-bit, 48-bit narrow-
width value
4 All types of the data word

Among the layer-partition schemes introduced in
Section 3.2, our PV-aware architecture adopts the bit-parti-
tion scheme to implement the multi-layered (multi-die) L2
cache. Four cache bit subblocks that constitute a cache word
subblock are allocated to four separate layers. Due to D2D
variations, different layers are likely to have quite different
device characteristics. By using the bit-partition scheme,
even though some layers suffer from severe process varia-
tion, the other layers can save the entire chip with a huge
number of the available cache lines by exploiting the nar-
row-width value feature. In this case, most of the cache
word subblocks can still store narrow-width values (16-, 32-,
or 48-bit) though they cannot store 64-bit full width values
under process variation.

In our PV-aware architecture, when the data is allocated
to the cache, the data words are classified into four different
types of data (16-, 32-, 48-bit narrow-width, and 64-bit full-
width value). After the data word classification is carried
out, the fault bitmap is checked if the data words can be fit
into the dedicated location of the cache. Our architecture
counts the number of ‘0’s in the fault bits (4-bit) of the corre-
sponding cache word subblock to determine which types of
the data word can be fit into that cache word subblock.
Table 1 shows the possible types of data words that can be
allocated according to the number of ‘0’s in the fault bits
(4-bit). We then determine whether each word can be fit
into the dedicated cache word subblock in the cache line or
not. If all of the cache word subblocks in a cache line can
contain their responsible data word, the whole data can be
allocated in the cache line.

Compared to the naive way-reduction scheme, our PV-
aware architecture can save much more cache lines. In the
case of the naive way-reduction scheme, only one faulty
SRAM cell in the cache line leads to the failure of the entire
cache line. However, in the case of our architecture, in spite
of faulty SRAM cells, we can still use the cache line unless it
is stuck at the case of the first row in Table 1 (i.e., the num-
ber of ‘0’s in the fault bits of the cache word subblock == 0).
It brings better performance due to the increased number of
available cache lines as well as more yield loss recovery. In
the case of our proposed architecture, if there is no available
cache line in at least one cache set, this chip is regarded as a
yield loss, as in the naive way-reduction scheme.

For better understanding of our data allocation mecha-
nism, we provide a simple example of the case when the

2464

Word0 Word1l
Actual data | 0000 | 0000 | 03ad | 305¢ | 0000 | 0000 | 0000 | 305d

Cache line
Fault bits

FUEA 03ad Faulty Faulty Faulty [EJOSIs]

[O & & & & G C

(a) Case 1: the data can be fit into the dedicated cache line

Word0 Word1
Actual data [0000 | 0000 | 03ad | 305c | 0000 JROEEER{TEEE] 305d |

Cache line [IZVO 03ad ENEH 305c Rt
Fault bits @ @ @

(b) Case 2: the data cannot be fit into the dedicated cache line

Fig. 3. Two possible cases when storing data to the cache line: (a) the
data can be stored (b) the data cannot be stored.

data can be fit into the cache line and the opposite case in
Fig. 3. To simplify the example, we assume that one cache
line is 16-byte size (originally, 64-byte size in this paper) in
this example. Thus, there are two cache word subblocks in
one cache line. In Fig. 3a, the word0 is a 32-bit narrow-width
value and the number of ‘0’s in the fault bits is 2. Thus, the
word0 can be fit into the cache word subblock. Similarly,
the word1 is a 16-bit narrow-width value and the number of
‘0’s in the fault bits is ‘1’, fitting well into the dedicated
cache word subblock. Since both of two words fit well in
two cache word subblocks, the entire data can be allocated
to the cache line. On the other hand, in Fig. 3b, though
word0O can be fit into the dedicated cache word subblock,
word]1 cannot be fit (it is a 48-bit narrow-width value while
the number of ‘0’s in the fault bits is ‘1’). Thus, the 16-byte
data cannot be allocated to the dedicated cache line.

4.2 Leakage Energy Optimization
4.2.1 A Motivational Study

In [3], data is stored depending on whether the cache bit sub-
block is faulty or not. Though the effectiveness of this archi-
tecture for PV-tolerance and energy reduction is already
shown in [3], there is also a sufficient room for further leak-
age energy optimization by paying a little more area.

Fig. 4 shows a motivational example of the cases when
leakage energy is wasted (a) and optimized (b). Fig. 4a cor-
responds to the case of [3] in which the data storing relies
only on the fault bit information. When one tries to store a
32-bit narrow-width value while there are three available
cache bit subblocks, only two cache bit subblocks contain
the meaningful data (meaningful data means the data
which has non-zero bit). The leftmost cache bit subblock in
Fig. 4a stores zero-bit and has to be turned on in the case of
[3], even though it could be restored by the existing zero-
extension logic.

In contrast, our architecture presented in this paper
stores the data by referring to the data types of each
word as well as fault bit information. As shown in
Fig. 4b, one can store the 32-bit narrow-width value to
the dedicated cache word subblock with two turned-off
cache bit subblock. In this case, the zero-storing cache

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

Data word [oooo 0000 [FFFF | FFFF_|
Cache word ‘
subblock 0000 FFFF_| FFFE_|
Energy wasted

cache bit subblock
(a) When storing data by referring to the fault bit information

Data word o000 | oooo | FFFF | FFFF

Cache word
subblock

Turn off ‘0’ storing
cache bit subblock

(b) When storing data by referring to the data type and fault
bit information

Fig. 4. A comparison of the cases between leakage energy is wasted (a)
and further reduced (b).

bit subblocks as well as faulty cache bit subblocks are
turned off by using Gated-Vdd [4].

Fig. 5 illustrates the ratio of meaningful data storing
cache bit subblocks when executing the selected bench-
marks from SPEC INT CPU 2006. We present the ratio
between the meaningful data storing cache bit subblocks
and available (i.e., not faulty) cache bit subblocks under the
fault rate = 30% (see Section 6.2). On average, only 65.48
percent of the cache bit subblocks stores the meaningful
data over the benchmark execution. Under the fault rate =
30%, it implies approximately 35 percent (= 100 — 65) of the
cache bit subblocks are storing zero-bits which can be
restored by the zero-extension logic. If these energy-wasting
cache bit subblocks was turned off, more leakage energy
saving could be possible.

4.2.2 A New Data Structure Required for Leakage
Optimization

The fault bitmap already introduced in [3] does not store the
data type information while maintaining only the faulty
cache bit subblock information. Since our architecture needs
to know which type of data words is currently stored in the
cache word subblocks, a new data structure should be intro-
duced. This new data structure, which we call ‘data type
bit’, stores the type information for each data word stored
in the L2 cache. As we explained in Section 2.2, there are
four different types of data words. Thus, we need 2-bits for
each cache word subblock. Table 2 summarizes the data

0.8

0.6 -

0.4 -

Meaningful data ratio

0.2 -+

N s &
&5 & <« & QQ}RQ &
A N\ Qf S &

S v <
<2 . <
& iR <5

Benchmarks

Fig. 5. A ratio between the meaningful data storing cache bit subblocks
and available cache bit subblocks under the fault rate = 30%.

KONG ET AL.: AN ENERGY-EFFICIENT LAST-LEVEL CACHE ARCHITECTURE FOR PROCESS VARIATION-TOLERANT 3D...

TABLE 2
The Data Type Bits According to the Type of Data
Stored in the Cache Word Subblock

Data type bits Actually stored data word
00 16-bit narrow-width value
01 32-bit narrow-width value
10 48-bit narrow-width value
11 64-bit full-width value

type bit values according to the actually stored data type in
the cache word subblock.

4.2.3 Meaningful Data (MD)-Positioning Algorithm

To determine the position of the meaningful data in a sys-
tematic way, we introduce an algorithm that figures out the
layer information of the meaningful data (either already
stored or will be stored). This algorithm is referred to as
‘MD-positioning algorithm’ in this paper.

Algorithm 1 describes the MD-positioning algorithm.
The required inputs for each cache word subblock are fault
bit (4-bits) and data type bit information (2-bits). The output
of this algorithm is a set which contains information of the
layer numbers where the meaningful data will be stored or
already stored. This set is referred to as ‘set MD (meaningful
data)” in this paper.

Algorithm 1. The MD-Positioning Algorithm.

Input: Integer N = the data type bit + 1;
Bool B[4] = the fault bits of the cache word subblock;
Output: set MD

1 Integeri«1;

2 while (V != 0) // main loop
3 if (B[i-1] ==0)

4 MD —i;

5 N--;

6 endif

7 i++;

8 endloop

For better understanding of the algorithm, we provide an
example that investigates a set MD in Fig. 6. In this example,
the data type bit is ‘01" which also implies the initial N in
Algorithm 1 is set to ‘2. The fault bit is ‘1,000" that means
layer 1 has a faulty cache bit subblock while the rest of the
layers do not. By following Algorithm 1, one can easily find
the set MD = {2, 3}, which means the layer positions of the
meaningful data is layer 2 and 3. Since there are eight cache
word subblocks in a cache line, one can perform eight oper-
ations for Algorithm 1 in parallel.

By using Algorithm 1, one can determine:

e which cache bit subblocks must be turned on and off
by using Gated-Vdd;

e where to store the meaningful data to the cache
arrays (layers) when storing new data to the cache;

e the control signals in zero-extension logic to restore
the zero-bit portion in data words.

When storing the data word, the cache bit subblocks

located in the ‘set MD’ layers are turned on to store the

2465

Initial N=2 ® Find two ‘0’s from the layer 14

Data type bit [2] 01
fault bits

® Finally, set MD= {2, 3}

Fault bit B[4] 1]10]0 | 0 |

Tayer1 Layer2 Layer3 Layerd

Fig. 6. An example of the MD-positioning algorithm.

meaningful data while the rest of them within a cache word
subblock are turned off to reduce leakage energy consump-
tion. The zero-extension procedure is similar to the method
presented in [3]. The only difference is how to generate the
control signals. In this paper, the control signals are gener-
ated by referring to the output of the MD-positioning algo-
rithm, while in [3] those are generated by referring to only
the fault bit information.

4.3 Cache Access Algorithms
4.3.1 Cache Miss

In the case of cache misses (Fig. 7a), new data is fetched
from the main memory and this data should be stored to
the L2 cache. In this case, we should select a victim cache
line that will be evicted from the L2 cache. The conventional
way to select the victim cache line is to choose the least
recently used (LRU) line in a cache set. However, in our
architecture, we should additionally check if the data deliv-
ered from the main memory can be fit into the cache line
that is selected by the LRU policy.

In the case that the data can be fit into the selected cache
line, the data can be stored without any problem. However,
there is a case where the data cannot be fit into the selected
(LRU) cache line due to the faulty cache bit subblocks in the
cache line. In order to deal with this case, we adopt a
‘devised LRU policy’. First, in a cache set, our devised LRU
policy searches the cache lines that the data value can be fit
into. Among the selected cache lines (that the data can be fit
into), the least recently used cache line is chosen as a victim
cache line. There can be a case where the data is not fit into
any cache line in the dedicated cache set. In this case, our
architecture does not allocate the data in the L2 cache. Since
this case rarely occurs, performance loss is negligible.

To store the new data to the cache line after the victim
line is evicted, the data type bitmap is updated according to
the data types of the new data words. After that, the MD-
positioning algorithm determines where to store the mean-
ingful data. Apart from the cache subblocks that will store
the meaningful data, the rest of the cache bit subblocks that
were already active (i.e., were turned on) are turned off by
using Gated-Vdd.

Note that the latency for all of these operations during
the cache misses do not make the processor cores be addi-
tionally stalled. This is because the additional operations
required for our architecture can be performed in back-
ground even after the data is delivered to the processor
cores. Thus, our architecture does not incur any additional
latency in the case of the cache misses.

4.3.2 Cache Read Hit

In the case of read hits (Fig. 7b), we should check the fault
bits and data type bits that correspond to the cache line
which will be read from the cache. In our proposed architec-
ture, when a cache line (64-byte) is accessed, 32-bit of the

2466

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

New data value checking
(Narrow value checking logic)

Fault bitmap access &
Data type bitmap access

Dirty data value checking
(Narrow value checker logic)

in case that the

In case that the dirty
data cannot be fit
into the cache line

victim cache
line is not
|

ted

Victim

MD-positioning logic & |
Control signai generation

Fault bitmap

selection
(Devised LRU

checking

In case that dirty data can

In case that the victim
cache line is selected

Zero-extension |

be fit into the cache line
Data type bitmap updating |
¥

| Data type bitmap updating |
[

| MD-positioning logic |
¥

| MD-positioning logic |
¥

Data output

Writing the dirty data to the cache
line &

Allocating the data in the cache &
Turning on/off cache bit subblocks

Not allocating the data in the
cache

(a) Cache miss

Fig. 7. Modified cache access algorithms for three different cases.

fault bits and 16-bit of the data type bits should be accessed.
The MD-positioning algorithm determines which layers
must be accessed to fetch the meaningful data from the
cache arrays. In the zero-extension logic, by referring to the
output from the MD-positioning logic, ‘0’s and meaningful
data are filled in the MSB side and the LSB side, respec-
tively. The recovered data words are aligned in order, form-
ing the complete data (a cache line size). Finally, the data is
delivered to the microprocessor cores.

Though the zero-extension logic has negligible additional
latency, we conservatively assume that accessing the zero-
extension logic incurs 1-cycle delay in addition to the cache
access latency, since it may be the critical path in a manufac-
tured chip due to process variation. Note that accessing the
fault bitmap, data type bitmap, and MD-positioning logic
do not incur any additional latency. Since recent L2 cache
designs employ a serial (sequential) access of tag and data
arrays [28], one can sufficiently overlap the fault bitmap,
data type bitmap, and MD-positioning logic access latency
with the tag array access latency.

4.3.3 Cache Write Hit

In the case of write hits (Fig. 7c), the dirty (modified) data
from the upper-level caches should be written to the L2
cache. In this case, we should check the fault bits of the ded-
icated cache line to confirm the modified (dirty) data can be
fit into that cache line. If the data can be fit into the
cache line, the data type bitmap is updated. After that, the
cache bit subblocks are either turned on or off according to
the output from the MD-positioning algorithm. Finally, the
dirty data is written to the cache line. In the opposite case,
the dirty data is written to the main memory and the cache
line is invalidated to guarantee the operation correctness. In
case of using the inclusive cache, the cache line invalidation
in the L2 cache may also lead to the invalidation in the L1
cache. However, the cache line invalidation in the L2 cache
rarely occurs, resulting in negligible performance losses. In
Section 6.3, we give evaluation results for a performance
impact of the write invalidations.

Due to the write buffers, the write access to the L2
cache does not cause any stall of the processor cores.
Thus, there is no additional latency in the case of the
write hit.

(b) Cache read hit

Turning on/off cache bit subblock

Invalidating the cache line and
writing back the dirty data to
the main memory

(c) Cache write hit

4.4 Overall Architecture

Fig. 8 depicts a high-level implementation of the cache con-
troller to support our new cache architecture. Note that we
depict only newly added logic components in the cache
controller.

There are six newly added logic components to support
our proposed architecture: narrow-width value checker
logic, fault bitmap, data type bitmap, fit checker logic, MD-
positioning logic, and zero-extension logic. The narrow-
width value checker logic takes data words as an input and
classifies each data word into four types (16-, 32-, 48-bit nar-
row-width, and 64-bit full-width). The fault bitmap contains
information on whether each cache bit subblock is faulty or
not. The values in the fault bitmap can be determined dur-
ing the chip testing procedure and not changed in runtime.
In our architecture, we need one fault bit per one cache bit
subblock (16-bit). Since we use 1 MB L2 cache, 64 KB fault
bitmap is required. The fault bitmap takes the address as an
input to access the fault bits which correspond to the
accessed cache line.

The data type bitmap is newly introduced data structure
for leakage optimization. It stores the data type information
of the data word which resides in each cache word sub-
block. Unlike the fault bitmap, the content in the data type
bitmap is changed over the execution time according to the
data word actually stored in the corresponding cache word
subblock. 32 KB data type bitmap is required since 2-bits
are needed for each cache word subblock. The fit checker

L2 cache arrays
Allocating data
cache miss, write hit)

Accessing data
cache read hit]

Cache controller

Data to be
allocated to
the cache

Zero-extension logic

Data routing crossbar

Zero-extender

Control signal
ata 0 0

| Narrow-width value checker logic

Fit checker logic
(including victim cache line
selection logic) &
MD-positioning logic

D;

Data type bitmap Accessing

address

Fault bitmap

l Data output |

Fig. 8. An overall architecture of the cache controller data path.

KONG ET AL.: AN ENERGY-EFFICIENT LAST-LEVEL CACHE ARCHITECTURE FOR PROCESS VARIATION-TOLERANT 3D...

logic is needed for the case when either a cache miss or a
write hit occurs. The fit checker logic checks if new data or
dirty data can be fit into the dedicated cache line. It also
includes the victim selection logic for our devised LRU pol-
icy. The MD-positioning logic implements Algorithm 1,
which figures out the layer information of either the already
stored meaningful data (cache read hit case) or meaningful
data that will be stored (cache miss or write hit case).

The zero-extension logic restores the narrow-width data
to the original data. It includes a data routing crossbar, a
control signal generator, and 2-to-1 MUXs. By referring to
the output of the MD-positioning logic, the data routing
crossbar aligns the meaningful data from the LSB side and
the control signal generator provides the proper control sig-
nals to the 2-to-1 MUXs. The MUXs select either data values
from L2 cache arrays or ‘0’s. Note that we do not need
MUXs which correspond to 16 bits in the rightmost side (bit
[0-15] in a 64-bit word) of each word since there should be
always meaningful data. Thus, we need only three MUXs
for each word. The additional logic is simple and easy to
implement. In our evaluation, we will also analyze the
energy and area overhead of our additional logic in detail.

As we explained in Section 3.1, our cache architecture
can easily be applied to any other 3D processor models
(e.g., shown in [2], [11], and [25]). This is because all of
the additional logic components can be implemented in
the L2 cache controller, which results in design flexibility
and compatibility.

4.5 A Design-Time Technique for Leakage-Induced
Yield Loss Recovery

Since our architecture has a quite high potential for reducing
leakage in the L2 caches, a design-time technique which
reduces leakage-induced yield losses is also possible. With-
out the consideration on the impact of leakage savings on
cache yield, the chip designer/manufacturer may have a too
conservative leakage cutoff boundary (a border line for
determining the leakage-induced yield loss). In this case, one
may suffer from severe leakage-induced yield losses, even
though the actual leakage power consumption in runtime
will be much less than that in the chip testing procedure.

To take the impact of leakage savings on cache yield into
account, one can set the leakage cutoff boundary more
aggressively. In this case, one saves more chips which were
supposed to be accounted as leakage-induced yield losses
with the conservative cutoff boundary. Our design-time
technique aggressively sets the leakage cutoff boundary
considering the expected leakage savings from our energy-
efficient cache architecture.

The leakage cutoff boundary can be represented as
follows:

Cutoffiear, = Nominal leakage power X o, (1)

where Cutoffiq, is the leakage cutoff boundary set by
the chip designer/manufacturer and « is a scaling factor
that determines the quality standard of the manufac-
tured chips. If the leakage power consumed from a chip
exceeds the Cutoffieq:, the chip is regarded as a leakage-
induced yield loss.

Since our cache architecture saves leakage energy, the
chip designer/manufacturer can set the o value higher than

2467

Original cutoff with Increased cutoff with o’

Probability distribution Function

xvalue in the lognormal distribution

Fig. 9. A statistical yield improvement estimation.

the original «. It means more chips can be saved by our
aggressive leakage cutoff boundary. If the average leakage
energy saving of = percent is expected, then the new « value
(o) can be set as follows:

, 100
a =o X .
100 — x

(2)

Note that the appropriate «” can be set by considering how
much leakage saving one can expect by running the real-
world workloads or benchmarks.

Instead of the design-time approach, a dynamic
approach may be beneficial. However, a dynamic (runtime)
approach needs more hardware overhead for implementa-
tion. It requires additional hardware components for sam-
pling (or profiling) and logic components for learning and
decision algorithm, which will contribute to more energy
consumption and area overhead. In addition, more energy
and area overhead may also offset our yield benefit.

Fig. 9 depicts an example of the calculating the estimated
yield improvement. We assume that the leakage power dis-
tribution of the chips follows a lognormal distribution [29]
and the standard deviation of the leakage power is the
mean leakage power x 0.333333 in this example. We also
assume the conventional Cutoffi..; is the nominal leakage
power consumption x 1.5 (i.e., « = 1.5). As shown in Fig. 9,
there might be a quite large number of unusable chips due
to the excessive leakage power. However, by using
Equation (2), the chip designers can set the leakage cutoff
boundary higher than the original cutoff boundary by using
o’. In Fig. 9, by setting the o’ to @ x 1.11 which corresponds
to the expected leakage savings of 10 percent, one can fur-
ther improve 4.3 percent of the cache yield (which also cor-
responds to the leakage-induced yield loss recovery of over
65 percent). In Section 6.1.2, we provide a comprehensive
analysis on the setting of the Cutoffi..; and its impact on
the cache yield.

5 EVALUATION METHODOLOGY

5.1 Process Variation Modeling and SRAM Failure
Models

In this work, to precisely model process variation, we assign
different effective gate length (L.ss) and threshold voltage
(V;1,) to each device of SRAM cells in the L2 cache. To model
the within-die variations, we build variation maps by using
the model described in [30].

In our base processor model, four different dies consti-
tute the L2 cache. Each die has quite different characteristics

2468

TABLE 3
A Classification of Schemes and Their Abbreviations

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

TABLE 4
Parametric Yield Results with 1,200 Sample Chips

Categories Set-partition Way-partition Bit-partition base-wp base-sp base-bp nw-wp nw-sp nw-bp prop-*
Baseline base-sp base-wp base-bp level0 240 240 240 240 240 240 240
Naive s R b level 1 240 240 240 240 240 240 240
e duction P P P level2 15 19 11 240 240 240 240

4 level 3 0 0 0 232 225 222 239
Our proposed scheme X X prop-bs level 4 0 0 0 2 5 7 111
w/0 energy Total 495 499 491 954 950 949 1,070
optimization Yield 41.3% 41.6% 409% 795% 79.2% 791% 89.2%
Our proposed scheme X X prop-op

w/ energy optimization

due to D2D variations, thus representing both D2D and
WID variation in the L2 cache of each processor.

We perform a Monte Carlo simulation to evaluate yield
across five variation severities with 240 chips for each varia-
tion severity level (denoted as ‘PV level’). PV level 0 corre-
sponds to the case of the lowest process variation severity
while PV level 4 is the case of the highest. For more details
on process variation modeling and parameters, please refer
to the Appendix Section A.1.

Note that we use 45 nm technology node and the nomi-
nal device parameters for the MOSFETs are based on the
device parameters used for ITRS-Istp (low standby power)
SRAM cells [31]. This type of SRAM cells is typically used
in L2 caches for leakage reduction. We also note here that
our yield results do not incorporate the effect of TSV and
3D stacking-induced yield losses.

To model the SRAM failures, we also adopt four different
SRAM failure models: delay [32], read [33], write [34], and
leakage (BSIM leakage model [35]) failures. The parameters
used in this paper are identical to the parameter presented
in [3]. Due to the page limit, the details on the SRAM failure
models can be found in the Appendix.

5.2 Energy Parameters

For energy evaluation, we derived leakage power and per-
access dynamic energy of the L2 cache from CACTI 6.5 [31]
and 3DCACTI [36]. For CACTI, we use ITRS-Istp cells for
L2 cache arrays and assume that tag and data arrays are
sequentially accessed [28]. We derived energy values for
three different layer-partition schemes which have different
physical layouts of the L2 caches. In the Appendix, we pres-
ent our energy parameters in detail.

5.3 Architectural Simulation Framework

To obtain the performance results and cache access traces,
we use M-Sim 3.0 simulator [37], which is derived from
SimpleScalar toolset [38]. We model the processor architec-
ture of our simulator similar to the commercial embedded
microprocessors such as ARM Cortex-A9. From the archi-
tectural simulator, we collect cache access traces of the 1.2
cache required for calculating energy consumption and
evaluate performance. In our evaluation, the access latency
of the L2 cache is assumed to be 10 cycles. We also assume
that there is one cycle additional delay for accessing the
zero-extension logic in our architecture, as we explained in
Section 4.3.2. The clock frequency of the simulated

microprocessor is set to be 1.0 GHz. We use eight L2 cache
sensitive benchmarks [24] from SPEC CPU 2006 INT bench-
mark suite (astar, bzip2, gcc, gobmk, h264ref, mcf, perlbench,
and ommnetpp). For precise evaluation, we fast-forward 20 bil-
lion instructions and actually run 500 million instructions.

6 EVALUATION RESULTS

In this section, we show the effectiveness of our proposed
architecture. The baseline scheme does not have any coun-
termeasures to mitigate process variation. The naive way-
reduction scheme simply discards the faulty cache lines to
improve yield, as we explained in Section 3.4. Each of three
different layer-partition schemes is applied to the baseline
and naive way-reduction schemes. To evaluate the effective-
ness of our leakage optimization, we also provide the results
of our architecture with and without leakage optimization.
Thus, the total number of the schemes we evaluate here
is eight. In this section, we use abbreviations for those
schemes as shown in Table 3.

6.1 Yield
6.1.1 Parametric Yield Results

In this section, we present yield results of seven different
schemes (prop-* means both prop-bs and prop-op). Since we
used the same leakage cutoff (Cutoffi.q.) for both prop-bs
and prop-op, the yield results of prop-bs and prop-op are iden-
tical. Note that we provide the impact on yield with differ-
ent Cutof fiear in the next section.

Table 4 shows yield results of the seven different
schemes. The numbers in Table 4 represent the number of
passed chips or yield. Note that the criteria of determining
passed/failed chips according to different schemes were
explained in Sections 3.4 and 4.1.

Our proposed scheme shows the best yield (89.2 percent)
across the seven schemes. The baseline schemes (base-sp, base-
wp, and base-bp) show the lowest yield (40.9 ~ 41.6 percent)
since none of the preventive schemes are adopted. Even
worse, when PV level is higher than 2, the baseline scheme
shows 0 percent yield. Due to severe D2D+WID variations,
the baseline yield in 3D microprocessors is significantly low.
When adopting the naive way-reduction schemes (nw-sp, nw-
wp, and nw-bp), yield is improved compared to the baseline
schemes by 37.6 ~ 38.3 percent. However, our proposed
architecture (prop-*) shows still higher yield than the naive
way-reduction schemes by 9.7 ~ 10.1 percent. Across the
three layer partition schemes, one cannot see noticeable dif-
ferences among the yield results.

The advantage of our proposed architecture is robust-
ness to severe process variations. In PV level 3 and 4, a

KONG ET AL.: AN ENERGY-EFFICIENT LAST-LEVEL CACHE ARCHITECTURE FOR PROCESS VARIATION-TOLERANT 3D...

TABLE 5
Expected Cache Yield Improvement When Using the prop-op
Compared to that When Using prop-bs with
Regard to «’ Across Various o

o=nu x 025

o =1.666 1.81% (82.71%)
o =1.744 2.04% (93.01%)
o =1.807 2.13% (97.20%)

o=nun x 033

4.27% (65.38%)
5.21% (79.82%)
5.76% (88.26%)

o=nu x 050

6.58% (42.01%)
8.74% (55.76%)
10.37% (66.18%)

The values within the parenthesis are leakage-induced yield loss recovery
ratios.

yield result when using our architecture is 72.9 percent
(350/480) while that when using the nw-wp (it shows the
highest yield among three naive way-reduction schemes)
is only 48.8 percent (234/480). As process variation
becomes more severe (particularly, due to severe D2D
+WID variations), our architecture can save many chips
that cannot be saved by the naive way-reduction scheme.
Moreover, our architecture achieves high yield without
any redundant cells. Along with the redundancy schemes
[16], [18], we could achieve much higher yield by adopting
our cache architecture.

Our huge yield improvement comes from a synergistic
effect between the bit-partitioned architecture and narrow-
width value feature. The bit-partitioned architecture applied
to 3D microprocessors spreads out each of four bit partitions
in a data word into different layers. In this case, though some
layers suffer from severe process variation, the other layers
can save the microprocessor with many available cache lines
by utilizing the narrow-width value feature. It also means
our proposed architecture is specialized in 3D microproces-
sors (than 2D microprocessors) where both D2D and WID
variations are expected in a microprocessor.

6.1.2 Additional Yield Improvement by Leakage
Reduction

As we explained in Section 4.5, our leakage reduction fur-
ther improves cache yield by setting higher o’ values in
Equation (2). We provide a statistical analysis for an
expected cache yield improvement with various &’ values.

Table 5 shows the expected yield improvement results. u
and o represent the mean and standard deviation of the L2
cache leakage power consumption, respectively. According
to the leakage saving results from our architectural simula-
tion (only the cache leakage savings are considered), we set
different o values. The cases of o’ = 1.666, o’ = 1.744, and
o’ = 1.807 correspond to the cases of the fault rate = 50%,
the fault rate = 40%, and the fault rate = 30%, respectively.
Note that one can expect a different amount of the leakage
energy savings across different fault rates (see Section 6.2).

In the case of o = u x 0.33 with « = 1.666, one can
expect yield improvement of 4.27 percent, which also cor-
responds to the leakage-induced yield loss recovery of
65.38 percent. When a chip designer or manufacturer
increases o to 1.807, further yield improvement (5.76 per-
cent) is possible. In the cases of 0 = x 0.25 and o = u x
0.50, the overall trends are similar to the case of o0 = u X
0.33. In the case of o = u x 0.50, one can expect the yield
improvement by up to 10.37 percent.

2469

Obase-wp
B nw-sp

Obase-sp
B nw-bp

Obase-bp
M prop-bs

& nw-wp
M prop-op

Normalized energy cons umption

h264ref mcf
Benchmarks

astar bzip2 gee gobmk perlbench omnetpp Geomean

(a) Fault rate = 30%

Obase-wp
B nw-sp

Obase-sp
W nw-bp

Obase-bp
M prop-bs
0

& nw-wp
M prop-op

Normalized energy cons umption

T T
astar bzip2 gec gobmk h264ref mcf perlbench omnetpp Geomean

Benchmarks

(b) Fault rate = 40%

Obase-wp
B nw-sp

Obase-sp
W nw-bp

Obase-bp
M prop-bs
0

& nw-wp
M prop-op

Normalized energy cons umption

T T
perlbench omnetpp Geomean

astar bzip2 gcc gobmk h264ref mcf

Benchmarks

(c) Fault rate = 50%

Fig. 10. Normalized cache energy consumption under different fault
rates: (a) fault rate = 30%, (b) fault rate = 40%, and (c) fault rate = 50%.

In the design-time, the o’ can be flexibly determined
depending on the expected leakage savings. Since the
amount of the leakage savings heavily depends on the
workload characteristics, more aggressive optimization is
also possible if the expected leakage savings from the work-
load behaviors are likely to be significant. For example, one
can profile the leakage saving information of the frequently-
used workloads by offline and accordingly set the opti-
mized o’ in the design-time.

6.2 Energy

For energy evaluation, we assume that three kinds of fail-
ures (delay, read, and write) are randomly distributed
across the SRAM cells in the L2 cache. Though the device
parameters in the L2 cache have a spatial correlation, the
SRAM failures are incurred in a random fashion, rather
than in a spatially-correlated fashion [10], [14].

Fig. 10 presents normalized energy consumption of
the L2 cache based on three different cache line-level
fault rates: 30, 40, and 50 percent. For instance, if the
cache line-level fault rate is 30, 30 percent (on average)
of the cache lines in the L2 cache are faulty. The fault
rate of 30 percent approximately corresponds to the PV
level 3 ~ 4 (under severe process variations). All of the
results are normalized to the energy results of the base-
wp scheme.

2470

Our evaluation with higher fault rates (40 and 50 percent)
is a projection for more futuristic process technologies. The
more advanced process technology one uses, the higher
process variation one can expect, which increases a fault
rate in the L2 cache.

In the case of the fault rate = 30%, our architecture with-
out energy optimization (prop-bs) shows energy reduction
of 16.9 and 2.2 percent (on average), compared to the base-*
(averaged across base-wp, base-sp, and base-bp) and the nw-*
(averaged across nw-wp, nw-sp, and nw-bp), respectively.
Thanks to the Gated-Vdd, the naive way-reduction schemes
and our proposed architecture save more cache energy com-
pared to the baseline schemes. Since the naive way-reduc-
tion schemes adopt Gated-Vdd in a cache line-level while
our architecture adopts the Gated-Vdd in a cache bit sub-
block-level, a larger portion of the L2 cache might be turned
off in the case of naive way-reduction schemes, under the
same fault rate. However, the naive way-reduction schemes
suffer from more performance degradation (the detailed
performance results are provided in the next section) due to
the reduced number of available cache lines. This perfor-
mance loss brings more leakage energy consumption due to
longer execution time. Thus, the performance overhead
reduction of our architecture also brings energy reduction.

Our proposed architecture with energy optimization
(prop-op) achieves further energy reduction by 18.2 percent
compared to the prop-bs, which is significant. Our energy
optimization technique turns off cache bit subblocks by con-
sidering the actually stored data, which yields near-optimal
leakage energy savings. Though a little more dynamic
energy is consumed to support the prop-op due to the
additional logic, it can be overwhelmed by huge leakage
energy savings. Note that the leakage energy consumption
accounts for more than 95 percent (on average) of the entire
energy consumption in the L2 cache. In the cases of mcf and
gcc, they tend to save more energy compared to the other
benchmarks because a ratio of the narrow-width values is
high in these benchmarks.

In the cases of the fault rates = 40% and 50% with the prop-
op, one can save more energy compared to the base-* by 39.5
and 43.6 percent respectively. Compared to the prop-bs, the
prop-op saves 15.1 and 11.2 percent more energy in the case of
the fault rates = 40% and 50%, respectively. As the fault rate
increases, relative energy savings of the prop-op compared to
the prop-bs decrease. This is because many cache bit subblocks
are already faulty in the case of high fault rates, which lessens
aroom for further leakage energy reduction by the prop-op.

Though our proposed schemes reduce L2 cache energy
consumption, the chip-wide energy consumption including
core’s energy consumption may be different from the L2
cache-only energy results since energy consumption is
affected by execution time. We also show the energy results
which incorporate energy consumption of the processor
core. To figure out chip-wide energy consumption, we
adopt an analytical model that calculates chip-wide energy
consumption:

Epr‘oc-X = Pcure X Te:L'ec_X + PLZ(:(L(;}L& X Teze(t-baseline X NOT77lerzel'g;l/7
(3)

where E,.,._x corresponds to energy consumption of the
processor when using the scheme ‘X’. P, and Pracache are

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

s 12 O base-wp O base-sp O base-bp E nw-wp
= 1.15 . Enw-sp W nw-bp M prop-bs M prop-op
5

g2 11

o

>

2 1.05

G.J

c

(9]

° 1

]

s N

£ 0.95

(=}

Z 09 ‘ :

Faultrate=30% Faultrate=40%

Faultrates

Faultrate=50%

Fig. 11. Normalized energy consumption (average) of the processor
under different fault rates (30, 40, and 50 percent).

power consumed by processor core and L2 cache, respec-
tively. T.,.._x represents the execution time with the scheme
‘X’ Normeperqy corresponds to our normalized energy
results shown in Fig. 10. T¢,.._x results come from our per-
formance evaluation results (see Section 6.3). P.,. and
Procache are obtained from McPAT [39].

Fig. 11 shows the chip-wide energy consumption when
varying the fault rates. In overall, the energy savings
from the L2 cache are offset by increased core energy con-
sumption. This is because of the increased execution time
in the case of nw-* and prop-*. In the case of the fault
rate = 30%, the prop-op saves processor energy by 2.5 per-
cent while the nw-* consumes more energy compared to
the base-* (4.5 percent). In the case of the fault rate = 50%,
the prop-op consumes a little more energy compared
to the base-* (0.3 percent). However, compared to the
nw-*, the prop-op is still far more energy-efficient (10.4 per-
cent more energy saving than the nw-wp).

6.3 Performance

Fig. 12 shows the IPC (normalized to the base-*) for three
different cache line-level fault rates: 30, 40, and 50 per-
cent. Since we assume that the cache access cycle is same
across the layer-partition scheme, we show performance
results across three different schemes: baseline (base-*),
naive way-reduction (nw-*), and our proposed scheme
(prop-*). As shown in Fig. 12, the prop-* shows a small per-
formance loss (2.3 percent, on average) in the case of the
fault rate = 30%. However, the nw-* suffers from higher
performance degradation compared to the prop-* (7.1%,
on average).

In the case of the fault rate = 40% and 50%, the average
performance degradation in the case of the nw-* becomes
10.8 and 14.6 percent, respectively. In contrast, the prop-*
shows much more graceful performance degradation com-
pared to the cases of the nw-*; performance losses of the
prop-* are only 3.8 and 6.4 percent in the case of the fault
rate = 40% and 50%, respectively. In terms of performance,
the prop-* is superior to the nw-* particularly under severe
process variations.

In all benchmarks, the prop-* reduces a performance loss
more than the nw-*. Because an off-chip main memory
access accompanies a huge latency overhead, a last-level
cache miss rate reduction of the prop-* results in better per-
formance. However, when executing mcf and omnetpp, a

KONG ET AL.: AN ENERGY-EFFICIENT LAST-LEVEL CACHE ARCHITECTURE FOR PROCESS VARIATION-TOLERANT 3D...

1.1
* *
g ‘ Onw-* W prop-
- 1
5]
o
T 09
£
=
S
= 08 ‘
0.7 T
astar bzip2 gee gobmk h264ref mcf perlbench omnetpp Geomean
Benchmarks
(a) Fault rate = 30%
1.1 - -
9 O nw- W prop-
- 1
5]
o
© 09
£
S
=Z 08
0.7
astar bzip2 gee gobmk h264ref mcf perlbench omnetpp Geomean
Benchmarks
(b) Fault rate = 40%
11 T
* *
'E)- ‘ O nw- W prop-
- 1
@
s
© 09
£
=
S
= 08
0.7
astar bzip2 gee gobmk h264ref mcf perlbench omnetpp Geomean
Benchmarks

(C) Fault rate = 50%

Fig. 12. Normalized IPC (instruction per clock cycles) results under dif-
ferent fault rates: (a) fault rate = 30%, (b) fault rate = 40%, and (c) fault
rate = 50%.

performance gap between the prop-* and nw-* is less com-
pared to executing the other benchmarks. The main reason
is that these benchmarks are relatively insensitive to the
number of the available cache lines in the L2 cache. On the
other hand, the other benchmarks show a relatively large
performance gap between the prop-* and nw-*. In the case of
perlbench, a performance gap between the prop-* and nw-* is
highest among the eight benchmarks (18.6 percent in the
case of fault rate = 50%). Note that performance also signifi-
cantly affects energy consumption since the leakage energy
consumption is closely related to the execution time. Conse-
quently, the prop-* brings more energy reduction compared
to the nw-*, as shown in Section 6.2.

We also present L2 cache miss rates for each benchmark
across various fault rates in Fig. 13. An overall trend of
cache miss rates is consistent with the IPC results. In most
of the benchmarks, the prop-* shows a little increase of the
cache miss rate compared to the baseline while the nw-*
shows huge miss rate increase. As the fault rate increases,
one can see a steep increase of the L2 cache miss rate in the
case of the nw-*. In contrast, the prop-* shows only a small
miss rate increase, which is translated into better perfor-
mance than the nw-*. In addition, the prop-* leads to less
memory accesses and contention in the interconnection
than the nw-*, which may in turn result in better energy effi-
ciency for the whole computer system.

Cache line invalidations in the case of cache write hit also
contribute to performance degradation of the prop-*. How-
ever, average cache line invalidation rates (= # of invalida-
tions / # of cache accesses) are only 0.06, 0.09, and 0.11
percent in the case of the fault rate = 30%, 40%, and 50%,
respectively. It means a negative impact of the cache line
invalidations in our proposed architecture is negligible.

2471
0.9
g Obaseline
0.8 .
L 07 i Onw-*_30
©
E 0.6 Eprop-*_30
E 05 Enw-* 40
2 04 | nll [| -
rop-*_40
8 03]| B prop-*_
N 02 Hnw-*_50
0.1 —Hﬂ——l W prop-*_50
0 -+ L
XS 9 NS N o N
& ,Qb& & 6°& Q’b‘@ & 0“00 N
M < Qe,"\ &
Benchmarks

Fig. 13. L2 cache miss rates for each benchmark across various fault
rates. The number which follows nw-*_ or prop-*_ corresponds to the
fault rate (percent).

6.4 Area

Our proposed architecture has a small area overhead. For
implementing the prop-bs, the fault bitmap occupies the
largest area (6.04 percent of the entire L2 cache area, which
is obtained from CACTI [31]) among our additional logic
components. The zero-extension logic needs 2-to-1 MUXs,
comparators, and some logic gates (e.g., XOR gates for a
fault bit addition), which are negligible area overhead com-
pared to the entire L2 cache area. The narrow-width value
checker logic needs comparators and AND gates, which is
also trivial. The fit checker logic can be implemented by
small modification from the conventional victim selection
logic. We estimate the additional logic overhead for the
prop-bs as ~7 percent of the entire L2 cache area.

To additionally support the prop-op, we need more area not
only to store the data type information but also to deploy the
control logic components including the MD-positioning logic.
The data type bitmap (32 KB) occupies ~3 percent of the entire
L2 cache area. The other control logic components can be eas-
ily implemented with a small modification in the fit-checker
logic, control signal generator, and data routing crossbar.
According to our conservative estimation, the prop-op needs
~10 percent more area compared to the entire L2 cache area.

There can also be a trade-off between area and energy. If
the microprocessor is supposed to be used in area-con-
strained environment, one can only adopt the prop-bs
instead of the prop-op to reduce area overhead. Otherwise,
for more energy- and yield-efficiency, one can fully adopt
the prop-op by paying a little more area overhead. Another
possible method for the trade-off is to adjust a mapping
granularity of the fault bits, which has been already intro-
duced in [10]. In the case that two cache bit subblocks are
mapped to one fault bit, the area overhead is reduced from
10 to 7 percent in the case of the prop-op.

7 RELATED WORK

Most studies for mitigating process variation are focused on
2D chips [10], [14], [15], [17] rather than 3D chips. There have
been a few studies that are aimed at 3D microprocessors. In
[13], Zhao et al. proposed a DRAM-based LLC architecture
to mitigate process variation in 3D microprocessors. Their
target is DRAM-based cache where data-intensive server
application is preferred for their design. Ferri et al. [40] also
proposed several 3D integration techniques to improve

2472

performance as well as sales profit of chips. Ozdemir et al. [2]
proposed a Cross LAyer Path Splitting (CLAPS) technique
for variation-aware 3D microprocessor design. Their tech-
nique is focused on critical path splitting for yield improve-
ment in 3D microprocessors. Though those techniques we
introduce above are aimed at mitigation of process variation
in 3D microprocessors, our proposed architecture can be
differentiated with those techniques due to the efficient
utilization of the narrow-width values for process variation-
tolerant cache architecture.

The narrow-width value feature has been extensively
explored for power/performance efficiency or soft-error
protection. Brooks and Martonosi [19] utilized the narrow-
width value feature for power reduction and performance
improvement of the microprocessor data path. A register
packing technique [20] of which main goal is performance
improvement also utilizes narrow-width values. Hu et al.
[22] also proposed an in-register duplication technique for
soft-error tolerant register file design. There have been also
several studies that apply the narrow-width value feature to
cache memories. Ergin et al. [21] explored a soft-error resil-
ient L1 data cache design. Islam and Stenstrom [23] proposed
a separated narrow-width cache structure for energy reduc-
tion and performance improvement. However, the techni-
ques introduced above are applied to register files or L1 data
caches. In addition, the main goal of those techniques is not
process variation (hard-error) resilience, but performance
improvement, energy reduction, or soft-error resilience.

As SRAM-based cache memories consume huge leakage
energy, many architectural-level cache leakage management
techniques have also been proposed. Gated-Vdd [4] reduces
cache leakage power by gating the power supply to the
SRAM cells. A cache decay [5] technique manages cache
leakage power in a cache line granularity considering pro-
gram behaviors. Drowsy cache [6] maintains the supply volt-
age of the SRAM cells as a near-threshold level to not only
manage cache leakage but also minimize a cache miss rate.
Chung and Skadron proposed an on-demand wake-up pol-
icy for the L1 instruction cache, which optimizes both cache
leakage and performance [7]. Meng and Joseph proposed a
process variation-aware leakage reduction technique via
cache way-level prioritization [8]. In [9], voltage-scaled cache
designs for process variation-awareness are proposed.
Though they achieved high power savings which have a
potential for leakage-induced yield loss recovery, it has a
limited applicability because our architecture considers vari-
ous causes of the yield losses (both SRAM failures and leak-
age failures). Though another voltage-scaled cache design
[10] also achieved a high yield loss recovery, their design
also considers only delay and leakage failures. Our leakage-
optimized 3D cache architecture in this paper manages cache
leakage in much finer-grained granularity (cache bit subblock-
level: 16-bit granularity). By considering both SRAM cell-
level failures (delay, read, and write) and cache-level failures
(leakage), our cache architecture will bring much higher
yield compared to the previously proposed techniques.

8 CONCLUSION

In this paper, we presented a novel last-level cache architec-
ture to mitigate process variation in 3D die-stacked

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 64, NO.9, SEPTEMBER 2015

Hierarchical
correlation layer-0 0,0)

(1,0 (1,1)
Hierarchical
correlation layer-1

2 (13) 10 layers

(2,0) (2,1) (2,2) 1(2,3)
Hierarchical | (2,4) (2,5) (2,6) (2,7)

correlation layer-2 ‘7 28 (29) (2,10) (211)

(2,12) (2,13) (2,14) (215)

Fig. A1. Ten hierarchical correlation layers to model spatial correlations
of process variation.

microprocessors. Our proposed architecture disables faulty
cache bit subblocks (16-bit) to improve cache yield. Our pro-
posed architecture significantly improves yield by up to 48.3
percent in an energy-/performance-efficient manner with a
small area overhead. Our architecture also enables leakage
energy optimization with a little more area overhead, which
results in additional yield improvement by up to 10.37 per-
cent. In the future process technologies in which higher
process variations are inevitable, our proposed cache archi-
tecture can be a good alternative for future 3D microproces-
sor design. As our future work, we will further optimize
our architecture through: i) evaluating our proposed archi-
tecture with larger LLC capacity, ii) devising a customized/
optimized turn-off policy considering the unique character-
istics of each chip under process variations, iii) investigating
a dynamic support referring to workload characteristics,
and iv) evaluating a trade-off between the design-time tech-
nique and dynamic support.

APPENDIX A

MORE DETAILS ON OUR EVALUATION
METHODOLOGY

A.1 Process Variation Modeling

In this section, we describe our evaluation methodology on
process variation modeling in detail.

Regarding the within-die variation, there are two types
of variation, systematic and random variation. To model the
systematic variation, we build variation maps by using the
model described in [30]. In a die (there are total four dies in
the L2 caches), cache data arrays are divided into 512 x 512
grids with 10 hierarchical correlation layers.” The 10 hierar-
chical correlation layers to build a process variation map
are shown in Fig. Al.

Within one hierarchical correlation layer, the random
variables that correspond to the grids follow Gaussian dis-
tributions with N(0, 0 yithin—iayer)- TO generate the spatially
correlated variation map, the random variables (which are
in the same horizontal location) across 10 hierarchical corre-
lation layers are vertically added up. This added value is

2. Hierarchical correlation layers are virtual layers to model the
within-die variations in a die. Assuming there are N hierarchical corre-
lation layers (from 0 to N-1) to model the variation in one die, the num-
ber of grids in hierarchical correlation layer x is 4*. For more details,
please refer to and [3], [8], and [30].

KONG ET AL.: AN ENERGY-EFFICIENT LAST-LEVEL CACHE ARCHITECTURE FOR PROCESS VARIATION-TOLERANT 3D... 2473
TABLE 6
Five Levels of the Process Variation Severity
Level 0 Level 1 Level 2 Level 3 Level 4
Owithin—layer 0.00 0.03 0.06 0.09 0.12
ovih 0.02*Nominal V};, 0.04*Nominal V;, 0.06*Nominal V;, 0.08*Nominal Vj, 0.1*Nominal Vj,
OLess 0.0111111*Nominal L,;; 0.0166666*Nominal L.;; 0.0222222*Nominal L,;; 0.0277777*Nominal L.y; 0.0333333*Nominal L,

denoted by M,,;q. In our work, since there are 10 hierarchi-
cal correlation layers, 10 independent Gaussian random
variables are added to generate a value for a grid. Assuming

2
Xlayerfn ~ N(O, O'withinflayer)7 (4)

where n is a hierarchical correlation layer number, M,,;q can
be calculated as follows:

Mqrid = Xlayer—() + Xlayer—l + --~Xlayer—8 + Xlayer—& (5)

Now, My, is assigned to each grid in the variation map.
With this variation map, mean Vy;, (M4 1) and mean L.y
(Mriq_reyss) for each grid are calculated as follows:

M gria_vin = Nominal Vih + oy, X Myq, (6)

A/fgrid,Leff = Nominal Leff + OLeff X Mgm‘,d @)

Note that V};, and L. s are generated from the same variation
maps in our work, since as Vj;, increases, L. also tends to
be increased, and vice versa [17].

Each grid is mapped to 1-byte (8-bit SRAM cells) in the
cache arrays and each layer is formed by 512 x 512 grids.
Myriawn, and Mgy g reff are mapped to the appropriate
SRAM cells in the L2 cache according to the layer-partition
scheme. Thus, with the same variation map, the yield
results are different according to the layer-partition
schemes.

We also model random variation effects such as random
dopant fluctuation (RDF). Within 8-bit cells that are mapped
to the same grid, we assign Vj;, and L.ss to each device by
generating Gaussian random variables with N(Mg.q_vin,
ovn?) and N(Mia_ress, 0ress?), respectively.

We assume that four different dies constitute the L2
cache. Each die generated from the above procedure has
quite different characteristics due to D2D variations, thus
representing both D2D and WID variation in the L2 cache of
each processor.

We perform a Monte Carlo simulation to evaluate yield
across five variation severities with 240 chips for each varia-
tion severity level (denoted as ‘PV level’). Thus, total 1,200
chips are simulated (the total number of the variation maps:
1,200 x 4 layers = 4,800). By using different standard devia-
tion values such as oy, and o5, we adjust PV levels. PV
level 0is the case of the lowest process variation severity while
PV level 4 is the case of the highest. Table 6 summarizes the
parameters used for modeling different degrees of the PV
severities.

A.2 SRAM Failure Models

For yield evaluation, we adopt four SRAM failure models:
delay [32], read [33], write [34], and leakage (BSIM leakage
model [35]) failures.

For delay model, we use Sarangi et al’s SRAM delay
model [32]. This model is a simplified version of [33], pro-
posed by Mukhopadhyay et al. The delay cutoff boundary
is set to be jige,,(the mean delay without process variation)
+1.5 X 0gelqy- In order to find the delay failing cells, we cal-
culate the delay of each SRAM cell in the L2 cache and com-
pare it with the delay cutoff boundary. If the calculated
delay of the cell is higher than the delay cutoff, this cell is
regarded as delay failing cells.

When the read failure occurs, the cell data is destroyed
during the read operation (a destructive read). Since it
adversely affects functionality of the microprocessor, con-
sideration on the read failure is also important. For a read
failure model, we use the long channel transistor read fail-
ure model proposed by Mukhopadhyay et al. [33]. We cal-
culate V,¢uq and Vj,rq of each SRAM cell by using the model
in [33] and find the cells of which V., is higher than V},;,.q
(the condition in which the read failure occurs).

The write failure occurs when the write delay (T,,iz.) is
slower than the wordline activation delay (7},.). The write
failures also negatively affect the functionality of the micro-
processor since wrong values may be stored in the micro-
processor caches. For a write failure model, we use a
simplified write failure model proposed by Agarwal and
Nassif [34]. If the calculated write delay of the SRAM cell is
higher than the wordline activation delay, this cell is
regarded as a write failing cell. Assuming the mean write
delay is 1.0, we use 1.32 as a cutoff wordline activation
delay in our work.

The above three SRAM failures occur at the cell-level.
However, leakage failure occurs at the chip-level. In order to
calculate chip-level leakage power consumption, we calcu-
late the leakage power of each SRAM cell by using the BSIM
leakage model [35]. The calculated leakage power values of
each cell are added to calculate leakage power consumed by
the L2 cache arrays. For our parametric yield simulation
(shown in Section 6.1), if consumed leakage power of the
chip is higher than 3 x leakage consumption of the chips without
process variation, this chip is regarded as a yield loss.

Many of the previous studies only modeled delay and/or
leakage failures [2], [8], [10], [14], [16], [17], [18]. However,
in this work, we additionally model the read and write fail-
ures that also have negative impacts on cache yield. Conse-
quently, it leads to more accurate cache yield simulations.
For full details on the SRAM failure models, please refer to
the related papers and documents [32], [33], [34], [35].

2474

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 64, NO.9, SEPTEMBER 2015

TABLE 7
Energy Parameters for Architectural Simulations

Energy parameters for cache array

Set-partition & Way-partition

Bit-partition (including our
proposed scheme)

Dynamic energy per access (J) 0.133012e-9 0.184780e-9
Vertical routing energy (J) 0.000875e-9 0.001110e-9
Leakage power (W) 0.013785 0.013785
Energy parameters for additional logics
Naive wayreduction schemes Our proposed scheme w/o Our proposed scheme
energy optimization w/energy optimization

Dynamic energy (J) 0.001349e-9 0.018703e-9 0.033437e-9
Leakage power (W) 0.0000984 0.0013810 0.0019816
A.3 Energy Parameters ACKNOWLEDGMENTS

Table 7 shows the derived per-access dynamic energy and
leakage power for three different layer-partition schemes.
We obtain the dynamic energy values from CACTI and
properly scale them for 3D configurations to reflect
reduced routing energy in 3D chips. Note that in the set-
partition and way-partition schemes, per-access dynamic
energy consumption is assumed as same since their main
difference of dynamic energy consumption comes from
vertical routing between different layers (i.e., which layer
among four layers is accessed). We also model the vertical
routing access energy including TSV accessing energy by
properly scaling the routing energy obtained from CACTI,
in order to reflect a reduced wire length effect in 3D chips.
Regarding the leakage power, we assume that the same
leakage power is consumed across three layer-partition
schemes because data and tag arrays have same area and
capacity regardless of which layer-partition scheme is
used. However, actual leakage energy consumption of
each chip will be different by selectively applying the
Gated-Vdd [4] to unused cache bit subblocks (lines).

As shown in Table 7, we also derived the energy over-
head of the additional logic components for naive way-
reduction schemes and our proposed architecture. In our
architecture, the energy overhead mainly comes from the
fault bitmaps. Since the fault bitmap structure is similar to
the cache data array structure, we also derived energy con-
sumption of the fault bitmap from CACTI. Note that the
other additional logic components (the narrow-width value
checker logic, zero-extension logic, and fit checker logic)
have negligible energy overhead.

We also reflect the energy overhead from our addi-
tional logic which is introduced for our leakage optimi-
zation. We derived the energy overhead of the data type
bitmap from CACTL For the rest of the logic, we added
an additional energy overhead (only for dynamic energy)
by 30 percent of the data type bitmap energy consump-
tion. Note that it is very conservative assumption since
the data type bitmap consumes a huge portion of the
energy overhead for our additional logic. We ignored
leakage energy consumption from the logic except the
data type bitmap, since leakage energy consumption is
negligible for the control logic.

This work was supported by a National Research Founda-
tion of Korea (NRF) grant funded by the Ministry of Science,
Education, and Technology (NRF-2012R1A2A2A01013816)
and Samsung Electronics. This work was also supported in
part by the ARO STIR (W911NF-14-1-0456), National Sci-
ence Foundation (NSF) (CCF-1116858), and ONR (N00014-
11-1-0885). We would also like to thank the editor and
anonymous reviewers for their helpful feedback. Sung Woo
Chung is the corresponding author of this paper.

REFERENCES

[1]1 J. Kong, S. W. Chung, and K. Skadron, “Recent thermal manage-
ment techniques for microprocessors,” ACM Comput. Surv.,
vol. 44, no. 3, pp. 13:1-13:42, 2012.

[2] S.Ozdemir, Y. Pan, A. Das, G. Memik, G. Loh, and A. Choudhary,
“Quantifying and coping with parametric variations in 3D-
stacked microarchitectures,” in Proc. 47th Des. Autom. Conf., 2010,
pp. 144-149.

[3] J. Kong and S. W. Chung, “Exploiting narrow-width values for
process variation-tolerant 3-D microprocessors,” in Proc. 49th Des.
Autom. Conf., 2012, pp. 1197-1206.

[4] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-Vdd: A circuit technique to reduce leakage in deep-submi-
cron cache memories,” in Proc. Int. Symp. Low Power Electr. Des.,
2000, pp- 90-95.

[5] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting
generational behavior to reduce cache leakage power,” in Proc.
28th Int. Symp. Comput. Archit., 2001, pp. 240-251.

[6] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge,
“Drowsy caches: Simple techniques for reducing leakage power,”
in Proc. 29th Int. Symp. Comput. Archit., 2002, pp. 148-157.

[7] S.W.Chung and K. Skadron, “On-demand solution to minimize i-
cache leakage energy with maintaining performance,” IEEE Trans.
Comput., vol. 57, no. 1, pp. 7-24, Jan. 2008.

[8] K. Meng and R. Joseph, “Process variation aware cache leakage
management,” in Proc. Int. Symp. Low Power Electr. Des., 2006,
pp- 262-267.

[9] A.Sasan, H. Homayoun, A. M. Eltawil, and F. J. Kurdahi, “Process

variation aware SRAM/cache for aggressive voltage-frequency

scaling,” in Proc. Des., Autom. Test Eur., 2009, pp. 911-916.

J. Kong, Y. Pan, S. Ozdemir, A. Mohan, G. Memik, and S. W.

Chung, “Fine-grain voltage tuned cache architecture for yield

management under process variations,” IEEE Trans. VLSI Syst.,

vol. 20, no. 8, pp. 1532-1536, Aug. 2012.

K. Puttaswamy and G. H. Loh, “Implementing caches in a 3D

technology for high performance processors,” in Proc. 23rd Int.

Conf. Comput. Des., 2005, pp. 525-532.

G. H. Loh, “Extending the effectiveness of 3D-stacked DRAM

caches with an adaptive multi-queue policy,” in Proc. 42nd Annu.

IEEE/ACM Int. Symp. Microarchit., 2009, pp. 201-212.

[10]

[11]

[12]

KONG ET AL.: AN ENERGY-EFFICIENT LAST-LEVEL CACHE ARCHITECTURE FOR PROCESS VARIATION-TOLERANT 3D...

[13] B. Zhao, Y. Du, Y. Zhang, and J. Yang, “Variation-tolerant non-
uniform 3D cache management in die stacked multicore process-
or,” in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchit., 2009,
pp. 222-231.

[14] Y. Pan, J. Kong, S. Ozdemir, G. Memik, and S. W. Chung,
“Selective wordline voltage boosting for caches to manage yield
under process variations,” in Proc. 46th Des. Autom. Conf., 2009,
pp. 57-62.

[15] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy,
“A process-tolerant cache architecture for improved yield in
nanoscale technologies,” IEEE Trans. VLSI Syst., vol. 13, no. 1,
pp- 27-38, Jan. 2005.

[16] A. Das, S. Ozdemir, G. Memik, J. Zambreno, and A. Choudhary,
“Microarchitectures for managing chip revenues under process
variations,” Comput. Archit. Lett., vol. 7, no. 1, pp. 5-8, 2008.

[17] E. Humenay, D. Tarjan, and K. Skadron, “Impact of parameter
variations on multi-core chips,” in Proc. Workshop Arch. Support
Gigascale Integr., 2006.

[18] B.F. Romanescu, M. E. Bauer, S. Ozev, and D. J. Sorin, “Reducing
the impact of intra-core process variability with criticality-based
resource allocation and prefetching,” in Proc. Conf. Comput. Fron-
tiers, 2008, pp. 129-138.

[19] D. Brooks and M. Martonosi, “Dynamically exploiting narrow
width operands to improve processor power and performance,”
in Proc. 5th Int. Symp. High Perform. Comput. Arch., 1999, pp. 13-22.

[20] O. Ergin, D. Balkan, K. Ghose, and D. V. Ponomarev, “Register
packing: Exploiting narrow-width operands for reducing register
file pressure,” in Proc. 37th Annu. IEEEJACM Int. Symp. Micro-
archit., 2004, pp. 304-315.

[21] O. Ergin, O. S. Unsal, X. Vera, and A. Gonzdlez, “Exploiting
narrow values for soft error tolerance,” Comput. Arch. Lett.,
vol. 5, no. 2, p. 12, 2006.

[22]]J. S. Hu, S. Wang, and S. G. Ziavras, “In-register duplication:
Exploiting narrow-width value for improving register file
reliability,” in Proc. Int. Conf. Dependable Syst. Netw., 2006,
pp- 281-290.

[23] M. M. Islam and P. Stenstrom, “Characterization and exploitation
of narrow-width loads: The narrow-width cache approach,” in
Proc. Int. Conf. Compilers, Archit. Synth. Embedded Syst., 2010,
pp. 227-236.

[24] X. Jiang, A. K. Mishra, L. Zhao, R. Iyer, Z. Fang, S. Srinivasan,
S. Makineni, P. Brett, and C. R. Das, “ACCESS: Smart
scheduling for asymmetric cache CMPs,” in Proc. 17th Int.
Symp. High Perform. Comput. Archit., 2011, pp. 527-538.

[25] K. Puttaswamy and G. H. Loh, “Thermal herding: Microarchitec-
ture techniques for controlling hotspots in high-performance 3D-
integrated processors,” in Proc. IEEE 13th Int. Symp. High Perform.
Comput. Archit., 2007, pp. 193-204.

[26] ARM Cortex-A series [Online]. Available: http:/ /www.arm.com/
products/processors/cortex-a/

[27] Intel atom processor specification [Online]. Available: http://
www.intel.com/content/www /us/en/processors/atom/atom-
processor.html

[28] H. Park, S. Yoo, and S. Lee, “A novel tag access scheme for low
power L2 cache,” in Proc. Des., Autom. Test Eur., 2011, pp. 655-660.

[29] H. Chang and S. S. Sapatnekar, “Prediction of leakage power
under process uncertainties,” ACM Trans. Des. Autom. Electr. Syst.,
vol. 12, no. 12, 2007.

[30] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao,
K. Gala, and R. Panda, “Path-based statistical timing analysis con-
sidering inter- and intra-die correlations,” in Proc. 8th ACM/IEEE
Int. Workshop Timing Issues Specification Synth. Dig. Syst., 2002,
pp- 16-21.

[31] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches”—HP Laboratories,
2009.

[32] S.R. Sarangi, B. Greskamp, and J. Torrellas, “A model for timing
errors in processors with parameter variation,” in Proc. 8th Int.
Symp. Qual. Electron. Des., 2007, pp. 647-654.

[33] S. Mukhopadhyay, H. Mahmoodi-Meimand, and K. Roy,
“Modeling of failure probability and statistical design of SRAM
array for yield enhancement in nanoscaled CMOS,” IEEE Trans.
CAD Integr. Circuits Syst., vol. 24, no. 12, pp. 1859-1880, Nov. 2005.

[34] K. Agarwal and S. R. Nassif, “Statistical analysis of SRAM cell
stability,” in Proc. 43th Des. Autom. Conf., 2006, pp. 57-62.

[35] BSIM MOSFET Model [Online]. Available: http://www-device.
eecs.berkeley.edu/~bsim3/bsim4.html

2475

[36] Y.-F. Tsai, Y. Xie, N. Vijaykrishnan, and M. J. Irwin, “Three-
dimensional cache design exploration using 3DCacti,” in Proc. Int.
Conf. Comput. Des., 2005, pp. 519-524.

[37] J.J. Sharkey, D. Ponomarev, and K. Ghose, “M-Sim: A flexible,
multithreaded architectural simulation environment,” Dept.
Comput. Sci., State Univ. New York at Binghamton, Tech. Rep.
CS-TR-05-DP01, 2005.

[38] SimpleScalar toolset [Online]. Available: http://www.simplescalar.
com

[39] S.Li,J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An integrated power, area, and timing modeling frame-
work for multicore and many core architectures,” in Proc. 42nd
Annu. IEEEJACM Int. Symp. Microarchit., 2009, pp. 469-480.

[40] C. Ferri, S. Reda, and R. I. Bahar, “Parametric yield management
for 3D ICs: Models and strategies for improvement,” ACM
J. Emerging Technol. Comput. Syst., vol. 4, no. 4, pp. 19:1-19:22, 2008.

Joonho Kong received the BS degree in Com-
puter Science from Korea University, Seoul,
Korea, in 2007. He received the MS and PhD
degrees in Computer Science and Engineering
from Korea University, Seoul, Korea, in 2009 and
2011, respectively. He also worked as a post-
doctoral research associate in the Department
of Electrical and Computer Engineering, Rice
University. He is now an assistant professor in
the School of Electronics Engineering at Kyung-
pook National University. His research interests
include computer architecture design, temperature-aware microproces-
sor design, reliable microprocessor cache design, and hardware secu-
rity. He is a member of IEEE.

Farinaz Koushanfar received the PhD degree in
electrical engineering and computer science and
the M.A. degree in statistics, both from University
of California Berkeley, in 2005, and the M.S.
degree in electrical engineering from the Univer-
sity of California Los Angeles. She is currently an
Associate Professor with the Department of Elec-
trical and Computer Engineering, Rice University,
Houston, TX, where she directs the Texas Instru-
ments DSP Leadership University Program. Her
research interests include adaptive and low
power embedded systems design, hardware security, and design intel-
lectual property protection. Prof. Koushanfar is a recipient of the Presi-
dential Early Career Award for Scientists and Engineers (PECASE), the
ACM SIGDA Outstanding New Faculty Award, the National Academy of
Science Kavli Foundation fellowship, the Army Research Office (ARO)
Young Investigator Program Award, the Office of Naval Research
(ONR) Young Investigator Program Award, the Defense Advanced Proj-
ect Research Agency (DARPA) Young Faculty Award, the National Sci-
ence Foundation CAREER Award, MIT Technology Review TR-35, an
Intel Open Collaborative Research fellowship, and a best paper award
at Mobicom.

Sung Woo Chung received the BS, MS, and
PhD degrees in Electrical Engineering and
Computer Science from Seoul National Univer-
sity, Seoul, Korea, in 1996, 1998, and 2003,
respectively. He is currently an associate
professor in the Department of Computer and
Radio Communication Engineering at Korea Uni-
versity. His research interests include low-power
design, temperature-aware design, and user-
aware design. He is a senior member of the IEEE
and member of the IEEE Computer Society. He
serves (and served) on the technical program committees in many con-
ferences, including International Conference on Computer Design, Inter-
national Symposium on Quality Electronic Design, and Asia and South
Pacific Design Automation Conference. He is currently an Associate Edi-
tor of IEEE Transactions on Computers.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

