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utomated optimi-
zation algorithms 
are extensively used 
to search for optimal 
design parameters 

in applications ranging from design-
ing compilers and analog circuits to 
crafting embedded machine-learning 
technology. System optimization is par-
ticularly laborious as the pertinent de-
sign space includes various conflicting 
objectives and a swarm of free param-
eters. Automating parameter optimiza-
tion can enhance system quality while 
ensuring low design cost and high per-
formance. In this tutorial, we review 
several recent optimization tools for 
selecting design parameters and archi-
tecture. These tools include heuristic 
methods, reinforcement learning (RL), 

and evolutionary strategies. We elabo-
rate on the basics of each algorithm 
and explain the benefits and tradeoffs 
when each is applied to system design. 
To demonstrate how these methods 
can be applied, we review several real-
world examples: analog circuit design, 
neural network compression, and the 
design of domain-specific accelerators. 
We also touch on possible research di-
rections and remaining challenges that 
need to be addressed.

Automated Design  
Optimization Tools
With the ever-growing demand for 
lower-power, higher-performance, 
and more compact analog and digital 
circuits, manual design has become 
increasingly laborious and time con-
suming. Meanwhile, as designs be-
come more complex and the number 
of system components increases, the 

underlying space of design choices 
expands exponentially. Therefore, an 
automated circuit optimization tool 
that can reduce engineering cost and 
ensure ease of use, accuracy, and 
generalizability is highly desirable.

Circuit design can be viewed as 
an optimization problem consisting 
of multiple objectives (e.g., minimiz-
ing power consumption), constraints 
(e.g., linearity), and design hyper-
parameters (e.g., circuit component 
values). The pertinent constrained 
multiobjective optimization can be 
solved using the rich reservoir of 
optimization tools introduced in the 
literature. In general, the circuit-de-
sign process can be divided into two 
main phases:
1)	topological design, where the 

desired functionality is imple-
mented by connecting circuit 
components
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2)	circuit sizing, where the focus is 
on parameter-level optimization 
for a fixed circuit topology. 

Optimization methodologies have 
been applied to circuit sizing, includ-
ing the sizing of RF circuits [1], [2], 
operational amplifiers [3], and other 
analog circuits [4]–[9]. The applica-
tions for automated optimization tools 
are not limited to analog circuit sizing. 
In general, any system-design task that 
requires adjusting a set of hyperpa-
rameters can benefit from automated 
optimization methodologies.

System design on a high level can 
be directly translated to optimizing 
a score function ( ): ,F x R Rd "  where 
x is a d-dimensional vector of hyper-
parameters and (F $) is an arbitrary 
measure of quality. This measure can 
be formulated by combining several 
design objectives that characterize 
system performance, e.g., power con-
sumption, area, and throughput. The 
underlying optimization task can be 
regarded as a search over the values 
of F(x) in a d-dimensional space where 
the boundaries are specified by the 
design constraints. A good optimiza-
tion algorithm is one that can be glob-
ally applied to arbitrary problems 
and can find the global optima of (F $) 
with a low search overhead.

Optimization can be performed 
using two different approaches: numer-
ical methods and black-box methods. 
Numerical methods assume access to 
the underlying algebraic model that 
relates design hyperparameters to the 
score function [10]. The task of finding 
the underlying mathematical expres-
sions is often exhaustive, if not impos-
sible. Black-box methods address this 
challenge by assuming that the score 
function is not explicitly known and 
thus merely resorting to empirical 
(noisy) evaluations of F(x). In this arti-
cle, we explain the fundamentals of 
three black-box optimization methods. 
For each method, we provide practical 

system-design examples to illustrate 
its applicability in real-world tasks. We 
conclude by suggesting future research 
directions and areas worth exploring.

Problem Formulation
System design can be viewed as an 
optimization problem where design 
choices represent the optimization 
variables (hyperparameters). In this 
setting, system constraints and design 
requirements represent the objective 
functions for optimization. After the 
design hyperparameters and corre-
sponding objective functions are de-
termined, the hyperparameters are 
translated to a vectorized representa-
tion. Various optimization tools can 
then be used to explore the under-
lying hyperparameter vector space 
and find the solution that results in 
a good performance. For a vector of 
hyperparameters ),(x Rd!  we assume 
access to an oracle, ( ): ,F x R Rd "  that 
serves as an objective function to the 
optimization problem. The optimiza-
tion goal is thus to find the maxima 
(or minima) of the objective function, 
with the caveat that (F $) is not known 
in advance. To provide a better under-
standing, let us consider the example 
of circuit design.

To perform automated circuit 
optimization, we assume an initial ex-
pert-designed mapping of circuit ele-
ments and seek to enhance the design, 
given a set of user-defined objectives. 
Toward this goal, the first step is 
identifying the design variables, i.e., 
a subset of hyperparameters { }xi i

d
1=  

that can be tuned to improve the de-
sign objective. As an example, hyper-
parameters can be analog component 
characteristics, e.g., capacitance, re-
sistance, and transistor dimensions. 
The design hyperparameters are ap-
pended to form a vector representa-
tion .x Rd!  Enhancing analog circuit 
performance can then be formally de-
fined as a multiobjective, constrained 

optimization. Here, the objective func-
tions ( ), ( )f x f xm1 f  represent differ-
ent circuit performance metrics, i.e., 
the figure of merit. Examples of the 
objective function include power, noise 
resiliency, and linearity.

In reality, the objectives often con-
flict with one another. The goal of a 
multiobjective optimization algo-
rithm is thus to find a set of solutions 
that lie on the Pareto frontier curve. 
By definition, Pareto optimal solutions 
are those that cannot be improved in 
any of the objective functions without 
harming at least one other objective. 
In general, extracting all Pareto opti-
mal solutions can be rather costly for 
real-world complex circuits. A relaxed 
alternative is to solve a single-objec-
tive optimization of a score function 
instead. The score (F $) is a carefully 
designed combination of (fi s$)  that 
incorporates the pertinent tradeoffs 
among the objective functions. More 
specifically, the score function (F $) 
represents a goodness measure for a 
given vector of circuit hyperparam-
eters. Therefore, the optimization 
goal is equivalent to maximizing (F $) 
and obtaining a “good” design that ad-
heres to the desired characteristics. A 
simple example of such a score func-
tion is a linear combination of objec-
tive functions .( ) ( )F x w f xm

i i i1R= =  The 
relaxed optimization objective can, 
therefore, be formalized as
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where ( )C xi  is a set of constraints 
that are either user-defined limits on 
certain design metrics, e.g., power, 
or rules imposed by analog circuit 
laws, e.g., Kirchhoff’s current law 
and Kirchhoff’s voltage law. Another 
set of constraints corresponds to 
boundaries on design hyperparam-
eters, ,[ ],b bmin max  as a result of the 
fabrication process or specific design 
requirements. In the following sec-
tions, we elaborate on three contem-
porary methods for hyperparameter 
optimization: greedy algorithms, RL, 

The goal of a multiobjective optimization 
algorithm is to find a set of solutions that lie  
on the Pareto frontier curve.
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and evolutionary strategies. We pro-
vide several system design examples 
for the optimization techniques but 
emphasize that these methods are 
generic and applicable to a wide vari-
ety of problems.

Grid-Search and Heuristic  
Algorithms

Grid Search 
One way to solve the maximization 
problem of (1) is to evaluate all possible 
parameter settings and select the one 
that renders the best score function. 
Naively evaluating all possible param-
eters can be quite costly. That’s why 
smart grid-search algorithms are highly 
preferred. In many system-design 
tasks, the total number of possible con-
figurations can be reduced to a much 
smaller set. As an example, we consider 
a robustness-assurance task where a 
set of defender modules is used to pro-
tect a machine-learning model against 
integrity attacks. We briefly discuss the 
task here (Figure 1); for detailed sys-
tem specifications, refer to [11]. The 
system to be designed in this example 
is a domain-specific accelerator imple-
mented on a field-programmable gate 
array (FPGA) that can perform the com-
putations of all defender modules as 
fast as possible. We assume that Ndef  
defender modules are to be executed in 
parallel while each defender itself uses 
NPU processing units from the underly-
ing hardware accelerator. The limiting 
factors in this example are hardware 
resources, such as the available digital 
signal processing (DSP) units (#DSP), 
memory (#BRAM), flip-flops (#FF), and 
logic gates (#LOGIC) on the underlying 
FPGA board. The objective here is to 
maximize the number of defender 
modules by setting Ndef  and ,Npu  
while abiding by throughput and plat-
form constraints. This problem can be 
efficiently solved using a grid-search 
approach: for a fixed ,Ndef  the total avail-
able resources for each defender mod-
ule are # ,DSP Ndef^ h  # ,BRAM Ndef^ h  
# ,FF Ndef^ h  and (#LOGIC ).Ndef  Given 

these constraints, the maximum val-
ues for NPU  and the throughput are 
uniquely determined. Therefore, the 

dimensionality of the search space can 
be reduced by one. We evaluate the 
throughput under different N sdef  and 
the corresponding unique NPU  and 
select the configuration with the maxi-
mum Ndef  that satisfies the throughout 
requirement. Domain-specific accel-
erator design [12] for machine-learning 
applications is another example use 
case of grid-search methodologies for 
system optimization. Unlike the pre-
vious examples, many tasks are not 
reducible to smaller problems due to 
the interdependency among the opti-
mization parameters. One approach for 
tackling such tasks is to use a greedy-
search algorithm.

Heuristic (Greedy) Algorithms 
A greedy algorithm starts from an 
initial hyperparameter vector, x, and 
modifies this vector toward a bet-
ter solution in a step-by-step man-
ner. Let us consider the task of deep 
neural network (DNN) compression 
[13], [14] as an example optimization 
problem. DNNs are hierarchical archi-
tectures formed by stacking multiple 
layers (Figure 2). Each layer extracts a 
set of features from an input vector. 
In particular, the lth layer performs 
a linear operation between the layer 
input and a weight tensor ,Wl l 1" +  fol-
lowed by a nonlinearity. The weight 
matrix is known as the layer param-
eter. The goal of DNN compression is 
to reduce the model complexity by 

applying a compression technique. Fig-
ure 2 presents an example compres-
sion technique for quantization that 
aims to reduce the DNN’s memory 
footprint by lowering the number of 
bits required for model storage and 
computation. In this scenario, the op-
timization hyperparameters are the 
number of bits used to represent the 
model’s parameters/outputs. These 
hyperparameters should be speci-
fied for each layer of the DNN. The 
parameter space to be searched is, 
therefore, a vector x RL!  for an L-
layer DNN, where the ith element x[i] 
is the bitwidth for layer i. 

In this example, there are two con-
flicting design objectives: high DNN 
classification accuracy ( )f x1  and a 
small total memory footprint .( )f x2   
As we reduce the bitwidths, the mem-
ory footprint decreases, but the clas-
sification accuracy also drops, which 
is highly undesirable. Our goal is to 
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FIGURE 1: A chart illustrating domain-specific FPGA acceleration for defending a victim 
machine-learning model against integrity attacks. The number of parallel defender modules 
(Ndef) and the per-unit parallelism factor (NPU) should be specified according to the FPGA’s 
resource availability to obtain optimal performance. PU: processing unit; RAMs: random 
access memories. 
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FIGURE 2: An example of a DNN quantiza-
tion task where the goal is to specify the 
per-layer bitwidths.
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find a set of per-layer quantization 
bitwidths x that maximize a score 
function F(x), which is a combination 
of ( )f x1  and .( )f x2  

The score function is specifically 
designed to minimize ( )f x2  while max-
imizing .( )f x1  The greedy algorithm 
starts with a vector { , , ,x B B B0 f= }  
with a maximum quantization bit-
width B at all layers. The superscript 
here denotes the algorithm step. 
At step t, the parameter vector xt  is 
updated to .xt 1+  There are L candi-
dates for the parameter vector x at the 
next step, where the ith candidate is 
obtained by changing [ ] [ ]x i x i 1t t" -  
while keeping all other elements 

[ (x j it )j !]  constant. Among these, 
the candidate that results in the maxi-
mum score function F(x) is selected, 
and the vector xt  is updated accord-
ingly. While this algorithm is fairly 
simple, it can achieve a better com-
pression rate and accuracy compared 
to DNNs designed by human experts. 
See [13] and [14] for a detailed expla-
nation of the algorithm applied to 
other compression techniques.

Reinforcement Learning
In an RL setting, an autonomous 
agent interacts with an environment. 
Through this interaction, the agent 
gradually learns to adjust its behav-
ior based on the consequences of its 
decisions (actions). Figure 3 demon-

strates the RL loop. The agent, which 
is generally controlled by a machine-
learning algorithm, observes a state 
st  of the environment at each time 
step. The agent then uses a policy r  
to choose an action at  based on the 
observed state .st  More specifically, 
a policy specifies a probabilistic dis-
tribution for possible actions a given 
the state S, i.e., S .: ( | )S A aP$r =  
As a result of the agent’s action under 
policy ,r  the environment state tran-
sitions to ,st 1+  and a reward rt 1+  is 
produced. The reward acts as a feed-
back for the RL agent that determines 
the quality of the chosen action in 
the previous time step. The RL agent 
thus aims to learn an optimal policy, 

,)r  that maximizes the cumulative 
(discounted) reward. In the context 
of automated optimization, the state 
st  is the current choice of design hy-
perparameters, i.e., the vector x. The 
action a changes x with the hope of 
increasing F(x). The per-step reward 
rt  is, therefore, defined as the in-
crease in the score function from one 
step to the next.

Let us consider an example use 
case of RL in circuit optimization [15] 
where the optimized circuit parame-
ters are learned after several rounds 
of interaction with a circuit-simula-
tion environment. During each inter-
action, the RL agent collects from the 
simulated circuits a set of observa-
tions that include

■■ the global and high-level simula-
tion results, e.g., the dc operating 
point voltage and current at each 
node and the ac amplitude/phase 
responses

■■ the local element-level results, 
e.g., the feature of each transis-
tor containing ,Vth  ,gm  ,Vdsat  and 
so on.
Based on the acquired observations 

from the simulation environment, the 
RL agent outputs an action that deter-
mines the new value for circuit hy-
perparameters, e.g., transistor width 

and lengths, capacitances, and resis-
tances. The optimization objectives in 
this problem are the set of specifica-
tions that need to be satisfied by the 
design. For each action chosen by the 
RL agent, the simulation environment 
outputs a set of performance metrics 
achieved by the circuit with the cor-
responding parameter values. The RL 
agent’s reward is then defined to rep-
resent the extent to which the chosen 
circuit parameters satisfy the desired 
design specifications. Besides circuit 
optimization, RL-based methods have 
shown success in a variety of other 
optimization tasks, e.g., device place-
ment [16] and battery management 
[17]. The RL approach generally has 
a higher sample efficiency compared 
to grid-search approaches, meaning 
that it requires fewer circuit simula-
tions to obtain a design with similar 
performance quality. However, the 
complexity of the incorporated ma-
chine-learning models renders the 
training of the RL agent computation-
ally expensive and excessively time 
consuming. Furthermore, due to the 
sequential and iterative nature of RL 
training, the runtime of the optimiza-
tion algorithm cannot be reduced by 
parallelism techniques.

Evolutionary Strategies
Evolutionary strategies are metaheuris-
tic optimization approaches inspired 
by natural evolution and the notion of 
survival of the fittest. These methods 
can be used to perform automated 
parameter tuning for various system-
design tasks. The core idea is to create 
a collection of hyperparameter vec-
tors , , ,x x xP n1 2 f= " , and gradually 
change them to achieve a better system 
design on average. In this context, each 
vector xi  is called an individual and the 
collection P  is called a population. At 
step t of the algorithm, the population 
is updated "P Pt t 1+  in a way that the 
hyperparameter vectors in Pt 1+  are 
equally good or better than those in Pt  
on average. 

The process of evolving a popula-
tion (Figure 4) consists of four con-
secutive steps. In the evaluation step, 
the optimization score function (F $) 
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Rewards
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at

rt

st

st +1
rt +1

FIGURE 3: An illustration of the RL setting.

In an RL setting, an autonomous agent interacts 
with an environment.
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is calculated over the population, 
and individuals are assigned scores 
representing their quality, i.e., fit-
ness. The selection step then samples 
from the current population based 
on each individual’s fitness score. In 
this process, superior individuals 
(with high scores) are passed to the 
next phase, and inferior individuals 
(with low scores) are eliminated. The 
next two steps, dubbed crossover and 
mutation, operate on the surviving 
individuals. Crossover and mutation 
aim to explore the proximity of the se-
lected individuals by injecting small 
random perturbations. More specifi-
cally, crossover simultaneously com-
bines two individuals and generates 
two offspring hyperparameter vec-
tors. Mutation acts on each individual 
by randomly tweaking the vector ele-
ments. By continuously updating the 
population using the aforementioned 
steps, the average score across the 
population gradually increases. The 
optimization algorithm converges 
once the average score stops im-
proving, and the individual with the 
highest score renders the optimal hy-
perparameter configuration.

Evolutionary strategies offer sev-
eral benefits when used for automated 
system design:

■■ The simplicity of evolutionary al-
gorithms makes them amenable 
to many system-design tasks. The 
computational burden of evolu-
tionary strategies is much lower 
than it is for machine-learning-
based approaches, such as RL.

■■ The computations involved in 
evolutionary strategies are highly 
parallelizable, as the evaluation of 
individuals can be performed inde-
pendently. As a result, these meth-
ods offer scalability, especially in 
many-core and distributed-com-
puting platforms.

■■ Evolutionary strategies can ef-
fectively learn to adopt multiple 
optimization objectives simulta-
neously. This property provides a 
low optimization cost for various 
engineering tasks [18].
We consider a DNN-compression 

task to illustrate evolutionary strate-

gies. (We briefly explain the problem 
here. See [19] for a detailed discus-
sion.) Figure 5 presents the overview 
of this task, where a set of compres-
sion techniques is available for appli-
cation to each layer of the DNN. This 
optimization task requires choosing a 
subset of available compression tech-
niques and their corresponding com-
pression intensities. The optimization 
objective is to effectively compress 
the DNN such that the overall classifi-
cation accuracy is minimally affected 
while the hardware performance is 
maximally improved. This can be 
done by formulating DNN compres-
sion as an evolutionary process [19]. 

The individual vectors are obtained 
by appending the per-layer compres-
sion rates into the vector x. For each 
such vector, the corresponding score 
F(x) is achieved by compressing the 
DNN with x, running it on the target 
hardware, and measuring/estimating 
the execution cost and classification 

accuracy. By creating populations of 
such individual vectors and iteratively 
applying genetic operations to them, 
one can achieve superior DNN archi-
tectures compared to human-expert 
designs [19]. While we illustrate the 
usability of evolutionary strategies 
for DNN compression, we emphasize 
that this method can also be applied 
in other domains, including those 
involving analog circuit optimization 
[8], [20], neural architecture search 
[21], and robotic control [22].

Conclusions and Future Direction
We reviewed here several black-box 
optimization tools and showed their 
potential in automating hyperparame-
ter selection for various applications. 
We illustrated each optimization 
scheme using a practical system-
design task. While contemporary 
researchers have applied these intel-
ligent schemes to system designs 
on a small scale, current optimization  
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FIGURE 4: The evolution process of a population.
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FIGURE 5: A DNN compression task. Each layer of the network should be compressed using 
a set of compression techniques. Each compression technique has a hyperparameter, e.g., 
pruning rate and quantization bitwidth, that controls the amount of compression applied.
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methods can perform poorly for 
large-scale designs with millions of 
hyperparameters. In addition, for 
many design tasks, simulating system 
performance for each hyperparam-
eter configuration is quite costly and 
time consuming. Therefore, devising 
sample-efficient optimization meth-
odologies that can find the near-opti-
mal hyperparameters by means of 
few simulations can greatly increase 
the applicability of these tools in the 
design of more complex systems. On 
a separate note, most research articles 
assume a predetermined architecture 
and aim to optimize the hyperparam-
eters in that setting. Designing the 
underlying system architecture still 
highly relies on human experts, and 
automating this process remains a 
standing challenge. As such, devel-
oping novel optimization techniques 
that can effectively perform low-level 
design choices is highly desirable.

References
[1]	 S. H. Yeung, W. S. Chan, K. T. Ng, and 

K. F. Man, “Computational optimization 
algorithms for antennas and RF/micro-
wave circuit designs: An overview,” IEEE 
Trans. Ind. Informat., vol. 8, no. 2, pp. 
216–227, 2012.

[2]	 P. Mandal and V. Visvanathan, “CMOS op-
amp sizing using a geometric program-
ming formulation,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 20, 
no. 1, pp. 22–38, 2001.

[3]	 M. delM. Hershenson, S. P. Boyd, and T. H. 
Lee, “Optimal design of a CMOS op-amp 
via geometric programming,” IEEE Trans. 
Comput.-Aided Design Integr. Circuits 
Syst., vol. 20, no. 1, pp. 1–21, 2001.

[4]	 A. Jafari, E. Bijami, H. R. Bana, and S. 
Sadri, “A design automation system for 
CMOS analog integrated circuits using 
new hybrid shuffled frog leaping algo-
rithm,” Microelectron. J., vol. 43, no. 11, 
pp. 908–915, 2012.

[5]	 R. Vural and T. Yildirim, “Analog circuit 
sizing via swarm intelligence,” AEU-Int. J. 
Electronics Commun., vol. 66, no. 9, pp. 
732–740, 2012. 

[6]	 D. Ghai, S. P. Mohanty, and E. Kougianos, “De-
sign of parasitic and process-variation aware 
nano-CMOS RF circuits: A VCO case study,” 
IEEE Trans. Very Large Scale Integr. (VLSI) 
Syst., vol. 17, no. 9, pp. 1339–1342, 2009.

[7]	 D. Ghai, S. P. Mohanty, and G. Thakral, “Fast 
optimization of nano-CMOS voltage-con-
trolled oscillator using polynomial regres-
sion and genetic algorithm,” Microelectron. 
J., vol. 44, no. 8, pp. 631–641, 2013.

[8]	 P. K. Rout, D. P. Acharya, and G. Panda, “A 
multiobjective optimization based fast 
and robust design methodology for low 
power and low phase noise current starved 
VCO,” IEEE Trans. Semicond. Manuf., vol. 27, 
no. 1, pp. 43–50, 2013. 

[9]	 W. Lyu et al., “An efficient Bayesian opti-
mization approach for automated optimi-

zation of analog circuits,” IEEE Trans. on 
Circuits and Syst. I: Regular Papers, vol. 
65, no. 6, pp. 1954–1967, 2017.

[10]	A. Mirhoseini, B. D. Rouhani, E. M. Song-
hori, and F. Koushanfar, “Perform-ML: Per-
formance optimized machine learning by 
platform and content aware customiza-
tion,” in Proc. 2016 53nd ACM/EDAC/IEEE 
Design Automation Conf. (DAC), pp. 1–6.

[11]	B. D. Rouhani, M. Samragh, M. Javaheripi, 
T. Javidi, and F. Koushanfar, “Deepfense: 
Online accelerated defense against adver-
sarial deep learning,” in Proc. 2018 IEEE/
ACM Int. Conf. Computer-Aided Design (IC-
CAD), pp. 1–8.

[12]	M. Samragh, M. Ghasemzadeh, and F. 
Koushanfar, “Customizing neural net-
works for efficient FPGA implementa-
tion,” in Proc. 2017 IEEE 25th Annu. Int. 
Symp. Field-Programmable Custom Com-
puting Machines (FCCM), pp. 85–92.

[13]	M. Samragh, M. Javaher ipi, and F. 
Koushanfar, CodeX: Bit-flexible encoding 
for streaming-based FPGA acceleration 
of DNNs. 2019. [Online]. Available: arX-
iv:1901.05582

[14]	M. Samragh, M. Javaheripi, and F. 
Koushanfar, “Autorank: Automated rank 
selection for effective neural network 
customization,” in Proc. ML-for-Systems 
Workshop 46th Int. Symp. Computer Ar-
chitecture (ISCA), 2019, pp. 1–6. [On-
line]. Available: https://mlforsystems 
.org/assets/papers/isca2019/MLforSys 
tems2019_Mohammad_Samragh.pdf

[15]	H. Wang, J. Yang, H.-S. Lee, and S. Han, 
Learning to design circuits. 2018. [On-
line]. Available: arXiv:1812.02734

[16]	A. Mirhoseini et al., “Device placement op-
timization with reinforcement learning,” 
in Proc. 34th Int. Conf. Machine Learning, 
2017, pp. 2430–2439.

[17]	A. Mirhoseini and F. Koushanfar, “Hy-
poenergy. Hybrid supercapacitor-battery 
power-supply optimization for energy 
efficiency,” in Proc. 2011 Design, Automa-
tion & Test in Europe, pp. 1–4.

[18]	A. Konak, D. W. Coit, and A. E. Smith, 
“Multi-objective optimization using genet-
ic algorithms: A tutorial,” Rel. Eng. System 
Safety, vol. 91, no. 9, pp. 992–1007, 2006. 

[19]	M. Javaheripi, M. Samragh, T. Javidi, 
and F. Koushanfar, “Ascai: Adaptive 
sampling for acquiring compact AI,” in 
Proc. AutoML Workshop 36th Int. Conf. 
Machine Learning (ICML), 2019, pp. 1-8. 
[Online]. Available: https://www.automl 
.org/wp-content/uploads/2019/06/ 
automlws2019_Paper29.pdf

[20]	B. Liu et al., “Analog circuit optimization 
system based on hybrid evolutionary al-
gorithms,” Integration, VLSI J., vol. 42, no. 
2, pp. 137–148, 2009. 

[21]	L. Xie and A. Yuille, Genetic CNN. 2017. 
[Online]. Available: https://arxiv.org/
abs/1703.01513

[22]	B. Patle, D. Parhi, A. Jagadeesh, and S. K. 
Kashyap, “Matrix-binary codes based ge-
netic algorithm for path planning of mo-
bile robot,” Comput. Electr. Eng., vol. 67, 
pp. 708–728, 2018.

About the Authors
Mojan Javaheripi (mojan@ucsd.edu) 
received her B.Sc. degree in electri-
cal engineering from the Sharif Uni-
versity of Technology, Tehran, Iran, 
in 2017. She is a Ph.D. student in the 

Department of Electrical and Com-
puter Engineering, at the University 
of California, San Diego. Her research 
interests include the intersection of 
machine learning and computer archi-
tecture. Her projects aim at codevel-
oping machine learning algorithms 
and their corresponding specialized 
hardware with the goal of maximiz-
ing efficiency and performance. She 
is the recipient of the 2019 Qualcomm 
Innovation Fellowship for her efforts 
in black-box optimization.

Mohammad Samragh (msamragh@ 
ucsd.edu) received his B.Sc. degree in 
electrical engineering from the Sharif 
University of Technology, Tehran, 
Iran, in 2015 and his master’s degree 
from the University of California, San 
Diego (UCSD), in 2018. He is a Ph.D. 
student in the Department of Electrical 
and Computer Engineering, at UCSD. 
His research interests include hard-
ware–software codesign for embedded 
machine learning, adversarial deep 
learning, and privacy-preserving deep 
learning. He is the recipient of the 2019 
Qualcomm Innovation Fellowship for 
his efforts in black-box optimization.

Farinaz Koushanfar is a professor 
and Henry Booker Faculty Scholar in 
the Electrical and Computer Engineer-
ing Department at the University of 
California, San Diego (UCSD), where 
she directs the Adaptive Computing 
and Embedded Systems Lab. She is 
the cofounder and codirector of the 
UCSD Center for Machine-Integrated 
Computing and Security. Her research 
addresses aspects of efficient com-
puting and embedded systems, with 
a focus on hardware and system se-
curity and real-time/energy-efficient 
and big data analytics under resource 
constraints, among others. She has 
received a number of awards and 
honors, including the Presidential 
Early Career Award for Scientists and 
Engineers from President Obama and 
the Cisco IoT Security Grand Chal-
lenge Award. She is an IEEE Fellow 
and a fellow of the Kavli Foundation 
Frontiers of the National Academy 
of Engineering.

�


