
1943-0582/19©2019IEEE	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 20 19 	 23

utomated optimi-
zation algorithms
are extensively used
to search for optimal
design parameters

in applications ranging from design-
ing compilers and analog circuits to
crafting embedded machine-learning
technology. System optimization is par-
ticularly laborious as the pertinent de-
sign space includes various conflicting
objectives and a swarm of free param-
eters. Automating parameter optimiza-
tion can enhance system quality while
ensuring low design cost and high per-
formance. In this tutorial, we review
several recent optimization tools for
selecting design parameters and archi-
tecture. These tools include heuristic
methods, reinforcement learning (RL),

and evolutionary strategies. We elabo-
rate on the basics of each algorithm
and explain the benefits and tradeoffs
when each is applied to system design.
To demonstrate how these methods
can be applied, we review several real-
world examples: analog circuit design,
neural network compression, and the
design of domain-specific accelerators.
We also touch on possible research di-
rections and remaining challenges that
need to be addressed.

Automated Design
Optimization Tools
With the ever-growing demand for
lower-power, higher-performance,
and more compact analog and digital
circuits, manual design has become
increasingly laborious and time con-
suming. Meanwhile, as designs be-
come more complex and the number
of system components increases, the

underlying space of design choices
expands exponentially. Therefore, an
automated circuit optimization tool
that can reduce engineering cost and
ensure ease of use, accuracy, and
generalizability is highly desirable.

Circuit design can be viewed as
an optimization problem consisting
of multiple objectives (e.g., minimiz-
ing power consumption), constraints
(e.g., linearity), and design hyper-
parameters (e.g., circuit component
values). The pertinent constrained
multiobjective optimization can be
solved using the rich reservoir of
optimization tools introduced in the
literature. In general, the circuit-de-
sign process can be divided into two
main phases:
1)	topological design, where the

desired functionality is imple-
mented by connecting circuit
components

A tutorial on automated
design optimization and
parameter search

Mojan Javaheripi, Mohammad Samragh,
and Farinaz Koushanfar

F
O

O
TA

G
E

 F
IR

M
, I

N
C

.

Peeking Into
the Black Box

A

Digital Object Identifier 10.1109/MSSC.2019.2939336

Date of current version: 18 November 2019

24	 FALL 20 19	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

2)	circuit sizing, where the focus is
on parameter-level optimization
for a fixed circuit topology.

Optimization methodologies have
been applied to circuit sizing, includ-
ing the sizing of RF circuits [1], [2],
operational amplifiers [3], and other
analog circuits [4]–[9]. The applica-
tions for automated optimization tools
are not limited to analog circuit sizing.
In general, any system-design task that
requires adjusting a set of hyperpa-
rameters can benefit from automated
optimization methodologies.

System design on a high level can
be directly translated to optimizing
a score function (): ,F x R Rd " where
x is a d-dimensional vector of hyper-
parameters and (F $) is an arbitrary
measure of quality. This measure can
be formulated by combining several
design objectives that characterize
system performance, e.g., power con-
sumption, area, and throughput. The
underlying optimization task can be
regarded as a search over the values
of F(x) in a d-dimensional space where
the boundaries are specified by the
design constraints. A good optimiza-
tion algorithm is one that can be glob-
ally applied to arbitrary problems
and can find the global optima of (F $)
with a low search overhead.

Optimization can be performed
using two different approaches: numer-
ical methods and black-box methods.
Numerical methods assume access to
the underlying algebraic model that
relates design hyperparameters to the
score function [10]. The task of finding
the underlying mathematical expres-
sions is often exhaustive, if not impos-
sible. Black-box methods address this
challenge by assuming that the score
function is not explicitly known and
thus merely resorting to empirical
(noisy) evaluations of F(x). In this arti-
cle, we explain the fundamentals of
three black-box optimization methods.
For each method, we provide practical

system-design examples to illustrate
its applicability in real-world tasks. We
conclude by suggesting future research
directions and areas worth exploring.

Problem Formulation
System design can be viewed as an
optimization problem where design
choices represent the optimization
variables (hyperparameters). In this
setting, system constraints and design
requirements represent the objective
functions for optimization. After the
design hyperparameters and corre-
sponding objective functions are de-
termined, the hyperparameters are
translated to a vectorized representa-
tion. Various optimization tools can
then be used to explore the under-
lying hyperparameter vector space
and find the solution that results in
a good performance. For a vector of
hyperparameters),(x Rd! we assume
access to an oracle, (): ,F x R Rd " that
serves as an objective function to the
optimization problem. The optimiza-
tion goal is thus to find the maxima
(or minima) of the objective function,
with the caveat that (F $) is not known
in advance. To provide a better under-
standing, let us consider the example
of circuit design.

To perform automated circuit
optimization, we assume an initial ex-
pert-designed mapping of circuit ele-
ments and seek to enhance the design,
given a set of user-defined objectives.
Toward this goal, the first step is
identifying the design variables, i.e.,
a subset of hyperparameters { }xi i

d
1=

that can be tuned to improve the de-
sign objective. As an example, hyper-
parameters can be analog component
characteristics, e.g., capacitance, re-
sistance, and transistor dimensions.
The design hyperparameters are ap-
pended to form a vector representa-
tion .x Rd! Enhancing analog circuit
performance can then be formally de-
fined as a multiobjective, constrained

optimization. Here, the objective func-
tions (), ()f x f xm1 f represent differ-
ent circuit performance metrics, i.e.,
the figure of merit. Examples of the
objective function include power, noise
resiliency, and linearity.

In reality, the objectives often con-
flict with one another. The goal of a
multiobjective optimization algo-
rithm is thus to find a set of solutions
that lie on the Pareto frontier curve.
By definition, Pareto optimal solutions
are those that cannot be improved in
any of the objective functions without
harming at least one other objective.
In general, extracting all Pareto opti-
mal solutions can be rather costly for
real-world complex circuits. A relaxed
alternative is to solve a single-objec-
tive optimization of a score function
instead. The score (F $) is a carefully
designed combination of (fi s$) that
incorporates the pertinent tradeoffs
among the objective functions. More
specifically, the score function (F $)
represents a goodness measure for a
given vector of circuit hyperparam-
eters. Therefore, the optimization
goal is equivalent to maximizing (F $)
and obtaining a “good” design that ad-
heres to the desired characteristics. A
simple example of such a score func-
tion is a linear combination of objec-
tive functions .() ()F x w f xm

i i i1R= = The
relaxed optimization objective can,
therefore, be formalized as

() . .

() , ,
, , ,

,

s tF x

C x i k
x b b i d

0 1
1

maximize

min max

x

i

i i i

6 f

6 f

$!

! !6 @) "
"

,
,

� (1)

where ()C xi is a set of constraints
that are either user-defined limits on
certain design metrics, e.g., power,
or rules imposed by analog circuit
laws, e.g., Kirchhoff’s current law
and Kirchhoff’s voltage law. Another
set of constraints corresponds to
boundaries on design hyperparam-
eters, ,[],b bmin max as a result of the
fabrication process or specific design
requirements. In the following sec-
tions, we elaborate on three contem-
porary methods for hyperparameter
optimization: greedy algorithms, RL,

The goal of a multiobjective optimization
algorithm is to find a set of solutions that lie
on the Pareto frontier curve.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 20 19 	 25

and evolutionary strategies. We pro-
vide several system design examples
for the optimization techniques but
emphasize that these methods are
generic and applicable to a wide vari-
ety of problems.

Grid-Search and Heuristic
Algorithms

Grid Search
One way to solve the maximization
problem of (1) is to evaluate all possible
parameter settings and select the one
that renders the best score function.
Naively evaluating all possible param-
eters can be quite costly. That’s why
smart grid-search algorithms are highly
preferred. In many system-design
tasks, the total number of possible con-
figurations can be reduced to a much
smaller set. As an example, we consider
a robustness-assurance task where a
set of defender modules is used to pro-
tect a machine-learning model against
integrity attacks. We briefly discuss the
task here (Figure 1); for detailed sys-
tem specifications, refer to [11]. The
system to be designed in this example
is a domain-specific accelerator imple-
mented on a field-programmable gate
array (FPGA) that can perform the com-
putations of all defender modules as
fast as possible. We assume that Ndef
defender modules are to be executed in
parallel while each defender itself uses
NPU processing units from the underly-
ing hardware accelerator. The limiting
factors in this example are hardware
resources, such as the available digital
signal processing (DSP) units (#DSP),
memory (#BRAM), flip-flops (#FF), and
logic gates (#LOGIC) on the underlying
FPGA board. The objective here is to
maximize the number of defender
modules by setting Ndef and ,Npu
while abiding by throughput and plat-
form constraints. This problem can be
efficiently solved using a grid-search
approach: for a fixed ,Ndef the total avail-
able resources for each defender mod-
ule are # ,DSP Ndef^ h # ,BRAM Ndef^ h
,FF Ndef^ h and (#LOGIC).Ndef Given

these constraints, the maximum val-
ues for NPU and the throughput are
uniquely determined. Therefore, the

dimensionality of the search space can
be reduced by one. We evaluate the
throughput under different N sdef and
the corresponding unique NPU and
select the configuration with the maxi-
mum Ndef that satisfies the throughout
requirement. Domain-specific accel-
erator design [12] for machine-learning
applications is another example use
case of grid-search methodologies for
system optimization. Unlike the pre-
vious examples, many tasks are not
reducible to smaller problems due to
the interdependency among the opti-
mization parameters. One approach for
tackling such tasks is to use a greedy-
search algorithm.

Heuristic (Greedy) Algorithms
A greedy algorithm starts from an
initial hyperparameter vector, x, and
modifies this vector toward a bet-
ter solution in a step-by-step man-
ner. Let us consider the task of deep
neural network (DNN) compression
[13], [14] as an example optimization
problem. DNNs are hierarchical archi-
tectures formed by stacking multiple
layers (Figure 2). Each layer extracts a
set of features from an input vector.
In particular, the lth layer performs
a linear operation between the layer
input and a weight tensor ,Wl l 1" + fol-
lowed by a nonlinearity. The weight
matrix is known as the layer param-
eter. The goal of DNN compression is
to reduce the model complexity by

applying a compression technique. Fig-
ure 2 presents an example compres-
sion technique for quantization that
aims to reduce the DNN’s memory
footprint by lowering the number of
bits required for model storage and
computation. In this scenario, the op-
timization hyperparameters are the
number of bits used to represent the
model’s parameters/outputs. These
hyperparameters should be speci-
fied for each layer of the DNN. The
parameter space to be searched is,
therefore, a vector x RL! for an L-
layer DNN, where the ith element x[i]
is the bitwidth for layer i.

In this example, there are two con-
flicting design objectives: high DNN
classification accuracy ()f x1 and a
small total memory footprint .()f x2
As we reduce the bitwidths, the mem-
ory footprint decreases, but the clas-
sification accuracy also drops, which
is highly undesirable. Our goal is to

Input Data Is the input safe?

Victim Model

Defender Modules

Execution
Units

Hardware
Resources

FPGA Acceleration

Distribute Resources

DSP
Units

Block
RAMs

Flip-
Flops

Logic
Gates

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

PU
PU

. . .

FIGURE 1: A chart illustrating domain-specific FPGA acceleration for defending a victim
machine-learning model against integrity attacks. The number of parallel defender modules
(Ndef) and the per-unit parallelism factor (NPU) should be specified according to the FPGA’s
resource availability to obtain optimal performance. PU: processing unit; RAMs: random
access memories.

W1→2 W2→3 W3→4

In
pu

t L
ay

er

O
ut

pu
t L

ay
er

3 b 1 b 2 b

FIGURE 2: An example of a DNN quantiza-
tion task where the goal is to specify the
per-layer bitwidths.

26	 FALL 20 19	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

find a set of per-layer quantization
bitwidths x that maximize a score
function F(x), which is a combination
of ()f x1 and .()f x2

The score function is specifically
designed to minimize ()f x2 while max-
imizing .()f x1 The greedy algorithm
starts with a vector { , , ,x B B B0 f= }
with a maximum quantization bit-
width B at all layers. The superscript
here denotes the algorithm step.
At step t, the parameter vector xt is
updated to .xt 1+ There are L candi-
dates for the parameter vector x at the
next step, where the ith candidate is
obtained by changing [] []x i x i 1t t" -
while keeping all other elements

[(x j it)j !] constant. Among these,
the candidate that results in the maxi-
mum score function F(x) is selected,
and the vector xt is updated accord-
ingly. While this algorithm is fairly
simple, it can achieve a better com-
pression rate and accuracy compared
to DNNs designed by human experts.
See [13] and [14] for a detailed expla-
nation of the algorithm applied to
other compression techniques.

Reinforcement Learning
In an RL setting, an autonomous
agent interacts with an environment.
Through this interaction, the agent
gradually learns to adjust its behav-
ior based on the consequences of its
decisions (actions). Figure 3 demon-

strates the RL loop. The agent, which
is generally controlled by a machine-
learning algorithm, observes a state
st of the environment at each time
step. The agent then uses a policy r
to choose an action at based on the
observed state .st More specifically,
a policy specifies a probabilistic dis-
tribution for possible actions a given
the state S, i.e., S .: (|)S A aP$r =
As a result of the agent’s action under
policy ,r the environment state tran-
sitions to ,st 1+ and a reward rt 1+ is
produced. The reward acts as a feed-
back for the RL agent that determines
the quality of the chosen action in
the previous time step. The RL agent
thus aims to learn an optimal policy,

,)r that maximizes the cumulative
(discounted) reward. In the context
of automated optimization, the state
st is the current choice of design hy-
perparameters, i.e., the vector x. The
action a changes x with the hope of
increasing F(x). The per-step reward
rt is, therefore, defined as the in-
crease in the score function from one
step to the next.

Let us consider an example use
case of RL in circuit optimization [15]
where the optimized circuit parame-
ters are learned after several rounds
of interaction with a circuit-simula-
tion environment. During each inter-
action, the RL agent collects from the
simulated circuits a set of observa-
tions that include

■■ the global and high-level simula-
tion results, e.g., the dc operating
point voltage and current at each
node and the ac amplitude/phase
responses

■■ the local element-level results,
e.g., the feature of each transis-
tor containing ,Vth ,gm ,Vdsat and
so on.
Based on the acquired observations

from the simulation environment, the
RL agent outputs an action that deter-
mines the new value for circuit hy-
perparameters, e.g., transistor width

and lengths, capacitances, and resis-
tances. The optimization objectives in
this problem are the set of specifica-
tions that need to be satisfied by the
design. For each action chosen by the
RL agent, the simulation environment
outputs a set of performance metrics
achieved by the circuit with the cor-
responding parameter values. The RL
agent’s reward is then defined to rep-
resent the extent to which the chosen
circuit parameters satisfy the desired
design specifications. Besides circuit
optimization, RL-based methods have
shown success in a variety of other
optimization tasks, e.g., device place-
ment [16] and battery management
[17]. The RL approach generally has
a higher sample efficiency compared
to grid-search approaches, meaning
that it requires fewer circuit simula-
tions to obtain a design with similar
performance quality. However, the
complexity of the incorporated ma-
chine-learning models renders the
training of the RL agent computation-
ally expensive and excessively time
consuming. Furthermore, due to the
sequential and iterative nature of RL
training, the runtime of the optimiza-
tion algorithm cannot be reduced by
parallelism techniques.

Evolutionary Strategies
Evolutionary strategies are metaheuris-
tic optimization approaches inspired
by natural evolution and the notion of
survival of the fittest. These methods
can be used to perform automated
parameter tuning for various system-
design tasks. The core idea is to create
a collection of hyperparameter vec-
tors , , ,x x xP n1 2 f= " , and gradually
change them to achieve a better system
design on average. In this context, each
vector xi is called an individual and the
collection P is called a population. At
step t of the algorithm, the population
is updated "P Pt t 1+ in a way that the
hyperparameter vectors in Pt 1+ are
equally good or better than those in Pt
on average.

The process of evolving a popula-
tion (Figure 4) consists of four con-
secutive steps. In the evaluation step,
the optimization score function (F $)

Agent

History of
State/Action/

Rewards

Update

Policy

Environment

at

rt

st

st +1
rt +1

FIGURE 3: An illustration of the RL setting.

In an RL setting, an autonomous agent interacts
with an environment.

	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 FALL 20 19 	 27

is calculated over the population,
and individuals are assigned scores
representing their quality, i.e., fit-
ness. The selection step then samples
from the current population based
on each individual’s fitness score. In
this process, superior individuals
(with high scores) are passed to the
next phase, and inferior individuals
(with low scores) are eliminated. The
next two steps, dubbed crossover and
mutation, operate on the surviving
individuals. Crossover and mutation
aim to explore the proximity of the se-
lected individuals by injecting small
random perturbations. More specifi-
cally, crossover simultaneously com-
bines two individuals and generates
two offspring hyperparameter vec-
tors. Mutation acts on each individual
by randomly tweaking the vector ele-
ments. By continuously updating the
population using the aforementioned
steps, the average score across the
population gradually increases. The
optimization algorithm converges
once the average score stops im-
proving, and the individual with the
highest score renders the optimal hy-
perparameter configuration.

Evolutionary strategies offer sev-
eral benefits when used for automated
system design:

■■ The simplicity of evolutionary al-
gorithms makes them amenable
to many system-design tasks. The
computational burden of evolu-
tionary strategies is much lower
than it is for machine-learning-
based approaches, such as RL.

■■ The computations involved in
evolutionary strategies are highly
parallelizable, as the evaluation of
individuals can be performed inde-
pendently. As a result, these meth-
ods offer scalability, especially in
many-core and distributed-com-
puting platforms.

■■ Evolutionary strategies can ef-
fectively learn to adopt multiple
optimization objectives simulta-
neously. This property provides a
low optimization cost for various
engineering tasks [18].
We consider a DNN-compression

task to illustrate evolutionary strate-

gies. (We briefly explain the problem
here. See [19] for a detailed discus-
sion.) Figure 5 presents the overview
of this task, where a set of compres-
sion techniques is available for appli-
cation to each layer of the DNN. This
optimization task requires choosing a
subset of available compression tech-
niques and their corresponding com-
pression intensities. The optimization
objective is to effectively compress
the DNN such that the overall classifi-
cation accuracy is minimally affected
while the hardware performance is
maximally improved. This can be
done by formulating DNN compres-
sion as an evolutionary process [19].

The individual vectors are obtained
by appending the per-layer compres-
sion rates into the vector x. For each
such vector, the corresponding score
F(x) is achieved by compressing the
DNN with x, running it on the target
hardware, and measuring/estimating
the execution cost and classification

accuracy. By creating populations of
such individual vectors and iteratively
applying genetic operations to them,
one can achieve superior DNN archi-
tectures compared to human-expert
designs [19]. While we illustrate the
usability of evolutionary strategies
for DNN compression, we emphasize
that this method can also be applied
in other domains, including those
involving analog circuit optimization
[8], [20], neural architecture search
[21], and robotic control [22].

Conclusions and Future Direction
We reviewed here several black-box
optimization tools and showed their
potential in automating hyperparame-
ter selection for various applications.
We illustrated each optimization
scheme using a practical system-
design task. While contemporary
researchers have applied these intel-
ligent schemes to system designs
on a small scale, current optimization

Evaluation Selection Crossover Mutation

Score: 0.010.2 0.55 Parent 1, 2 Offspring

Tweak
. + ’

FIGURE 4: The evolution process of a population.

Original DNN Compression

Technique Parameter (x)

Layer 1

Layer 2

Pruning:

Quantization:

Pruning:

Quantization:

Pruning Rate

Pruning Rate

Bitwidth

Bitwidth

Compressed DNN

Compact
Layer 1

Compact
Layer 2

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

FIGURE 5: A DNN compression task. Each layer of the network should be compressed using
a set of compression techniques. Each compression technique has a hyperparameter, e.g.,
pruning rate and quantization bitwidth, that controls the amount of compression applied.

28	 FALL 20 19	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

methods can perform poorly for
large-scale designs with millions of
hyperparameters. In addition, for
many design tasks, simulating system
performance for each hyperparam-
eter configuration is quite costly and
time consuming. Therefore, devising
sample-efficient optimization meth-
odologies that can find the near-opti-
mal hyperparameters by means of
few simulations can greatly increase
the applicability of these tools in the
design of more complex systems. On
a separate note, most research articles
assume a predetermined architecture
and aim to optimize the hyperparam-
eters in that setting. Designing the
underlying system architecture still
highly relies on human experts, and
automating this process remains a
standing challenge. As such, devel-
oping novel optimization techniques
that can effectively perform low-level
design choices is highly desirable.

References
[1]	 S. H. Yeung, W. S. Chan, K. T. Ng, and

K. F. Man, “Computational optimization
algorithms for antennas and RF/micro-
wave circuit designs: An overview,” IEEE
Trans. Ind. Informat., vol. 8, no. 2, pp.
216–227, 2012.

[2]	 P. Mandal and V. Visvanathan, “CMOS op-
amp sizing using a geometric program-
ming formulation,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 20,
no. 1, pp. 22–38, 2001.

[3]	 M. delM. Hershenson, S. P. Boyd, and T. H.
Lee, “Optimal design of a CMOS op-amp
via geometric programming,” IEEE Trans.
Comput.-Aided Design Integr. Circuits
Syst., vol. 20, no. 1, pp. 1–21, 2001.

[4]	 A. Jafari, E. Bijami, H. R. Bana, and S.
Sadri, “A design automation system for
CMOS analog integrated circuits using
new hybrid shuffled frog leaping algo-
rithm,” Microelectron. J., vol. 43, no. 11,
pp. 908–915, 2012.

[5]	 R. Vural and T. Yildirim, “Analog circuit
sizing via swarm intelligence,” AEU-Int. J.
Electronics Commun., vol. 66, no. 9, pp.
732–740, 2012.

[6]	 D. Ghai, S. P. Mohanty, and E. Kougianos, “De-
sign of parasitic and process-variation aware
nano-CMOS RF circuits: A VCO case study,”
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 17, no. 9, pp. 1339–1342, 2009.

[7]	 D. Ghai, S. P. Mohanty, and G. Thakral, “Fast
optimization of nano-CMOS voltage-con-
trolled oscillator using polynomial regres-
sion and genetic algorithm,” Microelectron.
J., vol. 44, no. 8, pp. 631–641, 2013.

[8]	 P. K. Rout, D. P. Acharya, and G. Panda, “A
multiobjective optimization based fast
and robust design methodology for low
power and low phase noise current starved
VCO,” IEEE Trans. Semicond. Manuf., vol. 27,
no. 1, pp. 43–50, 2013.

[9]	 W. Lyu et al., “An efficient Bayesian opti-
mization approach for automated optimi-

zation of analog circuits,” IEEE Trans. on
Circuits and Syst. I: Regular Papers, vol.
65, no. 6, pp. 1954–1967, 2017.

[10]	A. Mirhoseini, B. D. Rouhani, E. M. Song-
hori, and F. Koushanfar, “Perform-ML: Per-
formance optimized machine learning by
platform and content aware customiza-
tion,” in Proc. 2016 53nd ACM/EDAC/IEEE
Design Automation Conf. (DAC), pp. 1–6.

[11]	B. D. Rouhani, M. Samragh, M. Javaheripi,
T. Javidi, and F. Koushanfar, “Deepfense:
Online accelerated defense against adver-
sarial deep learning,” in Proc. 2018 IEEE/
ACM Int. Conf. Computer-Aided Design (IC-
CAD), pp. 1–8.

[12]	M. Samragh, M. Ghasemzadeh, and F.
Koushanfar, “Customizing neural net-
works for efficient FPGA implementa-
tion,” in Proc. 2017 IEEE 25th Annu. Int.
Symp. Field-Programmable Custom Com-
puting Machines (FCCM), pp. 85–92.

[13]	M. Samragh, M. Javaher ipi, and F.
Koushanfar, CodeX: Bit-flexible encoding
for streaming-based FPGA acceleration
of DNNs. 2019. [Online]. Available: arX-
iv:1901.05582

[14]	M. Samragh, M. Javaheripi, and F.
Koushanfar, “Autorank: Automated rank
selection for effective neural network
customization,” in Proc. ML-for-Systems
Workshop 46th Int. Symp. Computer Ar-
chitecture (ISCA), 2019, pp. 1–6. [On-
line]. Available: https://mlforsystems
.org/assets/papers/isca2019/MLforSys
tems2019_Mohammad_Samragh.pdf

[15]	H. Wang, J. Yang, H.-S. Lee, and S. Han,
Learning to design circuits. 2018. [On-
line]. Available: arXiv:1812.02734

[16]	A. Mirhoseini et al., “Device placement op-
timization with reinforcement learning,”
in Proc. 34th Int. Conf. Machine Learning,
2017, pp. 2430–2439.

[17]	A. Mirhoseini and F. Koushanfar, “Hy-
poenergy. Hybrid supercapacitor-battery
power-supply optimization for energy
efficiency,” in Proc. 2011 Design, Automa-
tion & Test in Europe, pp. 1–4.

[18]	A. Konak, D. W. Coit, and A. E. Smith,
“Multi-objective optimization using genet-
ic algorithms: A tutorial,” Rel. Eng. System
Safety, vol. 91, no. 9, pp. 992–1007, 2006.

[19]	M. Javaheripi, M. Samragh, T. Javidi,
and F. Koushanfar, “Ascai: Adaptive
sampling for acquiring compact AI,” in
Proc. AutoML Workshop 36th Int. Conf.
Machine Learning (ICML), 2019, pp. 1-8.
[Online]. Available: https://www.automl
.org/wp-content/uploads/2019/06/
automlws2019_Paper29.pdf

[20]	B. Liu et al., “Analog circuit optimization
system based on hybrid evolutionary al-
gorithms,” Integration, VLSI J., vol. 42, no.
2, pp. 137–148, 2009.

[21]	L. Xie and A. Yuille, Genetic CNN. 2017.
[Online]. Available: https://arxiv.org/
abs/1703.01513

[22]	B. Patle, D. Parhi, A. Jagadeesh, and S. K.
Kashyap, “Matrix-binary codes based ge-
netic algorithm for path planning of mo-
bile robot,” Comput. Electr. Eng., vol. 67,
pp. 708–728, 2018.

About the Authors
Mojan Javaheripi (mojan@ucsd.edu)
received her B.Sc. degree in electri-
cal engineering from the Sharif Uni-
versity of Technology, Tehran, Iran,
in 2017. She is a Ph.D. student in the

Department of Electrical and Com-
puter Engineering, at the University
of California, San Diego. Her research
interests include the intersection of
machine learning and computer archi-
tecture. Her projects aim at codevel-
oping machine learning algorithms
and their corresponding specialized
hardware with the goal of maximiz-
ing efficiency and performance. She
is the recipient of the 2019 Qualcomm
Innovation Fellowship for her efforts
in black-box optimization.

Mohammad Samragh (msamragh@
ucsd.edu) received his B.Sc. degree in
electrical engineering from the Sharif
University of Technology, Tehran,
Iran, in 2015 and his master’s degree
from the University of California, San
Diego (UCSD), in 2018. He is a Ph.D.
student in the Department of Electrical
and Computer Engineering, at UCSD.
His research interests include hard-
ware–software codesign for embedded
machine learning, adversarial deep
learning, and privacy-preserving deep
learning. He is the recipient of the 2019
Qualcomm Innovation Fellowship for
his efforts in black-box optimization.

Farinaz Koushanfar is a professor
and Henry Booker Faculty Scholar in
the Electrical and Computer Engineer-
ing Department at the University of
California, San Diego (UCSD), where
she directs the Adaptive Computing
and Embedded Systems Lab. She is
the cofounder and codirector of the
UCSD Center for Machine-Integrated
Computing and Security. Her research
addresses aspects of efficient com-
puting and embedded systems, with
a focus on hardware and system se-
curity and real-time/energy-efficient
and big data analytics under resource
constraints, among others. She has
received a number of awards and
honors, including the Presidential
Early Career Award for Scientists and
Engineers from President Obama and
the Cisco IoT Security Grand Chal-
lenge Award. She is an IEEE Fellow
and a fellow of the Kavli Foundation
Frontiers of the National Academy
of Engineering.

�

