Automated Real-Time Analysis of Streaming Big and Dense Data
on Reconfigurable Platforms

BITA DARVISH ROUHANI, UC San Diego
AZALIA MIRHOSEINI and EBRAHIM M. SONGHORI, Rice University
FARINAZ KOUSHANFAR, UC San Diego

We propose SSketch, a novel automated framework for efficient analysis of dynamic big data with dense (non-
sparse) correlation matrices on reconfigurable platforms. SSketch targets streaming applications where each
data sample can be processed only once and storage is severely limited. Our framework adaptively learns
from the stream of input data and updates a corresponding ensemble of lower-dimensional data structures,
a.k.a., a sketch matrix. A new sketching methodology is introduced that tailors the problem of transforming
the big data with dense correlations to an ensemble of lower-dimensional subspaces such that it is suit-
able for hardware-based acceleration performed by reconfigurable hardware. The new method is scalable,
while it significantly reduces costly memory interactions and enhances matrix computation performance by
leveraging coarse-grained parallelism existing in the dataset. SSketch provides an automated optimization
methodology for creating the most accurate data sketch for a given set of user-defined constraints, including
runtime and power as well as platform constraints such as memory. To facilitate automation, SSketch takes
advantage of a Hardware/Software (HW/SW) co-design approach: It provides an Application Programming
Interface that can be customized for rapid prototyping of an arbitrary matrix-based data analysis algorithm.
Proof-of-concept evaluations on a variety of visual datasets with more than 11 million non-zeros demonstrate
up to a 200-fold speedup on our hardware-accelerated realization of SSketch compared to a software-based
deployment on a general-purpose processor.

CCS Concepts: ® Information systems — Stream management; ® Computing methodologies —
Online learning settings; Factorization methods;

Additional Key Words and Phrases: Streaming model, big data, dense matrix, FPGA, lower dimensional
embedding, HW/SW co-design, matrix sketching, matrix-based analysis

ACM Reference Format:

Bita Darvish Rouhani, Azalia Mirhoseini, Ebrahim M. Songhori, and Farinaz Koushanfar. 2016. Automated
real-time analysis of streaming big and dense data on reconfigurable platforms. ACM Trans. Reconfigurable

Technol. Syst. 10, 1, Article 8 (December 2016), 22 pages.
DOI: http://dx.doi.org/10.1145/2974023

1. INTRODUCTION

The ever-growing body of digital data is challenging conventional analytical techniques
in machine learning, computer vision, and signal processing. Traditional analytical

This work was supported in parts by the Office of Naval Research (ONR) award (Grant No. N00014-11-1-
0885) and a National Science Foundation (NSF) TrustHub award (CNS-1513063).

This work was done while Azalia Mirhosieni was at Rice University.

Authors’ addresses: B. D. Rouhani and F. Koushanfar, Electrical and Computer Engineering Department,
University of California San Diego, 500 Gilman Dr, La Jolla, CA 92093; emails: {bita, farinaz}@ucsd.edu;
A. Mirhoseini, Google, 6100 Main St, MS 380, Houston, TX 77005; email: azalia@rice.edu; E. M. Songhori,
Electrical and Computer Engineering Department, Rice University, 6100 Main St, MS 380, Houston, TX
77005; email: ebrahim@rice.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1936-7406/2016/12-ART8 $15.00

DOI: http://dx.doi.org/10.1145/2974023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

http://dx.doi.org/10.1145/2974023
http://dx.doi.org/10.1145/2974023

8:2 B. D. Rouhani et al.

methods have been mainly developed based on the assumption that designers can
work with data within the confines of their own computing environment. The growth
of big data, however, is changing that paradigm, especially in scenarios where severe
memory and computational resource constraints exist. This disruption of convention
changes the way we analyze modern datasets and renders designing customizable,
streaming-based data transformation methods, a.k.a., sketching algorithms, a neces-
sity to holistically take into account the data structure and underlying platform con-
straints. A sketch matrix is a compact approximation of the original matrix embedding
to lower-dimensional subspaces. With a properly designed sketching algorithm, the
intended computations can be performed on an ensemble of constantly updated lower-
dimensional structures rather than the original matrix without a significant loss. Note
that traditional sketching methods such as Singular Value Decomposition (SVD) and
Principal Component Analysis (PCA) incur a large memory footprint with a quadratic
computational complexity which limit their practicability in big data regime.

To optimize the performance of streaming big data learning applications, there are
at least two sets of challenges that should be addressed simultaneously. The first chal-
lenge class is to minimize the resource requirements for obtaining the data sketch
within an error threshold in a timely manner. This favors designing sketching methods
with a scalable computational complexity that can be readily applied for processing
a large amount of data. The second challenge class has to do with mapping of com-
putation to increasingly heterogeneous modern architectures/accelerators. The cost of
computing on these architectures is dominated by message passing for moving the
data to/from the memory and inter-cores. What exacerbates the cost is the iterative
nature of dense matrix calculations that require multiple rounds of message passing.
To optimize the cost, communication between the processors and memory hierarchy
levels must be minimized. This article leverages the tradeoff between memory commu-
nication and redundant local calculations to improve the performance of such costly
iterative computations.

Streaming processing of data is critical for many applications in which storage is
severely limited and data can be read at most once [Liberty 2013]. Some prominent
examples of such applications include real-time video surveillance, medical image
processing, recommendation systems, wireless communication, and Internet user’s
activity recognition [Council 2013]. In these scenarios, to cope with the dynamics of the
streaming content just in time, the sketch has to be found inline with the data arrival.
A large body of earlier work demonstrated the efficiency of using custom hardware
for acceleration of traditional matrix sketching algorithms such as QR decompo-
sition [Sergyienko and Maslennikov 2002], LU decomposition [Zhang et al. 2012],
Cholesky [Greisen et al. 2013], and SVD [Ledesma-Carrillo et al. 2011]. However, the
existing hardware-accelerated sketching methods either have a higher-than-linear
complexity [Rajasekaran and Song 2006] or are non-adaptive for dynamic sketching
[Ledesma-Carrillo et al. 2011]. They are thus unsuitable for streaming applications
and big data analysis with dense correlation matrices. A recent theoretical solution
for scalable sketching of big data matrices is presented in Liberty [2013], which also
relies on running SVD on the sketch matrix. Even this method is unable to handle the
changing data dynamics in real time as the SVD algorithm incurs a higher-than-linear
computational complexity. Moreover, runtime and power constraints are not addressed
in Liberty [2013], either. To the best of our knowledge, no hardware acceleration for
streaming sketches has been reported in the literature before SSketch.

We propose SSketch, a novel automated framework for efficient analysis and
hardware-based acceleration of massive and densely correlated datasets in stream-
ing applications. It has been shown in Mirhoseini et al. [2015] that the dense
and high-dimensional datasets usually have an underlying lower-dimensional hybrid

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:3

structure.' SSketch leverages this convenient property to efficiently transform the data
to an ensemble of lower-dimensional subspaces. the SSketch algorithm is a scalable ap-
proach for dynamic sketching of massive datasets that works by factorizing the original
(densely correlated) large matrix into two new matrices: (i) a dense but much smaller
dictionary matrix that includes a subset of samples carefully selected from the input
data and (ii) a large block-sparse matrix where the blocks are organized such that the
subsequent matrix computations incur a minimal amount of message passings on the
target platform.

An important property of SSketch is its capability to customize its sketching ap-
proach based on the user-defined requirements and hardware limitations. More pre-
cisely, we provide an automated optimization approach that can be used to customize
the SSketch framework to compute the best sketch matrix (with the least approxi-
mation error) under runtime, power, and memory constraints. As the stream of input
data arrives, SSketch adaptively learns from the incoming vectors and updates the
sketch of the collection. An accompanying Application Programming Interface (API)
is also provided by our work, so designers can utilize the scalable SSketch framework
for rapid prototyping of an arbitrary matrix-based data analysis algorithm. SSketch
and its API target a broad class of learning algorithms that model the data dependen-
cies by iteratively updating a set of matrix parameters, including but not limited to
most regression methods, belief propagation, expectation maximization, and stochastic
optimizations [Montgomery et al. 2012].

Our framework addresses the big data learning problem by using SSketch’s block-
sparse matrix and applying an efficient, greedy routine called Orthogonal Matching
Pursuit (OMP) on each sample independently. Note that OMP is a key computational
kernel that dominates the performance of many sparse reconstruction algorithms.
Given the wide range of applications, it is thus not surprising that a large number
of OMP implementations on Graphics Processing Units (GPUs), Application-Specific
Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs) have been
reported in the literature, for example, in Andrecut [2008], Maechler et al. [2010], and
Bai et al. [2012]. However, the prior work on FPGA had focused on fixed-point number
format. In addition, most earlier hardware-accelerated OMP designs are restricted to
small matrix sizes [Septimus and Steinberg 2010; Bai et al. 2012] or are optimized for
specific signal processing applications in which a limited number of OMP iterations
(e.g., up to 32) suffices to perform the underlying data reconstruction task [Kulkarni
et al. 2014]. In contrast, SSketch’s scalable methodology introduces a novel generic
approach that enables use of an OMP routine for processing massive, dynamic datasets
without introducing restriction on the size or range of the target data.

SSketch uses the abundant hardware resources on current FPGAs to provide a scal-
able, floating-point implementation of OMP for sketching purposes. One may speculate
that GPUs may show a better acceleration performance than FPGAs. However, the per-
formance of GPU accelerators is limited in our application because of two main reasons.
First, for streaming applications, the memory hierarchy in GPUs increases the over-
head in communication and thus reduces the throughput of the whole system. Second,
in our sketching approach, the number of required operations to compute the sketch
of each individual sample depends on the input data structure and may vary from one
sample to the other. Thus, the GPU’s applicability is reduced due to its Single Instruc-
tion Multiple Data architecture. The explicit contributions of this article are as follows:

—We propose SSketch, a novel communication-minimizing framework for online
(streaming) large matrix computation. SSketch adaptively learns the hybrid

1A datum that consists of multiple lower-dimension subspaces is referred to as a datum with hybrid structure.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:4 B. D. Rouhani et al.

structure of the input data as an ensemble of lower-dimensional subspaces and
efficiently forms the sketch matrix of the ensemble.

—We develop a novel streaming-based data transformation method for FPGA acceler-
ation. Our sketching algorithm benefits from a fixed, low-memory footprint and an
O(mn) computational complexity. We also provide theoretical error analysis for our
proposed sketching methodology.

—We design an API to facilitate automation and adaptation of SSketch’s scalable and
online matrix sketching method for rapid prototyping of an arbitrary matrix-based
data analysis algorithm.

—We provide an automated optimization method that can be used to customize SS-
ketch’s reconfigurable framework and compute the most accurate sketch matrix un-
der a given set of runtime, power, and memory constraints.

—We devise SSketch with a scalable, floating-point implementation of OMP algorithm
on FPGA.

—We evaluate our framework with three different massive datasets. Our evaluations
corroborate SSketch scalability and practicability. We compare the SSketch runtime
to a software realization on a general purpose processor and also report its overhead.

An earlier version of SSketch was presented in Rouhani et al. [2015]. In this article,
we extend our framework by (i) adding an automated and optimized constraint-driven
customization module (Section 7). This module enables SSketch to create the most
accurate data sketch from the streaming input data for a given set of user-defined
constraints and hardware limitations. We provide an optimization strategy supported
by an automated solver that can be readily used for efficient sketch computation and
embedding. The input parameters (or constraints) to our solver may include runtime,
power, and memory and its outputs include sketching algorithmic parameters as well
as guidelines for the hardware mapping. We show the applicability and effectiveness of
the proposed optimization by various new experimental evaluations (Sections 9.3 and
8) and (ii) providing theoretical guarantees for approximation error of our proposed
streaming-based sketching methodology (Section 5.2). The error bound can be used for
devising an sketch that meets the desired level of accuracy.

2. BACKGROUND AND PRELIMINARIES
2.1. Streaming Sketching Model

The high dimensionality of modern data collections renders usage of traditional data
transformation algorithms infeasible. As such, matrix sketching methods should be
designed to be scalable and pass-efficient. In pass-efficient techniques, data are read
at most a constant number of times. Streaming-based algorithm refers to a pass-
efficient computational model that requires only one pass through the dataset. By
taking advantage of a streaming model, the sketch matrix of a collection can be obtained
inline with the data arrival, which evades the requirement to store the original ever-
growing dataset [Clarkson and Woodruff 2009].

2.2, Orthogonal Matching Pursuit

OMP is a well-known greedy algorithm for solving sparse approximation problems. It
is a key computational kernel in many compressed sensing algorithms. OMP has wide
applications ranging from classification to structural health monitoring. As we describe
in Algorithm 2, OMP takes a dictionary and a signal as inputs and iteratively approx-
imates the sparse representation of the signal by adding the best-fitting element in
every iteration. More details regarding the OMP algorithm are presented in Section 5.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:5

2.3. Notation

We write vectors in bold lowercase script, x, and matrices in bold uppercase script, A.
Let A’ denote the transpose of A. A; represents the jth column, and A; is a subset of
matrix A consisting of the columns defined in the set 1. nnz(A) defines the number of
non-zeros in the matrix A. ||x|, = (Z?zl |x(j)|P)!/? is used as the p-norm of a vector

where p > 1. The Frobenius norm of matrix A is defined by ||A|r = /(Zj,j |AG, 7)|2),

and [[All2 = maxxzo ”m!z is considered as spectral norm. The matrix A is of size m x n

where n is the number of samples and m is the corresponding number of features and
m < n for over-complete matrices.

3. RELATED WORK

Developing support for streaming data is critical in many emerging applications where
real-time response is required [Zinn et al. 2011]. Several recent studies have focused
on system modeling and design techniques to facilitate streaming applications by ex-
ploiting task- and data-level parallelism, for example, in Plavec et al. [2013], Zinn
et al. [2011], and Cong et al. [2014]. However, none of the prior work has leveraged
the data geometry to further accommodate streaming applications. To the best of our
knowledge, SSketch is the first automated framework that proposes a generic online
data transformation that enables scalable big data analysis in streaming applications.

It is known that the most accurate low-rank approximation of a data collection is
computed by SVD or PCA in settings where the column span of the data admits a
lower-dimensional embedding [Golub and Reinsch 1970]. However, the large memory
footprint and O(m?n) computational complexity of these well-known sketching algo-
rithms make it impractical to use them for analyzing massive and dynamic datasets.
Unlike PCA, Sparse PCA (SPCA) is modified to find principal components with sparse
loadings, which is desirable for interpreting data and storage reduction [Zou et al.
2006]. The computational complexity of SPCA is similar to classic SVD. Thus, even
this method is not scalable for analyzing massive datasets [Zou et al. 2006] and
[Papailiopoulos et al. 2013].

The efficiency of random subsampling methods to compute the lower-dimensional
embedding of large datasets has been shown in Dyer et al. [2013] and Drineas and
Mahoney [2005]. Random Column Subset Selection (rCSS) has been proposed as a
scalable strategy for sketching large matrices [Dyer et al. 2013]. Although the authors
in Dyer et al. [2013] had provided a theoretical scalable approach for large matrix
sketching, but the hardware constraints are not considered in this work. The large
memory footprint and non-adaptive structure of their rCSS approach make it unsuit-
able for streaming applications.

Mirhoseini et al. [2015] and Mirhoseini et al. [2016] have proposed scalable and
sparsity-inducing methodologies to enable efficient execution of large-scale iterative
learning algorithms on massive and dense datasets. Their approach, however, is static
and incurs a large memory footprint, which bound their applicability to cope with
dynamic ever-growing datasets. Despite the work in Mirhoseini et al. [2015] and
Mirhoseini et al. [2016], our data sketching approach is well suited for streaming
applications and is amenable to FPGA acceleration.

OMP has been shown to be very effective in inducing sparsity, although its complexity
makes it costly for streaming applications. A number of implementations on GPU
[Andrecut 2008; Blanchard and Tanner 2013; Fang et al. 2011], ASICs [Maechler et al.
2010], many-cores [Kulkarni et al. 2016a, 2016], and FPGAs [Septimus and Steinberg
2010; Bai et al. 2012; Ren et al. 2013; Stanislaus and Mohsenin 2013; Kulkarni et al.
2016b] are reported in the literature to speed up this complex reconstruction algorithm.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:6 B. D. Rouhani et al.

User/platform
constraints
i
Data sketching unit
— API
X OMP kernel
Constraint
Streaming || | | driven Ethernet —— Control OMP kernel
data "1™ customization Interface | | unit OMP kernel
Dictionary . |
learner I OMP kernel
Host (SW) Reconfigurable device (HW)

Fig. 1. High-level block diagram of SSketch. It takes a stream of data as input and adaptively learns a
corresponding sketch of the collection by doing computation at the level of matrix rank. The resulting sketch
is then sent back to the host for further analysis depending on the application.

FPGA implementation of OMP for problems of dimension 32 x 128 and 256 x 1024
are developed for signals with sparseness of 5 and 36, respectively [Septimus and
Steinberg 2010; Bai et al. 2012]. To the best of our knowledge, none of the previous
implementations of OMP are devised for streaming applications with large and densely
correlated data matrices. In addition, use of fixed-point format to compute and store
the results limits their applicability for sketching dynamic large data collections.

4. SSKETCH GLOBAL FLOW

The global flow of SSketch is presented in Figure 1. SSketch takes the stream of a
massive, dynamic dataset in the matrix form as its input and characterizes the un-
derlying physical resource constraints by running an automated micro-benchmark.
The constraint-driven customization unit of SSketch takes user-defined properties and
hardware limitations as input and customizes the framework accordingly for an op-
timized sketch computation. The input parameters of this unit may include runtime,
power and memory constraints, and its output includes sketching algorithmic param-
eters as well as guidelines for the hardware mapping. Our sketch formation algorithm
is devised to minimize the costly message passings to/from the memory and cores, and
thereby it reduces the communication delay and energy. All SSketch’s computations
are done in IEEE 754 single-precision floating-point format. Use of floating-point com-
putation assures a much larger dynamic range (i.e., the largest and smallest numbers
that can be represented) that is particularly important in providing a generic solu-
tion for processing massive dense data collections or datasets where the range may be
unpredictable as data evolves over time.

SSketch is developed based on a novel sketching algorithm that we introduce in
Section 5. As illustrated in Figure 1, SSketch consists of two main components to
compute the sketch of dynamic data collections: (i) a dictionary learning unit that is
devised in software and (ii) a data sketching unit that is implemented using hardware
accelerators. As the stream of data comes in, the first component adaptively learns
a dictionary as a subsample of input data such that the hybrid structure of data is
well captured within the learned dictionary. Next, the data sketching unit solves a
sparse approximation problem using the OMP algorithm to compute the block-sparse
matrix. In the data sketching unit, the representation of each newly arriving sample is
computed based on the current values of the dictionary, and the result is sent back to the
host where the acquired sketch matrix is stored. As we discuss in Section 5.2, SSketch
leverages a blocking approach to conform the size of the data communicated in between
the hardware accelerator and the host to fit the underlying physical constraints (i.e.,
the I/O bandwidth in the target hardware setting), without introducing any restriction

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:7

on the size of the raw data measurement matrix. We provide an accompanying API to
facilitate automation and adaptation of SSketch framework for rapid prototyping of an
arbitrary matrix-based data analysis algorithm.

5. SSKETCH METHODOLOGY

Many modern massive datasets are either low rank or lie on a union of lower-
dimensional subspaces. This convenient property can be leveraged to efficiently map
the data to an ensemble of lower-dimensional data structures [Mirhoseini et al. 2015].
The authors in Mirhoseini et al. [2015] suggest a distributed framework based on a
scalable and sparsity-inducing solution to find the sketch of large and dense datasets
such that:

minimize ||A — DV|r subjectto nnz(V) < kn, (1)

DeR™<! Ve Rbn
where A, is the input data, D,,,; is the dictionary matrix, V;,, is the block-sparse
matrix, [<« m <« n. nnz(V) measures the total number of non-zeros in V, and £ is the
target sparsity level for each input sample. Their approach, however, is “static” and
does not adaptively update the dictionary at runtime. The only way to update is to
redo the dictionary computation that would incur a higher cost and is unsuitable for
streaming applications with a single pass requirement and limited memory. Unlike
the work in Mirhoseini et al. [2015], our data sketching approach is dynamic, resource
aware, and well suited for streaming-based applications. SSketch tailors the solution of
Equation (1) according to the underlying platform’s constraints. Our approach incurs
a fixed memory footprint and is well suited for scenarios where storage is severely
limited.

5.1. SSketch Algorithm

Our platform-aware matrix sketching algorithm is summarized in Algorithm 1. The
SSketch algorithmapproximates matrix A as a product of two other matrices (A, ~
D,..;Vixn) based on a streaming model.

ALGORITHM 1: SSketch algorithm

Input: Measurement matrix A, projection threshold «, sparsity level k, error threshold e,
and dictionary size [.

Output: Matrix D, and coefficient matrix V.

1 D < empty;

2 j <« 0;

3 fori=1,..,ndo

W(A;) <« IDD'D)"'DIA;—A s .

4
1A7l2 >

5 if WA;) > o« and j <[then

6 D; < A;/VIAls;

7 Vii < VIAils;

8 je j+1;

9 else

10 V;, <~ OMPD, A, k, ¢);

11 end

12 end

For each newly arriving sample, SSketch first calculates a projection error, W(A,),
based on the current values of the dictionary matrix D. This error shows how well the
newly added sample can be represented in the space spanned by D. Then, the error is

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:8 B. D. Rouhani et al.

compared against a user-defined projection threshold «. If the projection error is less
than the threshold, then it means the current dictionary matrix D is good enough to
represent the new sample (A;). Otherwise, SSketch modifies the dictionary matrix to
include the new data structure imposed by the recently added sample. SSketch makes
use of the greedy OMP routine to compute/update the block-sparse matrix V. OMP can
be used, either by fixing the number of non-zeros in each column of V (sparsity level
k) or by fixing the total amount of approximation error (error threshold ¢). Factorizing
the input matrix A as a product of two matrices with much fewer non-zeros than the
original data induces an approximation error that can be controlled by tuning the error
threshold (¢), dictionary size (/), and projection threshold (@) in SSketch framework.
In our experiments, we consider Frobenius norm error (Xerr = IA—DVir), as sketch

A
accuracy metric. Al

As shown in Algorithm 1, SSketch requires only one pass through each arriving
sample. This method only requires storing a single column of the input matrix A and
the matrix D at a time. Note that the dictionary matrix D,,,; is constructed by columns
of data matrix A,,.,. The column space of D is contained in the column space of A.
Thus, rank(DD"A) = rank(D) < I < m, where D' denotes the pseudo-inverse of the
dictionary matrix (D* = (D‘D)~'D?). It simply implies that for over-complete datasets
OMP computation is required for n — [columns and the overhead time of copying D is
ignorable due to its small size compared to A.

OMP with QR Decomposition. As we describe in Section 9, computational com-
plexity of the projection step (line 4 of Algorithm 1) is small compared to the O(mni?)
complexity of the OMP algorithm. Thus, the computational bottleneck of SSketch algo-
rithm is OMP. To boost the computational performance for analyzing a large amount
of data on FPGA, it is necessary to modify the OMP algorithm such that it maximally
benefits from the available resources and incurs a scalable computational complexity.

ALGORITHM 2: OMP Algorithm

Input: Matrix D, measurement A;, sparsity level k&, threshold error ¢.
Output: Coefficient vector v.

170 < Aj;

2 A < ¢

31« 1;

4 whilei <kandr > ¢ do

5 A < AUargmax;| <r'~1,D; > | Find best fitting column ;
6 vi < argming|ri-! — D,uv|” LS Optimization ;

7 ri < ri=1 —D,;v' Residual Update;

8 i<i+1;

9 end

Algorithm 2 demonstrates the pseudocode of OMP where ¢ is a predefined error
threshold and % is the target sparsity level. The Least-Squares (LLS) minimization
step (line 6 of Algorithm 2) involves a variety of operations with complex data flows
that introduce an extra hardware complexity. However, proper use of factorization
techniques like QR decomposition or the Cholesky method within the OMP algorithm
would reduce its hardware implementation complexity and make it well suited for
hardware accelerators [Bai et al. 2012; Stanislaus and Mohsenin 2012].

To efficiently solve the LS optimization problem in line 6 of Algorithm 2, we decide to
use QR decomposition (Algorithm 3). QR decomposition returns an orthogonal matrix Q
and an upper-triangular matrix R. It iteratively updates the decomposition by reusing

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:9

Ay 17”6 AN Vi
y I V;
" Az ~ "l o]p:|o0 2
= V3
As 0]0 |Dg
n
——

n l

Fig. 2. Schematic depiction of blocking SSketch.

ALGORITHM 3: Incremental QR Decomposition by Modified Gram-Schmidt

Input: New column D,s, last iteration Qs’l, RS L.
Output: Q° and R’.
1

R0
Rs<—< 0 0)

&% <« Dys;

2 forj=1,..,s-1do
_ H

3 Ry <@ &
4 B -RSQT
5 end
6 R}, < V[&5I2%
7Q < Q7 g;

the Q and R matrices from the last OMP iteration (we call this method OMPQR). In this
approach, the residual (line 7 of Algorithm 2) can be updated by ¥’ < ¥ 1Q"(Q)ri~1.
The final solution is calculated by performing back substitution to solve the inversion
of the matrix R in v/ = R™1Q’A;.

Assuming that matrix A is of size m x n and D is of size m x [, then the complexity
of the OMPQR is O(mni?). This complexity is linear in terms of m and n as [is much
smaller in compared to m and n in many real-world settings. This linear complexity
enables SSketch to readily scale up for processing a large amount of data based on a
streaming model.

5.2. Blocking SSketch

Let A = [Aq; Ag; As] be a matrix consisting of rows A;, Ag, and Ag that are stacked
on the top of one another. Our key observation is that if we obtain the sketch of
each block independently and combine the resulting sketches (blocking SSketch) as
illustrated in Figure 2, then the combined sketch can be as good as sketching A directly
(nonblocking SSketch) in terms of error-performance tradeoff. This property can be
generalized to any number of partitions of A. We leverage this convenient property to
increase the performance of our proposed framework for sketching massive datasets
based on a streaming model. In blocking SSketch, the data matrix A is divided into more
manageable sized blocks such that there exist enough block RAMs on FPGA to store
the corresponding D and a single column of that block. The blocking SSketch achieves
a significant bandwidth saving, faster load/store, less communication traffic between
kernels, and a fixed memory requirement on FPGA. The methodology also provides the
capability of factorizing massive, dense datasets in an online streaming model.
Independent analysis of each block is especially attractive if the data are distributed
across multiple machines. In such settings, each platform can independently compute
a local sketch. These sketches can then be combined to obtain the sketch of the original

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:10 B. D. Rouhani et al.

collection. Given a fixed memory budget for the matrix D, as it is presented in Section 9,
blocking SSketch results in a more accurate approximation compared with nonblocking
SSketch. The blocking SSketch computations are done on smaller segments of data,
which confers a higher system performance. The achieved higher accuracy is at the
cost of a larger number of non-zeros in V. Note that as our evaluation results imply,
designers can reduce number of non-zeros in the computed block-sparse matrix by
increasing the error threshold € in SSketch algorithm.

Theoretical bound on SSketch approximation error. In SSketch methodology,
the dictionary matrix D is constructed such that the column space of D is contained
in the column space of the data matrix A. To bound the reconstruction error using
SSketch, we propose Theorem 5.1.

THEOREM 5.1. In blocking SSketch, the reconstruction error of a massive, dynamic
|A-DV/|?Z

Al < max(a, €).

input data A is

Proor. Let A,; represent the uth segment of the jth column of input data matrix A.
In blocking SSketch, for each newly arriving sample, if W(A,;) > «, then it is added
to the corresponding sub-block in the dictionary matrix D, see Figure 2. As such, the
reconstruction error for the added A,; is exactly zero via SSketch’s methodology. For
the remaining part of the input data, the greedy OMP routine is used to compute sparse
approximation of the sample.

In our methodology, when the dictionary size [is set to be large enough (e.g., [= my,
where my is the block size), the set of [samples that are linearly independent will
span the ambient dimension of the corresponding data block R™, which results in

exact decomposition, that is, |A,; — D,DA,j||r = 0. OMP routine does not stop unless

Au‘_DuVu'
(W) reaches a value less than or equal to
uj

€ or (ii) all the column samples in D, are used for reconstructing A,;, where D, is
the corresponding dictionary sub-block for the input segments A,. In case (i), the
normalized reconstruction error (a.k.a., the residual) is less than ¢, which in turn

ensures that W < ¢ after OMP computation. In case (ii), the residual would

b W, where D} A,; is equal to V,; since all columns of D are selected in the
process of OMP computation for that sample. As such, the normalized reconstruction
error would be less than or equal to o according to line 4 of Algorithm 1. Thereby, for

each A,; we have the following:

”Auj - DuVuj ”%"
A 115

either (i) the reconstruction error

< max(a, €)

IA, — D, V,ill% < max(a, €)[|Ay|%. 2)

Summing up Equation (2) over all blocks for an input sample A ; results in the following:

m m

mp my

D I8 =DVl < 37 max(e, o)Ayl
~ =1
|A; — DV ||% < max(a, €)||A;|%. @

Equation (3) is a result of the blocking structure of the dictionary matrix D (Figure 2).
Finally, the overall reconstruction error can be presented by summing up Equation (3)
over all n input samples,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:11

~7#~OMP
—k-BOMPQR
§ -5-BOMP

10°F|-2-OMPQR

Relative computation time (s)

0.5 1 1.5 2
Feature Size (m) «10°

Fig. 3. Computational complexity comparison of different OMP implementations. Using QR decomposition
significantly improves OMP’s runtime.

ST IA; -DVE < max(e,) A3

j=1 Jj=1
IA —DV|2 < max(a, ©)|A|% O (4)

5.3. Scalability

In Figure 3, we provide an empirical comparison between the computational complex-
ity of different OMP implementations. Batch OMP (BOMP) is a variation of OMP that
is especially optimized for sparse-coding of large sets of samples over the same dictio-
nary. BOMP requires more memory space compared with the conventional OMP, since
it needs to store D’D along with the matrix D. BOMPQR and the OMPQR both have
near-linear computational complexity. We use the OMPQR method in our target archi-
tecture since it is more memory efficient and better suited for hardware acceleration
as previously shown in Stanislaus and Mohsenin [2013] and Kulkarni et al. [2014].

The complexity of our OMP algorithm is linear both in terms of m and n, so di-
viding A,,., into several blocks along the dimension of m and processing each block
independently does not add to the total computational complexity of the algorithm.
However, it shrinks the data size to fit into the FPGA block RAMs and improves the
sketching performance. Let Toyp(m, [, k) stand for the number of operations required
to obtain the sketch of a vector of length m with target sparsity level k. Then the run-
time of the system is a linear function of Tpy;p, which makes the proposed architecture
scalable for factorizing large matrices. The complexity of projection step in SSketch
algorithm (line 4 of Algorithm 1) is ({2 + 2lm + 2[2m). However, if we decompose D,,,;
t0 Qnxm X Ry and replace DD with QI,Q, then the projection step’s computational
complexity would be reduced to (2Im + I2m). Assuming D = QR, then the projection
matrix can be written as follows:

D(DtD)—lDt — QR(RtQtQR)—lRtQt
= QRRHR''RHQ’ = QLY (5)
which we use to decrease the projection step’s complexity.
Table I compares different sketching methods with respect to their complexity. The
SSketch’s complexity indicates a linear relationship with n and m. In SSketch, compu-

tations can be parallelized as the sparse representation can be independently computed
for each column of the sub-blocks of A.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:12 B. D. Rouhani et al.

Table |. Computational Complexity of Different Sketching Methods

Sketching Algorithm Computational Complexity
SVD m?n +m3 ~ O(m?n)

SPCA Imn + m?n +m? ~ O(m?n)
SSketch (this article) nm +12m) + mnl? ~ O(mni?)

User/ plat_form Constraint driven customization
constraints | | | unit
(Tu, Py, My) - =
[] []
Streaming Data
Dictionary Data
Learner Sketching
/}\
M
cht(lsr;ary Block-sparse
matrix (V)
User defined ﬁ/

Output
Results

User-defined arbitrary -

algorithm & 7™
9 matrix-based data analysis

inputs

Fig. 4. High-level diagram of SSketch API. The constraint-driven customization unit of SSketch takes user-
defined properties and hardware limitations as inputs and delivers output parameters that can be used for
an optimized sketch computation.

6. SSKETCH AUTOMATED HARDWARE-ACCELERATED IMPLEMENTATION

In this section, we discuss the details of SSketch hardware-accelerated implementation.
After applying preprocessing steps on the stream of the input data for dictionary
learning, SSketch sends the data to FPGA through a 1Gbps Ethernet port. SSketch
is devised with multiple OMP kernels and a control unit to efficiently compute the
block-sparse matrix V. As the stream of data arrives, the control unit looks for the
availability of OMP kernels and assigns the newly arriving sample to an idle kernel
for further processing. The control unit also has the responsibility of reading out the
outputs and sending back the results to the host. SSketch API provides designers
with a user-friendly interface for rapid prototyping of arbitrary matrix-based data
analysis algorithms and realizing streaming applications on FPGAs, see Figure 4.
The constraint-driven customization unit of SSketch takes user-defined properties and
hardware limitations as inputs and customizes the framework for an optimized sketch
computation. The input parameters of the constraint-driven customization unit may
include runtime, power, and memory constraints (T}, P,, and M, respectively) and its
outputs include sketching algorithmic parameters as well as guidelines for hardware
mapping. Users can then use the transformed data to scalably perform an arbitrary
matrix-based data analysis on an ensemble of lower-dimensional structures rather than
the original matrix without a significant loss. Note that the algorithmic parameters
of SSketch, including the projection threshold «, error threshold ¢, dictionary size /,
target block-sparsity level k&, and block size my, are programmable at runtime and can
be easily changed through SSketch API.

In OMP hardware implementation, we utilize several techniques to reduce the it-
eration interval of two successive operations and exploit the parallelism within the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:13

High A

Power
(User/Platform
Constraint)

Sketch
Accuracy

| Runtime
' (User Constraint)

Low

Low High

Fig.5. Overview of automated SSketch customization. SSketch leverages the degree of freedom in producing
several data projection subspaces to optimize for the pertinent resource provisioning including runtime,
power, and memory.

algorithm. We observe that the OMP algorithm includes multiple dot product compu-
tations that result in frequent appearance of for-loops requiring an operation similar
to a + =bli] x c[i]. We use a tree-based reduction module by implementing a tree-based
adder to accelerate the dot product and norm computation steps that appear frequently
in the OMP routine. By means of the reduction module, SSketch is able to reduce the it-
eration interval and handle more operations simultaneously. As such, SSketch requires
multiple concurrent loads and stores from a particular memory. To cope with the con-
currency, instead of having a large block Random Access Memory (RAM) for matrices
D and Q, we use multiple smaller-sized block memories and fill these block RAMs by
cyclic interleaving. Thus, we can perform a faster computation by accessing multiple
successive elements of the matrices and removing the dependency in the for-loops.

Using the block RAM is desirable in FPGA implementations because of its fast access
time. The number of block RAMs on one FPGA is limited, so it is important to optimize
the amount of utilized block memories. We reduce block RAM utilization in SSketch’s
realization by a factor of 2 compared to the naive implementation. This reduction is a
consequence of our observation that none of the columns of matrix D would be selected
twice during one call of the OMP algorithm. This is particularly because the updated
residual at the end of each iteration is made orthogonal to the selected dictionary
samples. Thereby, for computing line 5 of Algorithm 2, we only use the indices of D
that are not selected during the previous OMP iterations. We instead use the memory
space that was originally assigned to the selected columns of D to store the newly
added columns of matrix Q. By doing so, we reduce the block RAM utilization, which
allows SSketch to employ more OMP kernels in parallel.

7. AUTOMATED SSKETCH CUSTOMIZATION

As illustrated in Figure 5, there are four main directions along which the underlying
data transformation could be optimized: accuracy, runtime, memory bandwidth, and
power. SSketch is devised with an automated constraint-driven customization unit to
deliver best data projection under a given set of physical resources and constraints.
As we demonstrate in Section 9, there is a tradeoff between the sketch matrix ac-
curacy and SSketch’s physical performance that can be carefully leveraged to improve
the efficiency of sketch matrix computation. By increasing the dictionary size [, SS-
ketch can better capture the hybrid structure of the input data, which results in more
non-zero elements in the block-sparse matrix V and typically higher sketch accuracy.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:14 B. D. Rouhani et al.

Note that in the SSketch framework each dictionary sub-block is constructed from the
columns of its corresponding data sub-matrix, see Figure 2. The column space of the
dictionary is contained in that of the data matrix, which implies that the rank of each
dictionary sub-block is less than my, where my, is the block size. Therefore, in the block-
ing SSketch approach, each dictionary sub-block can at most consist of m;, independent
samples. This automatically ensures that the memory constraint is satisfied. However,
in practice, one might need to customize the architecture such that not only memory
constraint is addressed but also runtime and power constraints are taken into consid-
eration. SSketch takes the runtime, power, and memory constraints into account and
subsequently tunes its algorithmic parameters to deliver the sketch matrix with the
least approximation error in each scenario.

7.1. Constraint-Driven Optimization

Memory constraint on computing platforms is one of the main limitations in the big
data regime. Blocking SSketch computes the sketch of dynamic data collections by
breaking up the data into more manageable blocks according to the memory budget.
In the SSketch framework, the memory requirement can be approximated by ((Imy, +
myp) % (ng, + 1) + nil?) x 4 bytes, where n;, is the number of OMP kernels, n, is the block
size, and [/ is the number of samples in the dictionary matrix. The (Imy + mp) term
corresponds to the resource requirement to store a sub-block of dictionary matrix D
and a single column of the input matrix A at a time, while the /? factor denotes the
memory storage assigned to the matrix R in each OMP kernel.
Total runtime in SSketch framework (7T'sszecn) can be expressed as:

TSSketch ~ Tdictionary + TCormnunication + TFPGA (6)
learning Overhead Computation
mn(kl + k%)

~ Bomn + Bumnll +17) + P

where B;s are constant coefficients that characterize the runtime requirement per unit
of floating point operation. The latter term in Equation (6) represents the runtime cost
of computing the block-sparse matrix V, which is the dominant factor in SSketch’s
runtime, as we experimentally illustrate in Section 8. To deliver the most accurate
sketch matrix, SSketch solves the optimization objective described in Equation (7).
It maximally exploits the existing sparsity in a dataset to effectively improve the
performance of iterative matrix computations while adhering to a set of user/platform
physical constraints. The SSketch’s constraint-driven optimization can be expressed
as follows:

mgnimize(approximation error), (7
s My, N

subjectto: 1 < my,

mp < m,

np € N,

pornnl® [y, < T,

Pssretch < Py,

+ Dy + Dmy + ml® < M,
where T, P,, and M, are a set of user-defined parameters that imply the underlying
physical constraints in terms of runtime, power, and memory, respectively. The term

mnl? /n;, reflects the computational complexity of SSketch (Table I), where n;, samples
can be processed in parallel using n; OMP kernels available in the data sketching

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Table Il. Virtex-6 Resource Utilization

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:15

Slice Registers Slice LUTs RAM B36E1 DSP 48E1s
OMP Kernel 12285 x 4 21333 x 4 85 x 4 89 x 4
Ethernet Interface 1,172 2,022 45 0
Controller Unit 5 96 28 0
Total Utilization (Percentage) 50,317 (16%) 87,450 (58%) 413 (99%) 356 (46%)

unit. As we show in Section 8, the total power consumption of SSketch (Psgpescn) has
a linear correlation with the number of OMP kernels that are concurrently in use for
data sketching.

SSketch approximates the solution of Equation (7) using the Karush-Kuhn-Tucker
conditions. To efficiently capture the hybrid structure of streaming data collections, SS-
ketch automatically customizes its framework according to the application and tunes
the algorithmic parameters including block size my, dictionary size [, as well as the
number of OMP kernels n,. To facilitate automation, we provide a solver for our opti-
mization approach. The solver gets the constraints from the user as inputs and uses our
Mathematica-based computational software program to solve the optimization. Note
that this constraint-driven optimization is a one-time process that incurs a constant
and negligible overhead regardless of data size.

8. HARDWARE SETTINGS AND RESULTS

We use Xilinx Virtex-6-XC6VLX240T FPGA ML605 Evaluation Kit as our hardware
accelerator platform. An Intel core i17-2600K processor with SSE4 architecture running
on the Windows OS is utilized as our general-purpose processing unit hosting the
FPGA and software-based realization of SSketch (used for comparison purposes). We
employ Xilinx standard IP cores for single precision floating-point operations. Xilinx
ISE 14.6 is used to synthesize, place, route, and program the FPGA.

Table II breaks down the Virtex-6 resource utilization for our realization of SSketch
framework. Our implementation includes four OMP kernels, a controller unit, and an
Ethernet interface. For factorizing matrix A,,.,, there is no specific limitation on the
size n due to the streaming nature of SSketch. However, the FPGA block RAM size is
limited. To fit into the RAM, we decide to divide input matrix A to blocks of size my x n,
where my, is set to be less than 256. As such, each block of the dictionary consists of
a maximum 256 samples (I < 256). We set the sparsity level & equal to the dictionary
size [to give users the flexibility to process different data samples without inducing
a limitation on the target sparsity. Note that SSketch’s parameters are changeable in
SSketch API. So if a designer decides to choose a different set of algorithmic parameters
for any reason, she can easily modify the parameters at runtime corresponding to the
underlying application.

To corroborate the scalability and practicability of SSketch, we use synthetic data
with dense (non-sparse) correlations of different sizes, as well as the hyperspectral
[Salina 2014] and light field image datasets [LightField 2014] that we discuss more
in detail in Section 9. Table III compares the required runtime per sample for pro-
cessing different-sized synthetic data using blocking SSketch versus an optimized
software-only realization on a single-core 3.40GHz Central Processing Unit (CPU) us-
ing the OMP implementation in Rubinstein [2009]. In this experiment, sparsity level
k is set to be 50% of the feature space size m, and the overall runtime is averaged
over 1,000 samples. As illustrated, the required runtime for updating SSketch’s block-
sparse matrix V corresponding to each arriving sample is a linear function of block-size
my (Section 5.3), which is set to be 256 for SSketch evaluation in Table III.

Figure 6 demonstrates the average runtime of SSketch as a function of sparsity
level (&), dictionary size (/), and number of OMP kernels (n;). According to the OMP

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:16 B. D. Rouhani et al.

Table Ill. Average Runtime Improvement per Sample Achieved by SSketch Compared
to an Optimized Software-Based OMP Implementation

Average Runtime per Sample Average Runtime per Sample
Feature Size (m) | (Software-only Implementation) | (SSketch HW/SW Co-design) | Improvement
256 12.5ms 3.41ms 3.68x
512 63.82ms 6.78ms 9.41x
1,024 511.50ms 13.69ms 37.36x
2,048 5.91 x 103ms 27.61ms 214.05x
507 0.02 - 0.03
-8-Average over 1k signals| A — o) -B-Average over 1k signals
2 6}|-0 Average over Sk signals| Z0.015 Crage over X Signas 20025k, -O Average over 5k signals
E, / E £ 0.02
zS5 g = 0
£ £ 0.01 <
&4 & 50015
s 20.005 8
3 < Z 001
2 0 s —t
0 20 40 60 80 100 120 50 100 150 200 250 0.005 1 2 . 3 4
k (sparsity level) 1 (number of dictionary samples) n, (number of OMP kernels)

(a) Runtime per signal in blocking (b) Runtime per signal in blocking (c) Runtime per signal in blocking
SSketch vs. the sparsity level, k, SSketch vs. the dictionary size, [, SSketch vs. number of OMP ker-
with I = 128, my, = 256, € = 0.001, with k =, mp = 256, ¢ = 0.1, and nels, ny, with k = [= 128, m; =
and nj = 4. ny = 4. 256, and ¢ = 0.1.

Fig. 6. SSketch’s FPGA-accelerated implementation performance. /, %, €, and my, are SSketch’s algorithmic
parameters that indicate the number of samples in the dictionary matrix, target sparsity level, error thresh-
old, and block size, respectively. n; denotes the number of OMP kernels that work in parallel in the data
sketching unit. In both (b) and (c), we set £ = [to let & be as large as the dictionary size and use ¢ as the
stopping criteria in the OMP algorithm.

Table IV. SSketch Total Processing Time Is Linear in Terms of the Number
of Processed Samples. In This Experiment, mp = 256 and o« = 0.1

Number of Samples (n) Tssketen, (I = 128) Tssketen (I = 64)
1K 3.63s 2.31s
5K 21.03s 12.01s
10K 43.44s 24.32s
20K 90.76s 48.52s
50K 219.65s 123.07s

algorithm, for each newly arriving sample, we expect (m(kl + k2)) operations for updat-
ing the block-sparse matrix V. As illustrated in Figures 6(a) and (b), our hardware-
accelerated implementation of SSketch follows the same trend as predicted by the OMP
algorithm complexity. Note that none of the columns of matrix D would be selected
twice during one call of the OMP algorithm. In our hardware-accelerated realization,
we compute line 5 of Algorithm 2 by searching among those columns of the dictionary
that have not been selected during the previous OMP iterations. Our hardware imple-
mentation approach results in a milder slope for larger ks in Figure 6(a). For example,
this property can be seen for 100 < &£ < 128 versus 80 < k£ < 100 in Figure 6(a). In
Figure 6(c) the average runtime of SSketch is illustrated as a function of n;, where
ny is the number of OMP kernels. The kernels are used in parallel to compute the
block-sparse matrix V. As Figure 6(c) demonstrates, the average runtime of SSketch
is proportional to 1/n;, which experimentally confirms that the runtime of SSketch
(T'sSketcr) 1s dominated by the runtime cost of computing the block-sparse matrix V.
The processing time of SSketch is dominated by the OMP computation in the FPGA
(Section 7.1). Table IV reflects the total runtime of SSketch (T'sspescr) as defined in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:17

Table V. Power Consumption on Virtex 6 for Different
Numbers of OMP Kernels

Number of Kernels (n;) Power Consumption
1 0.358W
2 0.447TW
3 0.546W
4 0.634W

Equation (6) for processing different numbers of samples. As shown, the total latency
is a linear function of the number of processed samples, which experimentally confirms
the scalability of our HW/SW co-design approach to compute the sketch matrix of a
collection as data evolve over time. The average overhead delay for communicating be-
tween the processor (host) and accelerator contributes less than 4% to the total runtime.

Table V reflects the total power consumption of our hardware-accelerated imple-
mentation of SSketch on Xilinx Virtex-6-XC6VLX240T FPGA ML605 Evaluation Kit.
The values are simulated by Xpower analyzer tools [XPower 2012] in Xilinx ISE and
account for both leakage and dynamic power. The FPGA is programmed with a speed
grade of —1 and the board is operating at 2.5V. As demonstrated in Table V, the total
power consumption of SSketch is a linear function of the number of OMP kernels that
are employed in data sketching unit.

9. PRACTICAL DESIGN EXPERIMENTS

For evaluation purposes, we apply our methodology on three sets of data: (i) Light field,
(ii) Hyperspectral images, and (iii) Synthetic data. To ensure that dictionary learning is
independent of the data arriving order, for each fixed set of algorithmic parameters we
shuffle the data before applying SSketch algorithm. The mean error value for 10 calls
of SSketch and its variance are reported in Figures 7 and 8. In all cases, we observe
that the variance of the error value is two to three orders of magnitude less than the
mean value, implying that the SSketch algorithm has a low dependency on the data
arrival order. This is particularly of interest in streaming application where the data
matrix evolves over the course of time.

9.1. Light Field Experiments

Alight field image is a set of multi-dimensional array of images that are simultaneously
captured from slightly different viewpoints. Promising capabilities of light field imaging
include the ability to define the field’s depth, focus, or refocus on a part of image and
reconstruct a three-dimensional model of the scene [Marwah et al. 2013]. For evaluating
SSketch algorithm accuracy, we run our experiments on a light field data consisting of
2,500 samples each of which constructed of 25 8 x 8 patches. The light field data results
in a data matrix with 4 million non-zero elements. We choose this moderate input
matrix size to accommodate the SVD algorithm for comparison purposes and enable
the exact error measurement especially for the correlation matrix (a.k.a., Gram matrix)
approximation. The Gram matrix of a data collection consists of the Hamiltonian inner
products of data vectors. The core of several important data analysis algorithms is
the iterative computation on the data Gram matrix. Examples of Gram matrix usage
include but are not limited to kernel-based learning and classification methods, as well
as several regression and regularized least-squares routines [Tibshirani 1996].

In the SSketch framework, the dictionary size [has a direct effect on the achieved
approximation error as well as system speed. Transformation with larger [results
in a smaller approximation error at the cost of decreasing system performance in
terms of runtime due to the increase in computation. Figures 7(a) and 7(d) report
the results of applying both nonblocking and blocking SSketch on the data. We define

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:18 B. D. Rouhani et al.

03 .
-5~ Blocking SSketch 0.2: = —
i £=0.01 &= 001

0.5 -5 Nonblocking SSketch e—04 2o

©£=0.75

=075

0.15 W‘e/é

0.2

0.15

0.1

0.05

Xerr
s
3
2
2
»
| f/
Xerr
s
s 2°
2 =
N4
Compression-rate
s o
o o =

20 100 120 0 500 1000 1500 0 500 . 1000 1500
I (number of dictionary samples) Block-size (m,) Block-size (m,)

(@) Xerr vs. | with a = 0.1, my, = (b) Xerr vs. my with @« =0.1 and ! (c) Compression-rate vs. m; with

200 and € = 0.01. =128. =0.1and ! =128.
10°
0.01 — 0.1
5 Blocking SSketch gl| e =001 5 SSketch
-5-Nonblocking SSketch Be=04 +svD
0.008, S6-075 0.08

0.006] éa/&/@/é 0.06
-

0.004]

0.002;

M

30 40 60 80 100 120 0 500 1000 1500 20 40 60 80 100 120
I (number of dictionary samples) Block-size(m,) 1 (number of dictionary samples)

Gerr
Gerr
[*) S >
<X
o I3
= =S
5 =

(d) Gerr vs. I with a = 0.1, my, = (e) Gerr vs. my with @« =0.1 and [(f) e, vs. | compared to the mini-
200 and € = 0.01. =128. mal possible error.

Fig. 7. Experimental evaluations of SSketch. «, ¢, [, and m; are SSketch’s algorithmic parameters that
indicate the projection threshold, error threshold, number of samples in the dictionary matrix, and block
size, respectively. Xerr represents the data matrix sketching error and Gerr represents the approximation
error for the corresponding Gram matrix. The spectral transformation error is denoted by e.

-6

x 10

-5 Hyperspectral datal
-O- Hyperspectral data2

Gerr

40

3
1 (number of dictionary samples)

Fig. 8. Approximation error (Gerr) vs. [for two different hyperspectral datasets. The SSketch algorithmic
parameters are set to « = 0.1 and € = 0.01, where « is the projection threshold and ¢ is the error threshold.

the approximation error for the input data and its corresponding Gram matrix as

A t AL A ~
Xerr = 828E and Gerr = %%, where A = DV.

Given a fixed memory budget for the dictionary matrix D, blocking SSketch could
result in a more accurate sketch compared with the nonblocking approach, as illus-
trated in Figures 7(a) and (d). In this setting, the higher accuracy of blocking SSketch
is at the cost of a larger number of non-zeros per column of the block-sparse matrix V.
Number of rows in each block of input data (block size) has a direct effect on SSketch’s
performance. Figures 7(b), (e), and (c) demonstrate the effect of block size on the data
and Gram matrix approximation error as well as matrix compression-rate, where the

compression rate is defined as %&’)‘Zm. As illustrated, one can always reduce the

number of non-zeros per column of matrix V by increasing the SSketch error threshold

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:19

€. In particular, there is a tradeoff between the data sketch accuracy and the num-
ber of non-zeros in the block-sparse matrix V. This tradeoff ultimately controls the
data compression rate and the memory bandwidth required to perform the subsequent
machine-learning algorithm using the computed data sketch matrix. Thereby, SSketch
tunes its algorithmic parameters to optimize for the underlying constraints imposed
by the application data and/or hardware platform.

Considering the spectral norm error (e, = ”‘T};ﬁ”z) instead of Frobenius norm error,

the theoretical minimal error can be expressed as oy, 1 = min(||A—Ag||2 : Ay, has rankk),
where o}, is the exact kth singular value of A and A;, is obtained by SVD [Martinsson
et al. 2010]. Figure 7(f) compares e, and the theoretical minimal error for the light field
dataset.

9.2. Hyperspectral Experiments

A hyperspectral image is a sequence of images generated by hundreds of detectors
that capture the information from across the electromagnetic spectrum. With this
collected information, one would obtain a spectrum signature for each pixel of the
image that can be used for identifying or detecting the material [Plaza et al. 2011].
Hyperspectral imaging is a new type of high-dimensional image data and a promising
tool for applications in earth-based and planetary exploration, geo-sensing, and beyond.
This fast and non-destructive technique provides a large amount of spectral and spatial
information on a wide number of samples. However, the large size of hyperspectral
datasets limits the applicability of this technique, especially for scenarios where online
evaluation of a large number of samples is required.

We adapt the SSketch framework to capture the sketch of each pixel for the purpose of
enhancing the computational performance and reducing the total storage requirement
for hyperspectral images. In this experiment, the SSketch algorithm is applied on two
different hyperspectral datasets. The first dataset [Stanford 2014] is 148 x 691,614 and
the second one [Salina 2014] is of size 204 x 54,129. Our experiments show that SSketch
algorithm results in the same trend as in Figures 7(a) and (d) for both hyperspectral
datasets. As Figure 8 illustrates, the Gram matrix approximation error reaches to less
than 0.2 x 107° for / > 10 in both datasets.

9.3. Hardware Customized Experiments

Here, we provide three experiments to demonstrate the advantage of SSketch’s au-
tomated tuning approach for user/platform specific customization and performance
optimization. In all these experiments, we compare the approximation results with
the actual optimal values. As can be seen, our approximations for SSketch algorithmic
parameters are very close to the real optimized values, which implies the accuracy
of SSketch automated constraint-driven customization. Our experiment platform is
a Virtex-6-XC6VLX240T FPGA ML605 Evaluation Kit with 1872kB available block
RAM memory [Datasheet 2014].

Experiment (i): Consider a scenario where a user requires computing the sketch
matrix of a dynamic data collection with a size of m = 256 and n = 5,000 within a
runtime budget of 30s. In this case, the memory and power are only limited by the
target platform; in other words, there are no user constraints in terms of memory or
power. Since no power constraint exists, n;, (the number of OMP kernels) is set at its
maximum value, which is determined by the memory budget. As it shown in Table II,
four OMP kernels fit on the Virtex-6-XC6VLX240T FPGA with 1,872kB of available
block RAM memory. Figure 9 demonstrates the average runtime for a sample sketch
update as a function of dictionary size in our real-world evaluation on FPGA. As Fig-
ure 9(a) illustrates, [= 107 is the optimal dictionary size one can use to compute
the data sketch within the aforementioned set of user/platform constraints. On the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

8:20 B. D. Rouhani et al.

-4 4 -4
ZXIO 5 10 n 10

41 OMP kernel “|[-0-1 OMP kernel “|[-0-1 OMP kernel

>-2 OMP kernels [>2 OMP kernels $>2 OMP kernels
©-3 OMP kernels

4 OMP kernels

1 l=_-Time deadline

03 OMP kernels Pt 1.5 -6-3 OMP kernels o
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

4 OMP kernels 4OMPkemels| O
- -Time deadline |-*" = ~Time deadtine |0

1 (number of dictionary samples) 1 (number of dictionary samples) 1 (number of dictionary samples)
(a) (b) ()

n
n

&

Average run-time (s)
Average run-time (s)
Average run-time (s)

Fig. 9. SSketch’s automated constraint-driven customization. Each plot demonstrates the average runtime
required to process one sample as a function of the dictionary size. The dashed horizontal line reflects the
user runtime deadline, and the star point illustrates the SSketch’s automated customization output. The
user power constraint selects the number of OMP kernels that can work in parallel. The crossing point of the
dashed line and the corresponding runtime curve (solid curve) is the actual optimized point in each setting.

other hand, solving our constraint-driven optimization in Equation (7) results in/ ~ 98
(star-marked point in Figure 9(a)). Thus, our parametric optimization outputs effi-
ciently model the real-world hardware-accelerated implementation.

Experiment (ii): Consider a scenario where a user requires computing the sketch
matrix of a dynamic data collection with a size of m = 256 and n = 5,000 within a
runtime budget of 25s and a power budget of 0.6W. In this case, the memory is limited
by the target platform. Due to the power constraint, one can make use of three OMP
kernels to compute the sketch (Table V). As Figure 9(b) illustrates, / = 80 is the optimal
dictionary size one can use to compute the data sketch within the aforementioned set of
user/platform constraints. On the other hand, solving our constraint-driven optimiza-
tion in Equation (7) results in [~ 78 (star-marked point in Figure 9(b)).

Experiment (iii): Consider a scenario where a user requires computing the sketch
matrix of a dynamic data collection with a size of m = 512 and n = 2500 within a
runtime budget of 91s and a power budget of 0.4W. In this case, the memory is limited
to the 1,872kB block RAM memory available within our experiment platform. Due to
the power constraint, only one OMP kernel can be used to compute the sketch matrix
(Table V). As Figure 9(c) illustrates, [= 95 is the optimal dictionary size that can be used
to compute the data sketch within the aforementioned set of user/platform constraints.
On the other hand, solving our constraint-driven optimization in Equation (7) results
in [~ 85 (star-marked point in Figure 9(c)).

The above experiments further demonstrate the applicability and efficiency of our
constraint-driven optimization approach proposed in Section 7.

10. CONCLUSION

This article presents SSketch, an automated computing framework for FPGA-based
online analysis of big and densely correlated data matrices. SSketch utilizes a novel
streaming and communication-minimizing methodology to efficiently capture the
sketch of a massive, dynamic data collection. It adaptively learns and leverages the
hybrid structure of the streaming input data to effectively improve the performance. To
boost the computational efficiency, SSketch is devised with a scalable implementation
of OMP on FPGA. We propose a constraint-driven optimization method that automat-
ically tunes the sketch matrix computation and embedding properties with respect to
user-defined and hardware specifications. To enable handling datasets with arbitrary
large number of features, a blocking model is devised that efficiently partitions the fea-
ture space for sketch matrix computing. We provide theoretical bounds for the sketch
approximation error in the blocking mode. Our framework provides designers with a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

Automated Real-Time Analysis of Streaming Big and Dense Data on Reconfigurable Platforms 8:21

user-friendly API for rapid prototyping and evaluation of an arbitrary matrix-based big
data analysis algorithm. We evaluate the method on three different large contemporary
datasets. In particular, we compare the SSketch runtime to the software realization
on a general purpose processor. We also report the delay overhead for communicating
between the processor (host) and the accelerator (FPGA). Our evaluations corroborate
SSketch scalability and practicability.

REFERENCES

Mircea Andrecut. 2008. Fast GPU implementation of sparse signal recovery from random projections. arXiv
preprint arXiv:0809.1833.

Lin Bai, Patrick Maechler, Michael Muehlberghuber, and Hubert Kaeslin. 2012. High-speed compressed
sensing reconstruction on FPGA using OMP and AMP. In Proceedings of the 2012 19th IEEE Interna-
tional Conference on Electronics, Circuits and Systems (ICECS). IEEE, 53-56.

Jeffrey D. Blanchard and Jared Tanner. 2013. GPU accelerated greedy algorithms for compressed sensing.
Math. Program. Comput. 5, 3 (2013), 267-304.

Kenneth L. Clarkson and David P. Woodruff. 2009. Numerical linear algebra in the streaming model. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing. ACM, 205-214.

Jason Cong, Muhuan Huang, and Peng Zhang. 2014. Combining computation and communication opti-
mizations in system synthesis for streaming applications. In Proceedings of the 2014 ACM/SIGDA
International Symposium on Field-programmable Gate Arrays. ACM, 213-222.

N. Council. 2013. Frontiers in massive data analysis. (2013).

Xilinx Datasheet. 2014. Xilinx Virtex 6 Datasheet. Retrieved 2014 from http://www.xilinx.com/publications/
prod_mktg/Virtex6_Product_Table.pdf.

Petros Drineas and Michael W. Mahoney. 2005. On the Nystrom method for approximating a gram matrix
for improved kernel-based learning. /. Mach. Learn. Res. 6 (2005), 2153-2175.

Eva L. Dyer, Aswin C. Sankaranarayanan, and Richard G. Baraniuk. 2013. Greedy feature selection for
subspace clustering. J. Mach. Learn. Res. 14, 1 (2013), 2487-2517.

Yong Fang, Liang Chen, Jiaji Wu, and Bormin Huang. 2011. GPU implementation of orthogonal matching
pursuit for compressive sensing. In Proceedings of the 2011 IEEE 17th International Conference on
Parallel and Distributed Systems (ICPADS). IEEE, 1044-1047.

Gene H. Golub and Christian Reinsch. 1970. Singular value decomposition and least squares solutions.
Numer. Math. 14, 5 (1970), 403-420.

Pierre Greisen, Marian Runo, Patrice Guillet, Simon Heinzle, Aljoscha Smolic, Hubert Kaeslin, and Markus
Gross. 2013. Evaluation and FPGA implementation of sparse linear solvers for video processing appli-
cations. IEEE Trans. Circ. Syst. Vid. Technol. 23, 8 (2013), 1402-1407.

A. Kulkarni, T. Abtahi, E. Smith, and T. Mohsenin. 2016. Low energy sketching engines on many-core
platform for big data acceleration. In Proceedings of the 26th Edition on Great Lakes Symposium on
VLSI (GLSVLSI'16). ACM, New York, NY, 57-62. DOI : http:/dx.doi.org/10.1145/2902961.2902984

A. Kulkarni, A. Jafari, C. Sagedy, and T. Mohsenin. 2016a. Sketching-based high-performance biomedical
big data processing accelerator. In Proceedings of the 2016 IEEE International Symposium on Circuits
and Systems (ISCAS). 1138-1141.

A. Kulkarni, A. Jafari, C. Shea, and T. Mohsenin. 2016b. CS-based secured big data processing on FPGA. In
Proceedings of the 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 201-201. DOI : http://dx.doi.org/10.1109/FCCM.2016.59

Amey M. Kulkarni, Houman Homayoun, and Tinoosh Mohsenin. 2014. A parallel and reconfigurable archi-
tecture for efficient OMP compressive sensing reconstruction. In Proceedings of the 24th Edition of the
Great Lakes Symposium on VLSI. ACM, 299-304.

Luis M. Ledesma-Carrillo, Eduardo Cabal-Yepez, Rene de J. Romero-Troncoso, Arturo Garcia-Perez, Roque
Osornio-Rios, Tobia D. Carozzi, and others. 2011. Reconfigurable FPGA-Based unit for singular value
decomposition of large mxn matrices. In Proceedings of the 2011 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig). IEEE, 345-350.

Edo Liberty. 2013. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 581-588.

Stanford Dataset Archive LightField. 2014. Retrieved from http:/lightfield.stanford.edu/.

Patrick Maechler, Pierre Greisen, Norbert Felber, and Andreas Burg. 2010. Matching pursuit: Evaluation
and implementatio for LTE channel estimation. In Proceedings of 2010 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 589-592.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

http://www.xilinx.com/publications/prodmktg/Virtex6ProductTable.pdf
http://www.xilinx.com/publications/prodmktg/Virtex6ProductTable.pdf
http://dx.doi.org/10.1145/2902961.2902984
http://dx.doi.org/10.1109/FCCM.2016.59
http://lightfield.stanford.edu/

8:22 B. D. Rouhani et al.

Gunnar Martinsson, Adrianna Gillman, Edo Liberty, Nathan Halko, Vladimir Rokhlin, Sijia Hao, Yoel
Shkolnisky, Patrick Young, Joel Tropp, Mark Tygert, and others. 2010. Randomized methods for com-
puting the singular value decomposition (SVD) of very large matrices. In Proceedings of the Workshop
on Algorithms for Modern Massive Data Sets, Palo Alto.

Kshitij Marwah, Gordon Wetzstein, Yosuke Bando, and Ramesh Raskar. 2013. Compressive light field pho-
tography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. 32, 4 (2013),
46.

Azalia Mirhoseini, Eva Dyer, Ebrahim Songhori, Richard Baraniuk, Farinaz Koushanfar, and others. 2015.
RankMap: A platform-aware framework for distributed learning from dense datasets. arXiv preprint
arXiv:1503.08169 (2015).

Azalia Mirhoseini, Bita Darvish Rouhani, Ebrahim M. Songhori, and Farinaz Koushanfar. 2016. Perform-ML:
Performance optimized machine learning by platform and content aware customization. In Proceedings
of the 563rd Annual Design Automation Conference. ACM, 20.

Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. 2012. Introduction to Linear Regression
Analysis, Vol. 821. John Wiley & Sons.

Dimitris S. Papailiopoulos, Alexandros G. Dimakis, and Stavros Korokythakis. 2013. Sparse pca through
low-rank approximations. arXiv preprint arXiv:1303.0551 (2013).

Franjo Plavec, Zvonko Vranesic, and Stephen Brown. 2013. Exploiting task-and data-level parallelism in
streaming applications implemented in FPGAs. ACM Trans. Reconf. Technol. Syst. 6, 4 (2013), 16.
Antonio Plaza, Javier Plaza, Alexander Paz, and Sergio Sanchez. 2011. Parallel hyperspectral image and

signal processing [applications corner]. Sign. Process. Mag. 28, 3 (2011), 119-126.

Sanguthevar Rajasekaran and Mingjun Song. 2006. A novel scheme for the parallel computation of SVDs.
In High Performance Computing and Communications. Springer, 129-137.

Fengbo Ren, Richard Dorrace, Wenyao Xu, and Dejan Markovic. 2013. A single-precision compressive sensing
signal reconstruction engine on FPGAs. In Proceedings of the 2013 23rd International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 1-4.

Bita Darvish Rouhani, Ebrahim Songhori, Azalia Mirhoseini, and Farinaz Koushanfar. 2015. SSketch: An
automated framework for streaming sketch-based analysis of big data on FPGA. In Proceedings of the

23rd IEEE International Symposium on Field-Programmable Custom Computing Machines Conference
(FCCM) (2015).

R. Rubinstein. 2009. Omp-Box v10. (2009).

Hyperspectral Remote Sensing Dataset Salina. 2014. Retrieved 2014 from http:/www.ehu.es/ccwintco/
index.php/Hyperspectral_Remote_Sensing_Scenes.

Avi Septimus and Raphael Steinberg. 2010. Compressive sampling hardware reconstruction. In Proceedings
of 2010 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 3316-3319.

Anatoli Sergyienko and Oleg Maslennikov. 2002. Implementation of givens QR-decomposition in FPGA. In
Parallel Processing and Applied Mathematics. Springer, 4568-465.

Hyperspectral Dataset Stanford. 2014. Retrieved 2014 from http://scien.stanford.edu/index.php/landscapes.

Jerome L. V. M. Stanislaus and Tinoosh Mohsenin. 2012. High performance compressive sensing reconstruc-
tion hardware with QRD process. In Proceedings of the 2012 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 29-32.

Jerome L. V. M. Stanislaus and Tinoosh Mohsenin. 2013. Low-complexity FPGA implementation of com-
pressive sensing reconstruction. In Proceedings of the 2013 International Conference on Computing,
Networking and Commaunications (ICNC). IEEE, 671-675.

Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (1996),
267-288.

Wei Zhang, Vaughn Betz, and Jonathan Rose. 2012. Portable and scalable FPGA-based acceleration of a
direct linear system solver. ACM Trans. Reconfig. Technol. Syst. 5,1 (2012), 6.

Daniel Zinn, Quinn Hart, Timothy McPhillips, Bertram Ludascher, Yogesh Simmhan, Michail Giakkoupis,
and Viktor K. Prasanna. 2011. Towards reliable, performant workflows for streaming-applications on
cloud platforms. In Proceedings of the 2011 11th IEEE /| ACM International Symposium on Cluster, Cloud
and Grid Computing. IEEE Computer Society, 235-244.

Hui Zou, Trevor Hastie, and Robert Tibshirani. 2006. Sparse principal component analysis. J. Comput.
Graph. Stat. 15, 2 (2006), 265—-286.

Received July 2015; revised April 2016; accepted July 2016

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 8, Publication date: December 2016.

http://www.ehu.es/ccwintco/index.php/HyperspectralRemoteSensingScenes
http://www.ehu.es/ccwintco/index.php/HyperspectralRemoteSensingScenes
http://scien.stanford.edu/index.php/landscapes

