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Abstract

Recent advances in video manipulation techniques have
made the generation of fake videos more accessible than
ever before. Manipulated videos can fuel disinformation and
reduce trust in media. Therefore detection of fake videos has
garnered immense interest in academia and industry. Re-
cently developed Deepfake detection methods rely on Deep
Neural Networks (DNNs) to distinguish AI-generated fake
videos from real videos. In this work, we demonstrate that it
is possible to bypass such detectors by adversarially modi-
fying fake videos synthesized using existing Deepfake gen-
eration methods. We further demonstrate that our adversar-
ial perturbations are robust to image and video compres-
sion codecs, making them a real-world threat. We present
pipelines in both white-box and black-box attack scenarios
that can fool DNN based Deepfake detectors into classifying
fake videos as real.

1. Introduction

With the advent of sophisticated image and video synthe-
sis techniques, it has become increasingly easier to generate
high-quality convincing fake videos. Deepfakes are a new
genre of synthetic videos, in which a subject’s face is modi-
fied into a target face in order to simulate the target subject in
a certain context and create convincingly realistic footage of
events that never occurred. Video manipulation methods like
Face2Face [49], Neural Textures [48] and FaceSwap [26]
operate end-to-end on a source video and target face and
require minimal human expertise to generate fake videos in
real-time.

The intent of generating such videos can be harmless and
have advanced the research of synthetic video generation
for movies, storytelling and modern-day streaming services.
However, they can also be used maliciously to spread disin-
formation, harass individuals or defame famous personali-
ties [45]. The extensive spread of fake videos through social

media platforms has raised significant concerns worldwide,
particularly hampering the credibility of digital media.

Figure 1. Adversarial Deepfakes for XceptionNet [40] detector.
Top: Frames of of a fake video generated by Face2Face being
correctly identified as fake by the detector. Bottom: Corresponding
frames of the adversarially modified fake video being classified as
real by the detector.

To address the threats imposed by Deepfakes, the machine
learning community has proposed several countermeasures
to identify forgeries in digital media. Recent state-of-the-art
methods for detecting manipulated facial content in videos
rely on Convolutional Neural Networks (CNNs) [17, 40,
1, 2, 30, 39]. A typical Deepfake detector consists of a
face-tracking method, following which the cropped face is
passed on to a CNN-based classifier for classification as
real or fake [1, 13]. Some of the recent DeepFake detection
methods use models operate on a sequence of frames as
opposed to a single frame to exploit temporal dependencies
in videos [15].

While the above neural network based detectors achieve
promising results in accurately detecting manipulated videos,
in this paper we demonstrate that they are susceptible to ad-
versarial examples which can fool the detectors to classify
fake videos as real 1. An adversarial example is an inten-
tionally perturbed input that can fool a victim classification

1Video Examples: https://adversarialdeepfakes.github.io/

3347

2021 IEEE Winter Conference on Applications of Computer Vision (WACV)

978-0-7381-4266-1/21/$31.00 ©2021 IEEE
DOI 10.1109/WACV48630.2021.00339

https://adversarialdeepfakes.github.io/


model [46]. Even though several works have demonstrated
that neural networks are vulnerable to adversarial inputs (Sec-
tion 2.3), we want to explicitly raise this issue that has been
ignored by existing works on Deepfake detection (Section
2.2). Since fake video generation can potentially be used for
malicious purposes, it is critical to address the vulnerability
of Deepfake detectors to adversarial inputs.

To this end, we quantitatively assess the vulnerability of
state-of-the-art Deepfake detectors to adversarial examples.
Our proposed methods can augment existing techniques for
generating fake videos, such that they can bypass a given
fake video detector. We generate adversarial examples for
each frame of a given fake video and combine them together
to synthesize an adversarially modified video that gets classi-
fied as real by the victim Deepfake detector. We demonstrate
that it is possible to construct fake videos that are robust to
image and video compression codecs, making them a real
world threat since videos shared over social media are usu-
ally compressed. More alarmingly, we demonstrate that it is
possible to craft robust adversarial Deepfakes in black-box
settings, where the adversary may not be aware of the clas-
sification model used by the detector. Finally, we discuss
normative points about how the community should approach
the problem of Deepfake detection.

2. Background
2.1. Generating Manipulated Videos

Until recently, the ease of generating manipulated videos
has been limited by manual editing tools. However, since
the advent of deep learning and inexpensive computing ser-
vices, there has been significant work in developing new
techniques for automatic digital forgery. In our work, we
generate adversarial examples for fake videos synthesized us-
ing FaceSwap (FS) [26], Face2Face (F2F) [49], DeepFakes
(DF) [16] and NeuralTextures (NT) [48]. We perform our
experiments on this FaceForesics++ dataset [40], which is
a curated dataset of manipulated videos containing facial
forgery using the above methods. Another recently proposed
dataset containing videos with facial forgery is the Deep-
Fake Detection Challenge (DFDC) Dataset [17], which we
utilize when evaluating our attacks against sequence based
detection frameworks (Section 3.1).

2.2. Detecting Manipulated Videos

Traditionally, multimedia forensics investigated the au-
thenticity of images [51, 10, 21] using hand-engineered fea-
tures and/or a-priori knowledge of the statistical and physical
properties of natural photographs. However, video synthesis
methods can be trained to bypass hand-engineered detec-
tors by modifying their training objective. We direct readers
to [7, 9] for an overview of counter-forensic attacks to bypass
traditional (non-deep learning based) methods of detecting

forgeries in multimedia content.
More recent works have employed CNN-based ap-

proaches that decompose videos into frames to automatically
extract salient and discriminative visual features pertinent
to Deepfakes. Some efforts have focused on segmenting
the entire input image to detect facial tampering resulting
from face swapping [56], face morphing [38] and splicing
attacks [5, 6]. Other works [28, 29, 1, 23, 40, 41] have fo-
cused on detecting face manipulation artifacts resulting from
Deepfake generation methods. The authors of [29] reported
that eye blinking is not well reproduced in fake videos, and
therefore proposed a temporal approach using a CNN + Re-
current Neural Network(RNN) based model to detect a lack
of eye blinking when exposing deepfakes. Similarly, [54]
used the inconsistency in head pose to detect fake videos.
However, this form of detection can be circumvented by pur-
posely incorporating images with closed eyes and a variety
of head poses in training [50, 18].

The Deepfake detectors proposed in [40, 1, 17] model
Deepfake detection as a per-frame binary classification prob-
lem. The authors of [40] demonstrated that XceptionNet
can outperform several alternative classifiers in detecting
forgeries in both uncompressed and compressed videos, and
identifying forged regions in them. In our work, we expose
the vulnerability of such state-of-the-art Deepfake detectors.
Since the task is to specifically detect facial manipulation,
these models incorporate domain knowledge by using a face
tracking method [49] to track the face in the video. The face
is then cropped from the original frame and fed as input to
classification model to be labelled as Real or Fake. Experi-
mentally, the authors of [40] demonstrate that incorporation
of domain knowledge helps improve classification accuracy
as opposed to using the entire image as input to the classi-
fier. The best performing classifiers amongst others studied
by [40] were both CNN based models: XceptionNet [13]
and MesoNet [1]. More recently, some detectors have also
focused on exploiting temporal dependencies while detect-
ing DeepFake videos. Such detectors work on sequence of
frames as opposed to a single frame using a CNN + RNN
model or a 3-D CNN model. One such model based on a 3-D
EfficientNet [47] architecture, was used by the third place
winner [15] of the recently conducted DeepFake Detection
Challenge (DFDC) [17]. The first two winning submissions
were CNN based per-frame classification models similar
to ones described above. We evaluate our attacks against
the 3D CNN model to expose the vulnerability of temporal
Deepfake detectors.

2.3. Adversarial Examples

Adversarial examples are intentionally designed inputs to
a machine learning (ML) model that cause the model to make
a mistake [46]. Prior work has shown a series of first-order
gradient-based attacks to be fairly effective in fooling DNN
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based models in both image [35, 34, 22, 31, 11, 44, 43], au-
dio [12, 37, 33] and text [20, 8, 32] domains. The objective
of such adversarial attacks is to find a good trajectory that
(i) maximally changes the value of the model’s output and
(ii) pushes the sample towards a low-density region. This is
equivalent to the ML model’s gradient with respect to input
features. Prior work on defenses [53] against adversarial
attacks, propose to perform random operations over the in-
put images, e.g., random cropping and JPEG compression.
However, such defenses are shown to be vulnerable to attack
algorithms that are aware of the randomization approach.
Particularly, one line of adversarial attack [3, 4] computes
the expected value of gradients for each of the sub-sampled
networks/inputs and performs attacks that are robust against
compression.

3. Methodology

3.1. Victim Models: Deepfake Detectors

Frame-by-Frame detectors: To demonstrate the effective-
ness of our attack on Deepfake detectors, we first choose
detectors which rely on frame level CNN based classification
models. These victim detectors work on the frame level and
classify each frame independently as either Real or Fake
using the following two-step pipeline:
1. A face tracking model [49] extracts the bounding box of
the face in a given frame.
2. The cropped face is then resized appropriately and passed
as input to a CNN based classifier to be labelled as either
real or fake.

In our work, we consider two victim CNN classifiers:
XceptionNet [13] and MesoNet [1]. Detectors based on the
above pipeline have been shown to achieve state-of-the-art
performance in Deepfake detection as reported in [17, 40,
55]. The accuracy of such models on the FaceForensics++
Dataset [40] is reported in Table 1.
Sequence based models: We also demonstrate the effec-
tiveness of our attacks on detectors that utilize temporal
dependencies. Such detection methods typically use a CNN
+ RNN or a 3D-CNN architecture to classify a sequence of
frames as opposed to a single frame. A 3D-CNN architecture
performs convolutions across height, width and time axis
thereby exploiting temporal dependencies. In Section 5, we
evaluate our attacks against one such detection method [15]
that uses a 3-D EfficientNet [47] CNN model for classify-
ing a sequence of face-crops obtained from a face tracking
model. In this model, a 3-D convolution is added to each
block of the EfficientNet model to perform convolutions
across time. The length of the input sequence to the model
is 7 frames and the step between frames is 1/15 of a second.
This 3-D CNN model was used by the third place winner of
the recently conducted DFDC challenge.

𝟄+ =

Classifier

Classifier

Fake

Real

Fake video

Adversarially modified fake video

Figure 2. An overview of our attack pipeline to generate Adversarial
Deepfakes. We generate an adversarial example for each frame
in the given fake video and combine them together to create an
adversarially modified fake video.

3.2. Threat Model

Given a facially manipulated (fake) video input and a
victim Deepfake detector, our task is to adversarially modify
the fake video such that most of the frames get classified
as Real by the Deepfake detector, while ensuring that the
adversarial modification is quasi-imperceptible.

Distortion Metric: To ensure imperceptibility of the ad-
versarial modification, the Lp norm is a widely used distance
metric for measuring the distortion between the adversarial
and original inputs. The authors of [22] recommend con-
straining the maximum distortion of any individual pixel by
a given threshold ε, i.e., constraining the perturbation using
an L∞ metric. Additionally, Fast Gradient Sign Method
(FGSM) [22] based attacks, which are optimized for the L∞
metric, are more time-efficient than attacks which optimize
for L2 or L0 metrics. Since each video can be composed of
thousands of individual frames, time-efficiency becomes an
important consideration to ensure the proposed attack can
be reliably used in practice. Therefore, in this work, we use
the L∞ distortion metric for constraining our adversarial
perturbation and optimize for it using gradient sign based
methods.

Notation: We follow the notation previously used
in [11, 36]: Define F to be the full neural network (clas-
sifier) including the softmax function, Z(x) = z to be the
output of all layers except the softmax (so z are the logits),
and

F (x) = softmax(Z(x)) = y

The classifier assigns the label C(x) = arg maxi(F (x)i) to
input x.

Problem Formulation: Mathematically, for any given
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frame x0 of a fake video, and a victim frame-forgery detector
model C, we aim to find an adversarial frame xadv such that,

C(xadv ) = Real and ||xadv − x0||∞ < ε

Attack Pipeline: An overview of the process of generat-
ing adversarial fake videos is depicted in Figure 2. For any
given frame, we craft an adversarial example for the cropped
face, such that after going through some image transforma-
tions (normalization and resizing), it gets classified as Real
by the classifier. The adversarial face is then placed in the
bounding box of face-crop in the original frame, and the
process is repeated for all frames of the video to create an
adversarially modified fake video. In the following sections,
we consider our attack pipeline under various settings and
goals.

Note that, the proposed attacks can also be applied on
detectors that operate on entire frames as opposed to face-
crops. We choose face-crop based victim models because
they have been shown to outperform detectors that operate
on entire frames for detecting facial-forgeries.

3.3. White-box Attack

In this setting, we assume that the attacker has complete
access to the detector model, including the face extraction
pipeline and the architecture and parameters of the classifi-
cation model. To construct adversarial examples using the
attack pipeline described above, we use the iterative gradient
sign method [27] to optimize the following loss function:

Minimize loss(x′) where
loss(x′) = max (Z(x′)Fake − Z(x′)Real , 0)

(1)

Here, Z(x)y is the final score for label y before the soft-
max operation in the classifier C. Minimizing the above
loss function maximizes the score for our target label Real .
The loss function we use is recommended in [11] because
it is empirically found to generate less distorted adversarial
samples and is robust against defensive distillation. We use
the iterative gradient sign method to optimize the above ob-
jective while constraining the magnitude of the perturbation
as follows:

xi = xi−1 − clipε(α · sign(∇loss(xi−1))) (2)

We continue gradient descent iterations until success or until
a given number number of maximum iterations, whichever
occurs earlier. In our experiments, we demonstrate that
while we are able to achieve an average attack success rate
of 99.05% when we save videos with uncompressed frames,
the perturbation is not robust against video compression
codecs like MJPEG. In the following section, we discuss our
approach to overcome this limitation of our attack.

3.4. Robust White-box Attack

Generally, videos uploaded to social networks and other
media sharing websites are compressed. Standard opera-
tions like compression and resizing are known for removing
adversarial perturbations from an image [19, 14, 24]. To
ensure that the adversarial videos remain effective even after
compression, we craft adversarial examples that are robust
over a given distribution of input transformations [4]. Given
a distribution of input transformations T , input image x, and
target class y, our objective is as follows:

xadv = argmaxxEt∼T [F (t(x))y] s.t. ||x− x0||∞ < ε

That is, we want to maximize the expected probability of
target class y over the distribution of input transforms T . To
solve the above problem, we update the loss function given
in Equation 1 to be an expectation over input transforms T
as follows:

loss(x) = Et∼T [max (Z(t(x))Fake − Z(t(x))Real , 0)]

Following the law of large numbers, we estimate the above
loss functions for n samples as:

loss(x) =
1

n

∑
ti∼T

[max (Z(ti(x))Fake − Z(ti(x))Real , 0)]

Since the above loss function is a sum of differentiable
functions, it is tractable to compute the gradient of the loss
w.r.t. to the input x. We minimize this loss using the iterative
gradient sign method given by Equation 2. We iterate until a
given a number number of maximum iterations or until the
attack is successful under the sampled set of transformation
functions, whichever happens first.

Next we describe the class of input transformation func-
tions we consider for the distribution T :
Gaussian Blur: Convolution of the original image with a
Gaussian kernel k . This transform is given by t(x) = k ∗ x
where ∗ is the convolution operator.
Gaussian Noise Addition: Addition of Gaussian noise sam-
pled from Θ ∼ N (0, σ) to the input image. This transform
is given by t(x) = x+ Θ
Translation: We pad the image on all four sides by ze-
ros and shift the pixels horizontally and vertically by a
given amount. Let tx be the transform in the x axis and
ty be the transform in the y axis, then t(x) = x′H,W,C s.t
x′[i, j, c] = x[i+ tx, j + ty, c]
Downsizing and Upsizing: The image is first downsized
by a factor r and then up-sampled by the same factor using
bilinear re-sampling.

The details of the hyper-parameter search distribution
used for these transforms can be found in the Section 4.1.
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3.5. Black-box Attack

In the black-box setting, we consider the more challeng-
ing threat model in which the adversary does not have access
to the classification network architecture and parameters.
We assume that the attacker has knowledge of the detection
pipeline structure and the face tracking model. However, the
attacker can solely query the classification model as a black-
box function to obtain the probabilities of the frame being
Real or Fake. Hence there is a need to estimate the gradient
of the loss function by querying the model and observing
the change in output for different inputs, since we cannot
backpropagate through the network.

We base our algorithm for efficiently estimating the gra-
dient from queries on the Natural Evolutionary Strategies
(NES) approach of [52, 25]. Since we do not have access
to the pre-softmax outputs Z, we aim to maximize the class
probability F (x)y of the target class y. Rather than maxi-
mizing the objective function directly, NES maximizes the
expected value of the function under a search distribution
π(θ|x). That is, our objective is:

Maximize: Eπ(θ|x)[F (θ)y]

This allows efficient gradient estimation in fewer queries as
compared to finite-difference methods. From [52], we know
the gradient of expectation can be derived as follows:

∇xEπ(θ|x) [F (θ)y] = Eπ(θ|x) [F (θ)y∇x log (π(θ|x))]

Similar to [25, 52], we choose a search distribution π(θ|x)
of random Gaussian noise around the current image x. That
is, θ = x+ σδ where δ ∼ N (0, I). Estimating the gradient
with a population of n samples yields the following variance
reduced gradient estimate:

∇E[F (θ)] ≈ 1

σn

n∑
i=1

δiF (θ + σδi)y

We use antithetic sampling to generate δi similar to
[42, 25]. That is, instead of generating n values δ ∼ N (0, I),
we sample Gaussian noise for i ∈ {1, . . . , n2 } and set
δj = −δn−j+1 for j ∈ {(n2 + 1), . . . , n}. This optimization
has been empirically shown to improve performance of NES.
Algorthim 1 details our implementation of estimating gra-
dients using NES. The transformation distribution T in the
algorithm just contains an identity function i.e., T = {I(x)}
for the black-box attack described in this section.

After estimating the gradient, we move the input in the
direction of this gradient using iterative gradient sign updates
to increase the probability of target class:

xi = xi−1 + clipε(α · sign(∇F (xi−1)y)) (3)

3.6. Robust Black-box Attack

To ensure robustness of adversarial videos to compression,
we incorporate Expectation over Transforms (Section 3.4)
method in the black-box setting for constructing adversarial
videos.

To craft adversarial examples that are robust under a given
set of input transformations T , we maximize the expected
value of the function under a search distribution π(θ|x) and
our distribution of input transforms T . That is, our objective
is to maximize:

Et∼T [Eπ(θ|x) [F (t(θ))y]]

Following the derivation in the previous section, the gradient
of the above expectation can be estimated using a population
of size n by iterative sampling of ti and δi:

∇E[F (θ)] ≈ 1

σn

n∑
i=1,ti∼T

δiF (ti(θ + σδi))y

Algorithm 1 NES Gradient Estimate
Input: Classifier F (x),target class y, image x
Output: Estimate of∇xF (x)y
Parameters: Search variance σ, number of samples n,
image dimensionality N
g ← 0n
for i = 1 to n do
ti ∼ T
ui ← N (0N , IN ·N )
g ← g + F (ti(x+ σ · ui))y · ui
g ← g − F (ti(x− σ · ui))y · ui

end for
return 1

2nσ g

We use the same class of transformation functions listed
in Section 3.4 for the distribution T . Algorithm 1 details our
implementation for estimating gradients for crafting robust
adversarial examples. We follow the same update rule given
by Equation 3 to generate adversarial frames. We iterate
until a given a number of maximum iterations or until the
attack is successful under the sampled set of transformation
functions.

4. Experiments
Dataset and Models: We evaluate our proposed attack al-

gorithm on two pre-trained victim models: XceptionNet [13]
and MesoNet [1]. In our experiments, we perform our at-
tack on the test set of the FaceForensics++ Dataset [40],
consisting of manipulated videos from the four methods de-
scribed in Section 2.1. We construct adversarially modified
fake videos on the FaceForensics++ test set, which contains
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70 videos (total 29,764 frames) from each of the four ma-
nipulation techniques. For simplicity, our experiments are
performed on high quality (HQ) videos, which apply a light
compression on raw videos. The accuracy of the detector
models for detecting facially manipulated videos on this test
set is reported in Table 1. We will be releasing code for all
our attack algorithms in PyTorch2.

DF F2F FS NT
XceptionNet Acc % 97.49 97.69 96.79 92.19

MesoNet Acc % 89.55 88.6 81.24 76.62

Table 1. Accuracy of Deepfake detectors on the FaceForensics++
HQ Dataset as reported in [40]. The results are for the entire
high-quality compressed test set generated using four manipulation
techniques (DF: DeepFakes, F2F: Face2Face, FS: FaceSwap and
NT: NeuralTextures).

Evaluation Metrics: Once the adversarial frames are
generated, we combine them and save the adversarial videos
in the following formats:
1) Uncompressed (Raw): Video is stored as a sequence of
uncompressed images.
2) Compressed (MJPEG): Video is saved as a sequence of
JPEG compressed frames.
3) Compressed (H.264): Video is saved in the commonly
used mp4 format that applies temporal compression across
frames.

We conduct our primary evaluation on the Raw and
MJPEG video formats across all attacks. We also study
the effectiveness of our white box robust attack using dif-
ferent compression levels in the H264 codec. We report the
following metrics for evaluating our attacks:
Success Rate (SR): The percentage of frames in the adver-
sarial videos that get classified to our target label Real. We
report: SR-U- Attack success rate on uncompressed adver-
sarial videos saved in Raw format; and SR-C- Attack success
rate on compressed adversarial videos saved in MJPEG for-
mat.
Accuracy: The percentage of frames in videos that get clas-
sified to their original label Fake by the detector. We report
Acc-C- accuracy of the detector on compressed adversarial
videos.
Mean distortion (L∞): The average L∞ distortion between
the adversarial and original frames. The pixel values are
scaled in the range [0,1], so changing a pixel from full-on to
full-off in a grayscale image would result in L∞ distortion
of 1 (not 255).

4.1. White-box Setting

To craft adversarial examples in the white-box setting,
in our attack pipeline, we implement differentiable image

2Code released upon publication

pre-processing (resizing and normalization) layers for the
CNN. This allows us to backpropagate gradients all the way
to the cropped face in-order to generate the adversarial image
that can be placed back in the frame. We set the maximum
number of iterations to 100, learning rate α to 1/255 and
max L∞ constraint ε to 16/255 for both our attack methods
described in Sections 3.3 and 3.4.

XceptionNet MesoNet

Dataset L∞ SR - U SR - C Acc-C% L∞ SR - U SR - C Acc-C%

DF 0.004 99.67 43.11 56.89 0.006 97.30 92.27 7.73
F2F 0.004 99.85 52.50 47.50 0.007 98.94 96.30 4.70
FS 0.004 100.00 43.13 56.87 0.009 97.12 86.10 13.90
NT 0.004 99.89 95.10 4.90 0.007 99.22 96.20 3.80

All 0.004 99.85 58.46 41.54 0.007 98.15 92.72 7.28

Table 2. Success Rate of White-box attack on XceptionNet and
MesoNet. We report the average L∞ distortion between the adver-
sarial and original frames and the attack success rate on uncom-
pressed (SR-U) and compressed (SR-C) videos. Acc-C denotes the
accuracy of the detector on compressed adversarial videos.

Table 2 shows the results of the white-box attack (Sec-
tion 3.3). We are able to generate adversarial videos with an
average success rate of 99.85% for fooling XceptionNet and
98.15% for MesoNet when adversarial videos are saved in
the Raw format. However, the attack average success rate
drops to 58.46% for XceptionNet and 92.72% for MesoNet
when MJPEG compression is used. This result is coherent
with past works [19, 14, 24] that employ JPEG compres-
sion and image transformations to defend against adversarial
examples.

Fake (from Dataset) White-Box Robust White-Box Black-Box Robust Black-Box

DF

F2F

FS

NT

Figure 3. Randomly selected frames of Adversarial Deepfakes
from successful attacks. The frame from the dataset in the first
column is correctly identified as Fake by the detectors, while the
corresponding frames generated by each of our attacks are labelled
as Real with a probability of 1. Video examples are linked in the
footnote on the first page.

Robust White-Box: For our robust white box attack, we
sample 12 transformation functions from the distribution T
for estimating the gradient in each iteration. This includes
three functions from each of the four transformations listed
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in Section 3.4. Table 3 shows the search distribution for
different hyper-parameters of the transformation functions.

Transform Hyper-parameter search distribution

Gaussian Blur Kernel k(d, d, σ), d ∼ U [3, 7], σ ∼ U [5, 10]
Gaussian Noise σ ∼ U [0.01, 0.02]

Translation dx ∼ U [−20, 20], dy ∼ U [−20, 20]
Down-sizing & Up-sizing Scaling factor r ∼ U [2, 5]

Table 3. Search distribution of hyper-parameters of different trans-
formations used for our Robust White box attack. During training,
we sample three functions from each of the transforms to estimate
the gradient of our expectation over transforms.

XceptionNet MesoNet

Dataset L∞ SR - U SR - C Acc-C% L∞ SR - U SR - C Acc-C%

DF 0.016 99.67 98.71 1.29 0.030 99.94 99.85 0.15
F2F 0.013 100.00 99.00 1.00 0.020 99.71 99.67 0.33
FS 0.013 100.00 95.33 4.67 0.026 99.02 98.50 1.50
NT 0.011 100.00 99.89 0.11 0.025 99.99 99.98 0.02

All 0.013 99.91 98.23 1.77 0.025 99.67 99.50 0.50

Table 4. Success Rate of Robust White-box attack on XceptionNet
and MesoNet. Acc-C denotes the accuracy of the detector on
compressed adversarial videos.

Table 4 shows the results of our robust white-box attack.
It can be seen that robust white-box is effective in both Raw
and MJPEG formats. The average distortion between origi-
nal and adversarial frames in the robust attack is higher as
compared to the non-robust white-box attack. We achieve
an average success rate (SR-C) of 98.07% and 99.83% for
XceptionNet and MesoNet respectively in the compressed
video format. Additionally, to assess the gain obtained by
incorporating the transformation functions, we compare the
robust white-box attack against the non-robust white-box
attack at the same level of distortion in Table 5. We ob-
serve a significant improvement in attack success rate on
compressed videos (SR-C) when using the robust attack as
opposed to the simple white-box attack (84.96% vs 74.69%
across all datasets at L∞ norm of 0.008).

White Box Robust White Box

Dataset L∞ SR - U SR - C Acc-C% SR - U SR - C Acc-C%

DF 0.008 99.67 60.36 39.64 99.67 75.06 24.94
F2F 0.008 99.85 80.69 19.31 100.0 90.20 9.80
FS 0.008 100.00 59.63 40.37 100.0 76.12 23.88
NT 0.008 99.89 98.08 1.92 100.0 98.48 1.52

All 0.008 99.85 74.69 25.31 99.91 84.96 15.04

Table 5. Comparison of white-box and robust white-box attacks
at the same magnitude of L∞ norm of the adversarial perturba-
tion. Acc-C denotes the accuracy of the detector on compressed
adversarial videos.

We also study the effectiveness of our robust white box
attack under different levels of compression in the H.264

H.264 Quantization Factor
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Figure 4. Attack success rate vs Quantization factor used for com-
pression in H264 codec for robust white box attack.

format which is widely used for sharing videos over the
internet. Figure 4 shows the average success rate of our
attack across all datasets for different quantization parameter
c used for saving the video in H.264 format. The higher
the quantization factor, the higher is the compression level.
In [40], fake videos are saved in HQ and LQ formats which
use c = 23 and c = 40 respectively. It can be seen that even
at very high compression levels (c = 40), our attack is able
to achieve 80.39% and 90.50% attack success rate for Xcep-
tionNet and MesoNet respectively, without any additional
hyper-parameter tuning for this experiment.

4.2. Black-box Setting

We construct adversarial examples in the black-box set-
ting using the methods described in Sections 3.5 and 3.6.
The number of samples n in the search distribution for esti-
mating gradients using NES is set to 20 for black-box attacks
and 80 for robust black-box to account for sampling different
transformation functions ti. We set the maximum number
of iterations to 100, learning rate α to 1/255 and max L∞
constraint ε to 16/255.

Table 6 shows the results of our Black-box attack (Sec-
tion 3.5) without robust transforms. Note that the average
L∞ norm of the perturbation across all datasets and mod-
els is higher than our white-box attacks. We are able to
generate adversarial videos with an average success rate of
97.04% for XceptionNet and 86.70% for MesoNet when
adversarial videos are saved in the Raw format. Similar to
our observation in the white-box setting, the success rate
drops significantly in the compressed format for this attack.
The average number of queries to the victim model for each
frame is 985 for this attack.
Robust Black-box: We perform robust black-box attack
using the algorithm described in (Section 3.6). For sim-
plicity, during the robust black-box attack we use the same
hyper-parameters for creating a distribution of transforma-
tion functions T (Table 3) as those in our robust white-box
attack. The average number of network queries for fooling
each frame is 2153 for our robust black-box attack. Table
7 shows the results for our robust black-box attack. We ob-
serve a significant improvement in the attack success rate for
XceptionNet when we save adversarial videos in the com-
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XceptionNet MesoNet

Dataset L∞ SR - U SR - C Acc-C% L∞ SR - U SR - C Acc-C %

DF 0.055 89.72 55.64 44.36 0.062 96.05 93.33 6.67
F2F 0.055 92.56 81.40 18.6 0.063 84.08 77.68 22.32
FS 0.045 96.77 23.50 76.5 0.063 77.55 62.44 37.56
NT 0.024 99.86 94.23 5.77 0.063 85.98 79.25 20.75

All 0.045 94.73 63.69 36.31 0.063 85.92 78.18 21.82

Table 6. Success Rate of of Black-box attack on XceptionNet and
MesoNet. Acc-C denotes the accuracy of the detector on com-
pressed adversarial videos.

XceptionNet MesoNet

Dataset L∞ SR - U SR - C Acc-C% L∞ SR - U SR - C Acc-C%

DF 0.060 88.47 79.18 20.82 0.047 96.19 93.80 6.20
F2F 0.058 97.68 94.42 5.58 0.054 84.14 77.50 22.50
FS 0.052 98.97 63.26 36.74 0.061 77.34 61.77 38.23
NT 0.018 99.65 98.91 1.09 0.053 88.05 80.27 19.73

All 0.047 96.19 83.94 16.06 0.053 86.43 78.33 21.67

Table 7. Success Rate of Robust Black-box attack on XceptionNet
and MesoNet. Acc-C denotes the accuracy of the detector on
compressed adversarial videos.

pressed format as compared to that in the naive black-box
attack setting. When attacking MesoNet in robust black-
box setting, we do not observe a significant improvement
even though overall success rate is higher when using robust
transforms.

5. Evaluation on Sequence Based Detector

We consider the 3D CNN based detector described in
Section 3.1. The detector performs 3D convolution on a se-
quence of face-crops from 7 consecutive frames. We perform
our attacks on the pre-trained model checkpoint (trained on
DFDC [17] train set) released by the NTech-Lab team [15].
We evaluate our attacks on the DeepFake videos from the
DFDC public validation set which contains 200 Fake videos.
We report the accuracy of the detector on the 7-frame se-
quences from this test set in the first row of Table 8.

Similar to our attacks on frame-by-frame detectors, in
the white-box setting we back-propagate the loss through
the entire model to obtain gradients with respect to the in-
put frames for crafting the adversarial frames. While both
white-box and robust white-box attacks achieve 100% suc-
cess rate on uncompressed videos, the robust white-box at-
tack performs significantly better on the compressed videos
and is able to completely fool the detector. As compared
to frame-by-frame detectors, a higher magnitude of pertur-
bation is required to fool this sequence model in both the
white-box attacks. In the black-box attack setting, while
we achieve similar attack success rates on uncompressed
videos as the frame-by-frame detectors, the attack success
rate drops after compression. The robust black-box attack
helps improve robustness of adversarial perturbations to com-

pression as observed by higher success rates on compressed
videos (51.02% vs 24.43% SR-C).

3D CNN Sequence Model

Attack Type L∞ SR - U SR - C Acc. - C%

None - - - 91.74

White-Box 0.037 100.00 77.67 22.33
Robust White-Box 0.059 100.00 100.00 0.00
Black-Box 0.061 87.99 24.43 75.57
Robust Black-Box 0.062 88.21 51.02 48.98

Table 8. Evaluation of different attacks on a sequence based de-
tector on the DFDC validation dataset. The first row indicates the
performance of the classifier on benign (non adversarial) videos.

6. Discussion and Conclusion

The intent of Deepfake generation can be malicious and
their detection is a security concern. Current works on DNN-
based Deepfake detection assume a non-adaptive adversary
whose aim is to fool the human-eye by generating a realistic
fake video. To use these detectors in practice, we argue that
it is essential to evaluate them against an adaptive adversary
who is aware of the defense being present and is intentionally
trying to fool the defense. In this paper, we show that the
current state-of-the-art methods for Deepfake detection can
be easily bypassed if the adversary has complete or even
partial knowledge of the detector. Therefore, there is a need
for developing provably robust detectors that are evaluated
under different attack scenarios and attacker capabilities.

In order to use DNN based classifiers as detectors, ensur-
ing robustness to adversarial examples is necessary but not
sufficient. A well-equipped attacker may devise other meth-
ods to by-pass the detector: For example, an attacker can
modify the training objective of the Deepfake generator to
include a loss term corresponding to the detector score. Clas-
sifiers trained in a supervised manner on existing Deepfake
generation methods, cannot be reliably secure against novel
Deepfake generation methods not seen during training. We
recommend approaches similar to Adversarial Training [22]
to train robust Deepfake detectors. That is, during training,
an adaptive adversary continues to generate novel Deepfakes
that can bypass the current state of the detector and the detec-
tor continues improving in order to detect the new Deepfakes.
In conclusion, we highlight that adversarial examples are a
practical concern for current neural network based Deepfake
detectors and therefore recommend future work on designing
provably robust Deepfake detectors.
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