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Low-Power Resource Binding by Postsilicon Customization
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This article proposes the first postsilicon customization method for resource binding to achieve power re-
duction application specific integrated circuits (ASICs) design. Instead of committing to one configuration
of resource binding during synthesis, our new synthesis method produces a diverse set of candidate bind-
ings for the design. To ensure diversity of the resource usage patterns, we introduce a binding candidate
formation method based on the orthogonal arrays. Additional control components are added to enable post
manufacturing selection of one of the binding candidates. The resource binding candidate that minimizes
the power consumption is selected by considering the specific power characteristics of each chip. An efficient
methodology for embedding several binding candidates in one design is developed. Evaluations on bench-
mark designs show the low overhead and the effectiveness of the proposed methods. As an example, applying
our method results in an average of 14.2% (up to 24.0%) power savings on benchmark circuits for a variation
model in 45nm CMOS technology. The power efficiency of our customized postsilicon binding is expected to
improve with scaling of the technology and the likely resulting higher process variations.
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1. INTRODUCTION

Miniaturization of CMOS to nanometer technologies and inaccuracies of the mask and
lithography for the smaller size devices cause an increased uncertainty of the process
parameters around their nominal values. As a result of the process characteristics
variations, there are interchip and intrachip fluctuations of static and dynamic power
consumption. Especially, the leakage power variability is known to have an exponen-
tial dependence on a number of operational and process parameters [Srivastava et al.
2005]. Because of the importance of power minimization, presilicon optimization tech-
niques for lessening the power consumption at different levels of design flow have been
introduced. Unfortunately, one-size-fits-all solutions that are based on optimizing the
power consumption for nominal process values have a limited effectiveness in presence
of variations across the chips.
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Fig. 1. The same benchmark with three candidates for task distribution.

Adaptive postsilicon optimization has been shown to be effective by tuning design
parameters to the specific characteristics of each IC after fabrication. A standing chal-
lenge is applying postsilicon tuning to power control at different levels of abstraction
since not all design parameters are adjustable at this stage. In fact, there are rather a
few design parameters that have been so far tuned for low power postsilicon, including
adaptive body biasing and standby input vector control [Alkabani et al. 2008]. Wang
et al. [2008] proposed presilicon module selection that is optimized to be variation-
aware with postsilicon tuning by adaptive body biasing. However, module selection is
not adjustable post fabrication. Presently available approaches for post-silicon power
adjustment and optimization are mostly done at the device, gate or logic level [Mani
et al. 2006; Kulkarni et al. 2006; Wang et al. 2008; Liu and Sapatnekar 2007].

Several studies have revealed the effectiveness of power optimization [Raghunathan
et al. 1998] at a higher level. In particular, a number of approaches for low power
design at the high-level synthesis stage have shown promising results. Early research
on high-level synthesis for low power concentrated on dynamic power optimization
[Chandrakasan et al. 1992; Raghunathan et al. 1998]. Scaling of CMOS to smaller
sizes is increasing the significance of static leakage power compared to dynamic power.
As a result, the emphasis of power-efficient methods shifted to leakage minimization
in recent years [Khouri and Jha 2002]. We note that design space exploration during
synthesis is usually done by deterministic optimization. For example, conventional
schedules that are optimized and hardcoded in the design, are different from (i) in-
struction scheduling in heavily pipelined circuit where the instruction priorities may
change [Ndai et al. 2008], (ii) schedule selection in reconfigurable environments, or
(iii) application-level scheduling of multiprocessors performed in software [Wang et al.
2008].

In this article, we introduce a high-level synthesis methodology that during the
design phase generates multiple resource binding candidates instead of one. Each
candidate binding assigns different usage levels to the functional units. For example,
Figure 1 shows three resource allocation and binding candidates for the same circuit
where the functional units are being used at different rates in each candidate (the usage
level is illustrated by the degree of darkness for each functional unit). The multiple
candidates are efficiently embedded into the controller with a low overhead. Using
conventional testing methods, the total chip power for binding candidates could be
measured post fabrication. For each IC, we select the binding candidate that minimizes
the pertinent chip’s power consumption. The best option, in effect, is the one that uses
the power-inefficient functional units the least. Note that testing can be performed at
runtime such that the system automatically picks the version that prolongs the battery
life.

Our new methodology can be used for a number of other objectives, including bal-
anced aging and defect tolerance. For instance, in case of failure or malfunctioning of
a functional unit, the circuit can switch to an alternate candidate that does not use
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the defective unit. This can be made feasible by introducing redundancies in functional
units and using the multiple candidate binding method. The binding candidates must
be designed such that one of the functional units is not used in each candidate. As
another example, in rapidly aging technologies, by switching among the binding candi-
dates one could provide equalized usage of all functional units and thus, amortize the
aging effects. Note that other methods for embedding multiple options during high-
level synthesis have been applied for security and temperature balancing purposes
[Alkabani and Koushanfar 2008; Alkabani et al. 2009]. The multiple binding approach
introduced in this article is new and orthogonal to the earlier introduced methods. The
contributions of this article are as follows:

—Introduction of the first multiple candidate resource allocation and binding frame-
work for ASICs that allows postsilicon variation-aware selection of the best candi-
date;

—Efficient creation of a diverse set of resource binding possibilities using orthogonal
arrays;

—Formation and evaluation of heuristic algorithms for embedding multiple diverse
resource allocation and binding scenarios for a given set of scheduled operations and
number of available functional units;

—Low overhead embedding of multiple binding candidates into the controller;
—Creation of new methods for low overhead postsilicon power measurement for cases

where the number of candidates is much larger than the number of resources;
—Studies and evaluations of the impact of number of postsilicon candidates and power

savings of the resulting variation-aware optimization compared to the best available
low-power presilicon binding methods.

The remainder of the article is organized as follows. Section 2 provides the prelimi-
naries and background. Section 3 presents the new synthesis framework and the flow
of our approach. Section 4 explains the significance and relevance of process variation
and task level assignment. Section 5 introduces the design of multiple binding candi-
dates to achieve diverse usage profiles across different versions. In Sections 6 and 7, we
present generation of multiple candidates and efficient integration into the controller
state machine respectively. Postsilicon selection of the best candidate is introduced
in Section 8. The evaluation results are presented in Section 9. Finally, Section 10
concludes the article.

2. BACKGROUND AND RELATED WORK

High-Level Synthesis. Automated high-level synthesis (HLS) methods and tools are
necessary for coping with complexity and scale of contemporary large designs. The
algorithmic and functional behavioral description of the design are inputs to the HLS
tools. High-level descriptions are automatically synthesized and compiled by the HLS
tools to lower level hardware components and primitives with a minimal involvement
and input from the designer. Several high-level hardware description languages
(HDL) were created based on higher level functional programming languages such as
C/C++. Examples of HLS tools include Xilinx AutoESL1, Mentor Graphics CatapultC2,
SystemC3, ImpulseC4, Bluespec5, and Handel-C6.

1Xilinx. Autoesl. http://www.xilinx.com/tools/autoesl.htm.
2CatapultC. Mentor graphics. http://www.mentor.com/esl/catapult/overview.
3SystemC. Open system initiative. http://www.systemc.org.
4ImpulseC. Impulse accelerated technologies. http://www.impulseaccelerated.com.
5Bluespec. http://www.bluespec.com.
6Handel-C. Mentor graphics. http://www.mentor.com/products/fpga/handel-c/.
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Fig. 2. General flow for high-level synthesis.

Fig. 3. An example of (a) dataflow graph (DFG) and (b) control flow graph (CDFG).

Conversion of HDL to the hardware level is done by (i) compiling and optimizing
the code for hardware implementation, and (ii) scheduling, resource allocation, and
binding. Figure 2 shows a generic flow for HLS. First, the design is described using
a high level HDL. This high-level description is then transformed to the control data
flow graph (CDFG) which would then go through initial compiler optimizations to
prepare for hardware implementation. For example, loops in the high-level HDL code
are unrolled, or the dead codes are removed. The designer’s additional constraints
and the CDFG are input to subsequent phases of HLS including scheduling, resource
allocation, and binding. The resulting hardware implementation typically constitutes a
finite state machine (FSM) and a datapath. In what follows, we briefly describe CDFG
generation, scheduling, allocation, and binding phases.

A high-level description code can be divided into basic code blocks connected by
control modules which correspond to branching and looping. These basic blocks can
be represented as dataflow graphs (DFG). Figure 3(a) shows a sample DFG. A DFG
can be shown by an acyclic graph Gd = (Vd, Ed), composed of nodes denoted by Vd
and edges denoted by Ed. Each node Vd represents an operation. Edges Ed represent
data dependencies between the adjacent nodes. In particular, input edges represent
operands to operations, and output edges represent the result. A cyclic DFG can be
converted to an acyclic DFG by unfolding and unrolling the cycles one or more times.

Figure 3(b) shows a sample CDFG. The CDFG is defined as a graph with DFG
subgraphs. A CDFG shows how the DFGs are connected in code. The control nodes
represent conditional switches. Based on the condition, data on the output of DFG0 is
moved to one of the two blocks, DFG1 and DFG2.

The scheduling involves analyzing the CDFG to decide in which clock cycle what
operations will be executed. The scheduler may minimize the total runtime with a
constraint on the number of resources or vise versa. Allocation involves selection of
different resources from a library provided by the designer to be used for hardware
implementation. Different resources for the same operation may incur a different area,
power consumption, or delay. Binding is the process of mapping different data and
operations to the functional and memory units as well as specifying the interconnects.
The three design stages (i.e., scheduling, allocation, and binding) can sometimes be
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combined or interleaved. The terms resource and functional unit are used interchange-
ably in the remainder of the article.

Though several techniques [Chon and Kim 2009; Jung and Kim 2009; Lucas et al.
2009; Lucas and Chen 2010] have been proposed for variation-aware HLS, these tech-
niques mainly focus on the performance/timing optimization. In this work, we propose
a variation-aware HLS technique focusing on low power.

Process variation. Process variation is the fluctuation in the device parameters and
characteristics caused by imperfections and uncertainties in the fabrication process.
The device variability may be caused by multiple factors, primarily threshold voltage
variation, thin film thickness variation, line-edge roughness, and energy level quan-
tization [Orshansky et al. 2007]. The total process variation can be viewed as a sum
of interdie and intradie variation. Interdie variation refers to differences among the
dies and is constant within one die. Intradie variation, on the other hand, accounts
for the differences among devices on the same die. The intradie component can be
further divided into spatially correlated and uncorrelated random components. The
uncorrelated random variations are caused by the fundamental intrinsic atomic-scale
randomness of devices and materials, while systematic correlated components stem
from unintentional shifts in processing conditions such as mask errors, lithographic
off-axis focusing and reticle stepper alignment errors [Orshansky et al. 2007].

Thus, the process variation can be represented by Equation (1), where �nom is
the nominal parameter value, ��inter , is the interdie variation component, and
��spatial(xi, yi) and ��random(i) are the spatially correlated (systematic) and random
components of intradie variation for device i respectively [Srivastava et al. 2005;
Koushanfar et al. 2008; Shamsi et al. 2008]:

� = �nom + ��inter + ��spatial(xi, yi) + ��random(i). (1)

Differences in process parameters lead to variations in circuit level electrical proper-
ties, such as timing and power. Fluctuations in power consumption can be decomposed
into variation in static leakage power and dynamic power. Variations of leakage, in
particular, is reportedly much higher than dynamic power due to the exponential de-
pendance of gate leakage current on process parameters (such as length, L, threshold
voltage, VT H , and gate oxide thickness, TOX). Assuming a Gaussian distribution for pro-
cess parameters, leakage variation follows a lognormal distribution. Dynamic power,
on the other hand, is a function of node switching activities and associated node capac-
itances. Since gate capacitances linearly depend on device dimensions (L,W) that are
typically assumed to be Gaussian, dynamic power exhibits a Gaussian distribution.

System-level power reduction techniques. Two methods are typically used for saving
the dynamic power: Dynamic power management (DPM) and dynamic voltage scaling
(DVS). DPM works by shutting-off the system components that are not in use. DVS
runs different computations at different clock frequencies and voltages to fill-in the
idle time slots in the schedule.

A common approach for static power reduction is called input vector control
[Abdollahi et al. 2004; Alkabani et al. 2008]. In this method, the input vector to a
functional unit is fixed to a predefined value when the functional unit goes idle. The
input vector is chosen such that it minimizes the leakage current of the corresponding
unit. The proposed method in Abdollahi et al. [2004] uses the built-in scan-chains in
a VLSI circuit to drive the chip with the minimum leakage vector when it enters the
sleep mode.

In our approach, DPM is used for saving the dynamic power during the scheduling
steps when a functional unit is not used. DVS is orthogonal to our approach and can be
implemented in conjunction with our method but we did not employ it in this article.
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Fig. 4. The flow of the proposed approach.

For saving the static power, in addition to DVS, input vector control (IVC) can be used.
We utilize the approach suggested in Abdollahi et al. [2004] and Alkabani et al. [2008]
for applying the minimum leakage inputs to a sequential circuit.

3. FLOW

Figure 4 presents the flow of our approach. Our new methodology for generation of
several binding candidates is integrated within the design flow. Assuming the input is
in form of a CDFG, the method schedules the operations with a minimum number of
resources to achieve a fixed prespecified timing constraint.

Our new multi-candidate resource binding method creates a number of diverse bind-
ing choices (candidates) and simultaneously embeds the candidates into the controller
with a very low overhead. The remaining steps of the design flow after binding are
performed in the conventional way. The resulting GDS-II of the design is sent to a
fabrication house.

During the postsilicon stage, chips are noninvasively tested postsilicon and the power
profile of each chip is found for each binding candidate. Next, power profile of each chip
is compared against the available candidates and the best candidate for minimizing
the chip’s power profile, based on its characterized properties, is selected. To save test
time and effort, we present a learning approach that alleviates the need for power
measurement of each candidate if the number of candidates is much larger than the
number of resources. Note that postsilicon selection could be stored on a small non-
volatile memory on the chip. Alternatively, burn-in fuses could be used for one-time
programming of binding selection.

Note that in our algorithm, the quantification of the process variation is done postsili-
con and not in binding candidate generation process. Although one can devise presilicon
multiple binding methods which consider process variations, such methods would nat-
urally be conservative since they will be optimized for the statistically average case.
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Such presilicon methods will likely incur a high overhead in terms of power and perfor-
mance since they are not tuned to individual chip characteristics. This overhead would
likely be much larger as process technology evolves (due to larger fluctuations). Thus,
we opted to do the actual binding process of functional units during the postsilicon
phase. Our algorithm works by characterizing the actual power fluctuations of each
chip.

4. PROCESS VARIATION AND USAGE LEVEL ASSIGNMENT

A circuit typically consists of functional units and controller that schedules the opera-
tions performed by the functional units. Each functional unit consumes both dynamic
and static power. The dynamic power consumption of a functional unit is a linear func-
tion of its usage rate. A static current flows through the functional unit as long as it
is on. By using DPM techniques, such as input vector control or power gating, a func-
tional unit can enter leakage power saving mode when not actively used. In this case,
leakage would also be linearly dependent on the usage rate. Therefore, the total power
consumption of each functional unit can be formally expressed as:

P f u
total = (1 − α) × β × P f u

leak + α ×
(

P f u
leak + P f u

dyn

)
, (2)

where P f u
total is the total power consumption of a given functional unit; P f u

leak and P f u
dyn

are the leakage and dynamic power of the functional unit while fully utilized; α is the
usage rate of the functional unit and it is a number between 0 (never used) and 1
(always used); β in Equation (2), represents the leakage saving factor when the units
are idle; β is a number between 0 and 1, where 0 corresponds to the case where units are
completely shut down when idle and 1 implies there is no leakage saving mechanism.
The total chip power consumption can then be written as:

Ptotal = Pcnt +
NFU∑
i=1

P f u
total(i), (3)

where NFU is the number of functional units (i.e., ALUs, multipliers, dividers, . . . ),
and Pcnt is the controller’s average power consumption. In presence of manufacturing
process variation, power consumption of functional units deviate from the nominal
values. Therefore, it is desirable to assign less tasks to a unit that has a higher power
consumption. Since, power usage is not known prior to fabrication, our proposed method
creates a set of multiple binding candidates that have diversely different usage profiles
before fabrication. Our method chooses the one that achieves the lowest overall power
consumption. Our new selection phase requires testing a set of candidates and then
choosing the best one based on the collected data. In the next section, we explain how
to make a group of binding candidates, each imposing a distinct usage level on each
functional unit.

5. DESIGN OF BINDING CANDIDATES

We now discuss how to design a diverse set of resource binding candidates to enable
postsilicon tuning of usage levels that match the specific underlying power variations
of each functional unit. Individual adjustment of resource usage levels is not feasible,
because of the following challenges. First, increasing the number of binding candidates
would increase the overhead and complexity of the approach, eventually defeating the
savings of postsilicon tuning. Second, the CDFG constraints allow us to only heuris-
tically assign the functional unit usages. Third, in resource constrained cases, all the
functional units may always be needed to meet the application demand, leaving very
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Fig. 5. An example of a 2-level orthogonal array with 7 factors and strength 2.

little degree of freedom to change the usage assignment of the heavily used functional
units.

To address the challenges of complexity and overhead, we employ orthogonal arrays
to efficiently devise orthogonal and distinct task distribution scenarios for each circuit.
In general, an orthogonal array is a matrix which contains “factor” and “run” infor-
mation. The factors and runs correspond to the matrix columns and rows, respectively
[Hinkelmann and Kempthorne 2007]. In our algorithm, a factor represents the func-
tional unit(s) and run represents the number of binding candidates. Assuming that one
(or a group of) functional units is controlled by one factor, then the usage rate of the unit
can be defined by a factor level (e.g., low and high). By assigning independent factors
to each functional unit, bindings can be performed in a way such that functional units
with assigned high usage factor level are used more often than those with assigned low
usage factor level. A full factorial design is one that has all the possible combinations of
factor level assignments to functional units. Such a design can be prohibitively large.
For example, a full factorial design with 7 factors controlling 7 functional units with
two usage levels requires 27 combinations of factor levels.

A fractional factorial design consist of a portion of full factors such that the factor-
level assignment is done by an orthogonal array. An example of orthogonal array (of
strength 2) with 7 factors and two levels for each factor is shown in Figure 5. Strength 2
means that for every two columns of the array, all combination of different factor levels
(−−, +−, −+, ++, −:low, +:high) occur equal number of times. Orthogonal arrays
provide the most parsimonious (in the sense of the lowest number of combinations)
set of design levels for studying the main effect of combination of a set of factors.
Orthogonal arrays find usage across a diverse set of fields. Therefore, the theory behind
them has been fully developed, and the orthogonal array tables can be readily adopted
[Hinkelmann and Kempthorne 2007].

6. GENERATION OF BINDING CANDIDATES

In this section, we describe our methodology to construct the binding candidates that
satisfy given task distributions. We present a heuristic method that attempts to achieve
the closest task distribution that matches the desired input usage levels for each
functional unit. First, using the CDFG of the target circuit, one can obtain a schedule
of the circuit by using a conventional HLS method (tool) such as AutoESL [Xilinx] and
CatapultC [CatapultC]. The inputs to our algorithm are the schedule of the circuit
generated by the conventional HLS methods and target task distribution (TD) among
the functional units. The input task distributions are in fact the experiment runs
(rows) of the orthogonal array. Therefore, the input task distribution specifies different
relative usage levels for each functional unit (two levels in this case, that is, low and
high usage).
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With the generated schedule, we would have (i) the total number of cycles Ncycles,
and (ii) the number of operations to be performed by each type of functional units at
each cycle, that is, Scheduled[type, cycle]. As an example, if Scheduled[mult,5] = 3, then
it means three multiplications must be performed in the fifth cycle.

Now, by applying our binding algorithm, Algorithm 1, on the matrix Scheduled[type,
cycle] the operations are assigned to the available functional units to satisfy a given
input task distribution (TD). TD is a binary vector whose size is equal to the number
of functional units Nf u. In effect, each element of TD corresponds to one functional
unit. If an element in TD has a value of one, then its corresponding functional unit
is going to be used more often than those whose corresponding values in TD are zero.
The presented algorithm follows a probabilistic approach in distributing the tasks to
the functional units. If a functional unit, as specified by TD, is expected to have a high
usage rate, then the algorithm would assign a high accepting probability value ρh to it;
otherwise, it would give the unit a low accepting probability value ρl.

In practice, proper ρh and ρl can be set by detailed simulations. For example, one
can model the process variation using parametric values (e.g., mean and standard
deviation of Gaussian distribution) and perform Monte Carlo simulations to get optimal
ρh and ρl values for power saving. Such parametric distributions do not need the exact
characteristics of the target technology node and can be done across a few values which
is fine with the high-level synthesis flow. By performing the simulations, one can obtain
the required statistical distribution of power saving results according to each ρh and
ρl value. This way, one would be able to optimize the ρh and ρl values for the pertinent
circuit.

After the assignment of the accepting probability (either ρh or ρl) to each functional
unit, the algorithm randomly visits functional units at each cycle. The associated prob-
ability states the chance a functional unit accepts an operation at a given visit. For
example, a probability 0.2 means that the functional unit would accept to perform the
operation in five visits on average.

If a functional unit accepts to do an operation and this functional unit meets the
predefined timing constraint, it would not be visited again in that cycle. To consider
the timing issue in our algorithm, we set a bound on the target timing closure, which
can be statistically determined during the design-time. In the binding process of our
algorithm, only the functional units that can meet the timing bound are selected and
bound.

Lines 3 and 4 of Algorithm 1 initialize an empty set denoted by Bound{type, cycle} and
a set of all available functional units denoted by Free. In Line 6, the algorithm randomly
picks a functional unit that meets the timing constraint from the set Free. Line 7, based
on the assigned probability, checks to see if the functional unit i is willing to accept
the operation. If so, the functional unit would be moved to the Bound{type, cycle} set
(Line 9) so it would not be visited in that cycle again (Line 9). The while loop (Line 5)
continues until there are no operations to be assigned in that cycle. The same process
is repeated in the next cycles and unit types (Lines 1 and 2). Note that the functional
units with a higher level of willingness to accept the operation are likely to end up with
having more tasks assigned to them.

So far, we described the algorithm that binds the operations to functional units
for achieving a prespecified task distribution. Next, we use this algorithm to make
diversely different binding candidates for a given circuit. As discussed earlier, we take
advantage of orthogonal arrays to make the diverse candidates. We choose to control
the usage level of each functional unit by a separate factor. For larger benchmark
circuits, we group functional units and adjust each group’s usage level by a single factor.
Algorithm 2 shows how different binding candidates are created for a given schedule.
Algorithm 2 calls Algorithm 1 to perform binding for the expected task distributions
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ALGORITHM 1: Binding the operations to achieve input usage level.
Input: TD and Scheduled[type, cycle]
Output: Bound{type, cycle}

1 for each resource type
2 for cycle = 1, 2, . . . , Ncycles
3 Bound{type, cycle} = φ;
4 Free = set of available functional units;
5 while Scheduled[type, cycle] �= 0 i.e. an unassigned operation exists
6 Pick a functional unit randomly; i ∈ Free;
7 if (the functional unit i accepts the operation
8 && the functional unit i meets the bound on timing closure)
9 Bound{type, cycle} ← i;
10 Remove i from Free;
11 Scheduled[type, cycle] = Scheduled[type, cycle] − 1;
12 end
13 end

ALGORITHM 2: Generation of multiple binding candidates
1 Schedule C DFG using conventional HLS methods;
2 Nf actor = Nmult + Nalu;
3 OA ← Design OA ( Nf actor , Nrun, Nlevel);
4 for v = 1, 2, . . . , Nrun
5 for f = 1, 2, . . . , Nf actor
6 if OA(v, f ) = high
7 Accepting Prob( f ) = ρh;
8 T D( f ) = 1;
9 if OA(v, f ) = low
10 Accepting Prob( f ) = ρl;
11 T D( f ) = 0;
12 end
13 Bind the operations using Algorithm 1;
14 end

dictated by an orthogonal array. Line 1 schedules the operations and determines how
many operations of each type are required at each cycle. As we explained above, this
step can be done by conventional HLS scheduling methods. Line 2 sets the number
of design factors Nf actor, to the total number of functional units, that is, the number
of multipliers (Nmult) and ALUs (Nalu). An orthogonal array with a specified number of
factors (Nf actor), rows (Nrun which is equal to the total number of candidates), levels
(Nlevel which equals two in this case for low and high) will be initialized at Line 3.
Each row of the orthogonal array represents one binding candidate as we explained
in Section 5. Low and high accepting probabilities are assigned based on the factor
levels dictated by orthogonal array values in Lines 4, 5, 6, and 7. The operations are
assigned to functional units according to the assigned probabilities using Algorithm 1.
The same steps are repeated for the subsequent rows of the orthogonal array. Each
iteration yields a unique binding candidate.

7. HARDWARE INTEGRATION OF BINDING CANDIDATES

In this section, we describe how the different binding candidates can be efficiently
integrated and hard coded into one finite state machine (FSM) denoted by Ftot that
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Fig. 6. (a) Integration of multiple binding candidates into the controller. (b) Example mapping truth table.

simultaneously implements the multi-candidate binding. As shown in Figure 6(a), Ftot
accepts a special input for selecting the candidate to be enabled. We use Fs to refer to
the FSM that controls one of the candidates. One of the candidates is chosen at random
for this FSM. The FSMs for the different candidates have the same inputs and the
same number of control steps. The only difference between the various candidates is
the output control signals that dictate which functional unit should be activated. The
signal Output yields the correct control step for the selected candidate.

Therefore, a combinational mapping is constructed using a truth table that takes the
candidate number and the control signals of Fs as inputs. Note that for example if Fs is
built based on the first candidate, then when candidate selection input is equal to ’1’,
the output of mapping logic is going to be the same as its input (i.e., the mapping acts
like a wire). The following steps show how we generate Ftot: (i) Generate the hardware
FSM for one of the candidates (Fs). (ii) Construct a mapping (truth table) that at each
cycle, given the candidate number, maps the output control signal of Fs to the target
control signal. (iii) Generate and optimize the combinational circuit (G) described by
the mapping and connecting it to Fs.

Figure 6(b) shows a sample truth table. The leftmost column values in the table
show the output of the reference FSM Fs for each operation cycle. The values on the
subsequent columns shows the Ftot expected outputs for each target candidate. The
binary values indicate which functional unit must be active at a cycle. Notice that
connecting the mapping logic to Fs will increase the worst case delay of the controller
and introduces extra fan-out effect. In datapath-intensive designs, the speed of opera-
tion is dominated by the speed of functional units on the data path and corresponding
bus interconnects. In such systems, a slight increase in latency of controller does not
significantly affect the overall speed of operations. Therefore, our method works best
for datapath-intensive designs.

To support the maximum flexibility of functional unit mapping, we assume global
registers are connected to functional units through on-chip busses. The busses are
MUX-ed to enable the functional units to read their inputs from and write their out-
puts to the registers. The implementation details are described in Figure 7. Additional
MUXs and wires are needed to connect the registers (flip-flops) to the functional units
(ALUs and multipliers). Since it is not known which binding candidate is the lowest
power consuming candidate in the presilicon stage, one should make a connection be-
tween every register and every functional unit. To support this, MUXs can forward
the data from the register to any functional unit. The selection signals generated from
the controller designate which functional units are used for each operation. In the
controller’s mapping function, the selection signals for MUXs and enable signals are
generated and forwarded to each MUX and functional unit by referring to the con-
troller’s truth table. The total cost of the mapping function is linearly increased as the
number of binding candidates increases. However, the hardware cost per one candi-
date is only a column in the lookup truth table, which is not significant. Moreover, our
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Fig. 7. Additional MUXs and wires to realize our postsilicon tuning (for flexible forwarding of data from
FFs) and their interaction with the controller.

method typically suffices a small number of binding candidates (as shown in Table III).
Thus, the controller overhead is negligible.

8. POSTSILICON BINDING SELECTION

After fabrication, the total power consumption of a chip needs to be measured or
estimated for each binding candidate. The best binding candidate that minimizes the
power consumption would be then chosen. However, exhaustive testing of all candidates
would be tedious, incurring a high test time for a large number of candidates. To
save the test time and effort, we present a method that learns and characterizes the
power consumption of each functional unit by only testing a small subset of candidate
bindings. Once each functional unit’s power characteristic is estimated, the method
finds the best candidate by forming a linear combination of its functional units power
consumptions and their usages.

To do the postsilicon power characterization, we select a subset of binding candidates
and measure the average total power consumption for each candidate by applying a
series of test input vectors to the circuit. Since the total power is a weighted sum of
each functional unit’s leakage and dynamic power as expressed by Equation (2), one can
solve a system of linear equations to estimate each functional units’s average (leakage
and dynamic) power consumption.

The solution to system of linear equations (i.e., Pi
leak and Pi

dyn for i = 1, . . . , Nf u)
can be found by solving a linear programming optimization that minimizes l2 norm

of the measurement error em (for measurement m), that is, min
√∑

m∈S e2
m, subject

to Equation (4) for all m ∈ S, where S ⊂ V and V is a set of all binding candidates.
Assuming linear independency of the equations which is automatically established by
the full rank of orthogonal array, NB � 2 × Nresouces number of binding candidates will
be sufficient to characterize each functional units leakage and dynamic power:

Pm =
Nf u∑
i=1

(1 − T i) × βi × Pi
leak + αi × (

Pi
leak + Pi

dyn

) + em. (4)
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Table I. The Description of Benchmark Circuits Used for Our Evaluation

Name #A #M #V Description
honda 12 8 20 A mechanical controller

aircraft 15 16 24 A mechanical controller
rsa 8 2 16 Public-key cryptographic algorithm

sha1 12 0 16 Cryptographic hash function
adpcm 11 0 16 Adaptive differential pulse-code modulation
g721 18 3 20 G.721 voice compression algorithm

reedsolomon 10 3 16 Reed Solomon encoding function
dft 8 10 20 Discrete Fourier Transform function
dct 4 4 12 Discrete Cosine Transform function
fir 16 8 20 Finite impulse response filter
iir 8 12 20 Infinite impulse response filter

kalman 16 16 24 Kalman filter

After estimating the power of each functional unit, we can evaluate other candidates
by linear combination of the functional units’ power consumptions/usages. The best can-
didate is the one achieving the least total power for the chip characteristics. However,
in addition to power consumption criteria, we must check whether the interconnect de-
lay affects the closure time for the selected candidate or not. As we already explained
in Section 6, during design and scheduling, we construct our candidates such that
their delays (including the interconnect) statistically satisfy the desired circuit timing
closure by setting a bound on the timing closure in our binding algorithm. Postsilicon
timing characterization can identify those statistically rare binding candidates that
violates the timing constraints due to the significant deviation of interconnect delays
from their nominal values caused by process variations. A binding candidate that does
not satisfy the timing closure will not be selected.

9. EXPERIMENTAL RESULTS

We evaluated the proposed multiple binding method on various benchmarks. The first
column of Table I shows the benchmark name. honda and aircraf t are mechanical con-
trollers of industrial strength. rsa and sha1 perform cryptographic functions. adpcm
and g721 are from Mediabench [Lee et al. 1997], which is designed for evaluate media
processing operations. The others are Reed Solomon encoder (reedsolomon), discrete
Fourier transformer (df t), discrete cosine transformer (dct), FIR filter ( f ir), IIR filter
(iir), and Kalman filter (kalman). These benchmark circuits are representative exam-
ples of ASIC designs. The second, third, and fourth columns contain the number of
ALUs (#A), multipliers (#M), and binding candidates (#V), respectively. In the fifth
column, there is a short description of these benchmark circuits.

We used NOA (Near-Orthogonal Array) tool from Gendex DOE toolkit [DOE
Toolkit 6] and S-plus to generate orthogonal arrays of desirable sizes. As mentioned
earlier, the number of factors directly depends on the number of functional units. The
number of candidates (rows of the orthogonal array) for a complete orthogonal array
depends on the strength and number of factors. NOAs can be generated for any given
number of runs (candidates). The algorithms presented in Section 6 were evaluated
on the benchmark circuits and different candidates were extracted accordingly.

Figure 8 shows the functional unit usage rates for different binding candidates of
aircraf t benchmark for both multipliers and ALUs. The two lower matrices are the
corresponding orthogonal arrays. The rows and columns in each array correspond to a
binding candidate and a functional unit respectively. In other words, each row of the or-
thogonal array is one binding candidate. The white (dark) pixels in the orthogonal array
implies that the associated functional unit is forced to be used more (less) frequently
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Fig. 8. The plots of expected (bottom) and achieved (top) task distributions for different candidates of
aircraf t benchmark for the multiplier (left) and ALU (right) modules.

in the given version. The top plots show the resulting usage rates after enforcing the
factor levels on the benchmark. The darkness level indicate the usage level of a func-
tional unit in the resulting binding. It can be observed that the task distributions for
different candidates (rows) are closely following the expected behavior dictated by the
NOA. The left and right correspond to multipliers and ALUs respectively. The high and
low accepting probabilities of Algorithm 2 are set at ρh = 0.8 and ρl = 0.1.

Figure 9 illustrates the different resulting binding candidates for honda benchmark.
Each row of a binding candidate corresponds to a cycle of operation and each column
corresponds to one ALU. The black pixels indicate that the ALU is being used on
the specific cycle. The imposed usage levels for each version is depicted by the vector
below each binding candidate. The red color in the vector suggest that the associated
functional unit is forced to take more tasks in all operation cycles. Notice how the
operations are redistributed for each candidate in order to match the imposed usage
levels.

Ideally, in an unconstrained system with unlimited number of functional units, the
ones with an assigned high-level usage are always used and those with assigned low
level usage are always skipped and never used. But in presence of structural depen-
dencies and limited number of resources, it could be impossible to hit 0% and 100%
usage levels. It is, however, desirable to achieve the maximum usage level separation
between the functional units with high and low assigned usage levels.

As shown in Figure 9, our method makes this separation well. Between the FUs that
have high and low usage levels, we can see a clear difference of actual usage rates.
Consider for example, the case of honda in Figure 9. In this case, and most other cases,
the functional units (FUs) with high usage level are likely used while FUs with low
usage level are rarely used. Through this usage level separation, we can get more
power saving by using the low-power consuming FUs (which have a high usage level)
far more frequently than the high-power consuming FUs (which have a low usage
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Fig. 9. Three binding candidates for the honda benchmark each satisfying a preimposed usage level pattern.

level). Figure 10 shows for each benchmark and functional unit type, the distribution
of low and high usage levels for different versions, that is,

Ul = {ui,v | i ∈ High, v ∈ V}, (5)
Uh = {ui,v | i ∈ Low, v ∈ V},

where, ui,v is the usage of the i-th functional unit in the v-th binding candidate. High
and Low are the sets of functional units with high and low assigned usage rates
respectively, and V is the set of all binding candidates. The experiment is repeated for
accepting probabilities ρh = 0.5 and ρh = 0.8 while ρl = 0.1 as defined in Algorithm 2. As
it can be seen, a large difference between ρh and ρl causes a larger separation between
the resulting low and high usage rates. In addition, in most benchmark instances,
a clear usage level separation is shown, which implies a high potential for power
reduction by using our method.

To demonstrate the efficacy of multiple binding candidates for power reduction, we
simulated the basic ALU and multiplier units to capture static and dynamic power
component variations in 45nm technology. We selected an 8-Bit ALU (c880) and 16×16
multiplier (c6288) from ISCAS-85 benchmark. The ALU has 60 inputs, 26 outputs and
383 gates while the multiplier has 32 inputs, 32 outputs and 2406 gates. The circuits
were synthesized and mapped to OSU FreePDK45 standard cell library [Stine et al.
2005] by the Synopsys Design Compiler. The HSPICE netlist for each unit was extracted
by using Cadence Analog Artist. The 45nm predictive technology model (PTM) was
used in HSPICE simulations. The circuits were simulated at operational frequency of
250MHz and VDD = 1V. To obtain the average power consumption of the functional
units, we applied 1000 random inputs to the multiplier and ALU circuits. Multiplier
average dynamic and leakage power were extracted as 2.4 mW and 1.55 mW. The ALU
has an average dynamic and leakage power of 235μW and 140μW respectively. We
observed around 10% variation (with respect to the nominal value, that is, 3 × σ/μ) in
dynamic power and about 20% fluctuations in leakage power.

Next, we investigate the amount of power saving by choosing the best candidate.
Functional units are assumed to go into stand-by mode by input vector control when
they are not being used. In our HSPICE simulations, we find the input (from 1000 in-
puts) for which the leakage power is minimum and assume at stand-by mode this vector
is being fed to functional units. The average leakage power of the ALUs and multipliers
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Fig. 10. The low and high usage levels across different versions for ALU and multipliers with ρh = 0.5 and
ρh = 0.8.

for the chosen input vector is 10% of the average leakage of normal operation mode.
We calculate the total power consumption of each benchmark for different candidates
according to Equations (2) and (3), and derive the minimum power consumption across
the candidates. In our Monte Carlo simulations, this step is repeated for 1000 circuit
samples.

As we explained in Section 7, our method incurs an additional overhead due to MUXs
and wires for connecting the registers (flip-flops) to every functional unit (ALUs and
multipliers). These logics also consume power, which may reduce the power efficiency
of our method. In our evaluation, we also reflect the impact of power overhead of these
additional logics.

Figure 11 shows normalized power consumption results compared to the single bind-
ing case (1.0 in the results) with two design parameter values ρh = 0.5 and ρh = 0.8. In
both cases, ρl is set to 0.1. Overall, our method reduces power consumption by 14.8%
(on average) in case of ρh = 0.8, compared to the single binding case. In case of sha1
and adpcm, our method consumes additional power compared to the single binding
case. The reason is that these circuits have only ALUs. Since an ALU circuit consumes
much less power than a multiplier circuit, there is also smaller power variation (due
to process variation) in case of ALUs. In this case, the difference of power consumption
between the power hungry and power efficient resources would be small. It implies
there remains only small room for power saving using our method. Thus, if the power
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Fig. 11. Normalized power consumption results across various process variation severities compared to the
single binding case.

overhead incurred by our method (additional MUXs, wires, and controller overhead) is
larger than the power saving of our method, it becomes inefficient.

For most practical cases, including the other 10 benchmark circuits, our method
shows significant power savings. In case of df t, it shows 38.2% of power saving, which
is significant. This huge power saving comes from the input vector control of unused
functional units, which can save up to 90% of leakage power consumed by unused
functional units. In case of df t, we have a low functional unit usage rate (i.e., there
are many idle functional units), compared to the other benchmark circuits. Thus, it
has much more room to save leakage power consumption via the input vector control.
In case of ρh = 0.5, we can reduce power consumption almost as much as in case of
ρh = 0.8, though power saving is slightly smaller than in case of ρh = 0.8. The decrease
in power saving can be explained by the smaller low and high usage level separation
due to the smaller difference between ρh and ρl.

The amount of power savings primary depends on the following factors: (i) The degree
of freedom in the scheduled operations and the average usage of functional units in
all cycles. For example, if all the units are used in all cycles in a circuit then obviously
all the candidates would behave the same way. (ii) The number of candidates. The
larger the number of candidates, the chance of reaching the optimal scenario would
be higher. However, increasing the number of candidates would impose hardware and
power overhead on the controller that would eventually overshadow the power savings
by postsilicon tuning. (iii) The amount of present variation for leakage and dynamic
power.

Since the amount of leakage and dynamic power variations is continually increasing
in the state-of-the-art and future technologies, we performed our simulations across
four different process variation scenarios: low, medium, high, and extreme. Table II
presents the variation severity of each scenario. The low, medium, and high variation
scenarios are realistic while the extreme scenario is to show the effectiveness of our
method when there is abundant process variation.

As shown in Figure 12, compared to the single binding case, in case of high process
variation scenario where 3 × σ/μ of dynamic power=20% and leakage power=40%,
our method reduces power consumption by an average of 17.1% (2.3% more reduction
compared to the low variation scenario where 3 × σ/μ of dynamic power=10% and
leakage power=20%). In the extreme scenario where 3 × σ/μ of dynamic power=50%
and leakage power=100%, power saving is up to 19.2%, which means 4.4% more saving
compared to the case where 3 × σ/μ of dynamic power=10% and leakage power=20%
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Table II. The Amount of Variations in Dynamic and Leakage
Power Across Four Process Variation Scenarios

Process variation Leakage power Dynamic power
severity variation (3σ ) variation (3σ )

Low (low) 20% 10%
Medium (med) 30% 15%

High (hig) 40% 20%
Extreme (ext) 100% 50%

Fig. 12. Normalized power consumption results across various process variation severities compared to the
single binding case.

Fig. 13. Normalized power consumption results across various process variation severities compared to the
worst-case binding case.

(i.e., low variation scenario). We also compare our method with the worst-case bind-
ing scenario. The worst-case binding scenario means the power consumption of the
most power-consuming chip among 1000 chip instances when using the single binding
method, while the single binding case means that of the average power consumption
across the 1000 chip instances. Compared to the worst-case binding (Figure 13), our
method reduces power consumption by an average of 18.4% and 19.1%, in cases of
the medium (where 3 × σ/μ of dynamic power=15% and leakage power=30%) and
high (where 3 × σ/μ of dynamic power=20% and leakage power=40%) process varia-
tion scenario, respectively. In the process variation scenario where 3 × σ/μ of dynamic
power=50% and leakage power=100% (i.e., the extreme scenario), power saving on
our benchmark circuits is up to an average of 24.0%. As process technology scales
to lower dimensions, much more severe process variation is expected. Therefore, we
expect much more power savings using our proposed method for the future process
technologies.
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Fig. 14. Timing and area overhead caused by the MUXs and interconnect.

As we explained in Section 7, our method requires implementing some additional
logics to realize the postsilicon binding of manufactured chips. To set appropriate
timing bounds, we also carefully examined how much the delay/area really increases. To
quantify this, we generated Verilog codes that implement these MUXs and interconnect
in our benchmark circuits. We synthesized these codes with Synopsys Design Compiler
with 45nm Nangate Opencell library7 and performed place & route with Cadence SoC
Encounter.

Figure 14 shows the timing and area overhead incurred by additional MUXs and
interconnects. Timing overhead incurred by our method is under 10%, on average.
The bounds we set on timing closure (10% margin in our experiments) take care of
controlling this timing overhead. We also give an enough timing margin to the critical
path (10%) to consider the corner-case of process variations. Finally, our timing closure
is set to be 80% of the critical path delay. If tighter time bounds are required, one
may need to tradeoff area and timing which can be set by iteratively synthesizing
for a multiple binding approach in our binding algorithm. Through postsilicon timing
characterization, our method picks up the candidate that meets the predefined timing
constraints which also consumes the lowest power. In terms of area overhead, we need
only 6.8% of additional area compared to the case when there is no postsilicon binding
support. In case of adpcm and g721, it shows a little higher area overhead compared
to the other benchmark circuits. Since these circuits do not have multipliers, which
occupy much larger area than ALUs, area overhead incurred by our method may be
seen relatively higher than the other circuits. However, in case of the other circuits,
the area overhead of our method is small.

We also present the controller area overhead. To quantify the effect of using multiple
binding candidates on the controller area overhead, we used ABC synthesis tool to
estimate the area overhead of a single binding and the multi-candidate binding. The
area overhead is shown in Table III. The first column shows the benchmark name.
The second, third and fourth columns illustrate the number of ALUs, multipliers and
candidates for each benchmark. Column 5 and 6 show the area overhead for the chip
using a fixed single binding denoted by orig and the area for the new method denoted
by new. Finally, the last column represents the total area overhead of the new method.
The larger benchmarks naturally incur a higher overhead. As the overhead results
in Table III suggest, the area overhead of the controller is shown to be less than
3.3% (on average), which is significantly low. By using our method, a large number of
binding candidates can be simultaneously realized with a relatively low overhead on the
controller. Note that the size and power consumption of the controller is significantly

7Nangate. 45nm nangate open cell library v1.3.
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Table III. Area Overhead of Integrating the Binding Candidates in Table I in the Controller

Name A M V Literals (orig) Literals (new) Overhead
honda 12 8 20 211634 217545 2.8

aircraft 15 16 24 322201 356811 10.7
rsa 8 2 16 66639 68709 3.1

sha1 12 0 16 50202 52685 4.9
adpcm 11 0 16 46206 48484 4.9
g721 18 3 20 124695 130202 4.4

reedsolomon 10 3 16 91276 93968 2.9
dft 8 10 20 212787 217506 2.2
dct 4 4 12 90221 91435 1.3
fir 16 8 20 197242 203534 3.2
iir 8 12 20 231939 237183 2.3

kalman 16 16 24 331508 341664 3.1

smaller than the functional units and the data path [Hennessy and Patterson 1996].
Therefore, the small overhead on the controller has a negligible effect on the total
power consumption. In other words, even large overheads in terms of size and power
consumption in the controller will be still negligible compared to the savings achieved
by the proposed method. This is particularly true since the more complicated circuits
in Table III have proportionally larger data paths and number of functional units. In
case of area-constrained environment, we can reduce the controller area overhead by
reducing the number of binding candidates, though power consumption of the chip may
be slightly increased. By exploiting an efficient trade-off (by adjusting the number of
binding candidates) between power and area, one can find the optimal point between
power and area of the chip.

Finally, it is worthwhile to notice that it is extremely difficult to quantify the accuracy
of the power saving estimation without comparing the results to power measurements
taken off an actual manufactured chip. However, there are certain factors and approx-
imations that could slightly affect the accuracy of our estimation:

(1) The spatial correlation in variations of process parameters can theoretically intro-
duce correlations among the power consumption of functional units, which can in turn
lower the power savings achieved by the multiple binding candidate method. For exam-
ple, suppose that variations are highly correlated, such that the power consumption of
all functional units on the same chip are similar (100% correlated), while their power
consumption across different chips are different. In this extreme case, the savings
would drop to zero (all functional units would have similar performance). However, in
practice this is not the case. The spatial correlation dies out across a few gates. Work on
modeling spatial correlations using grid-based approaches [Agarwal et al. 2003; Chang
and Sapatnekar 2007], treat the gates inside the same grids as 100% correlated, cells
in neighboring grids are slightly correlated, and the rest are completely uncorrelated.
Typically, each grid contains less than ten gates. Since the functional units are com-
posed of hundreds of gates, it is safe to assume their total power consumptions are
spatially uncorrelated;

(2) Furthermore, we assume the power overhead of the controller is negligible; be-
cause of two reasons: first, the incurred overhead on the controller according to Table III
is relatively small; second, the size of the controller is significantly smaller compared
to the size of the data path and the functional units;

(3) IR drops across the power rails and second order effects such as self-heating can
further increase the variations in the power consumption of functional units, which
can potentially further increase the savings;
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(4) Finally, inaccuracy of device models in SPICE simulation can slightly affect the
predicted power saving.

10. CONCLUSION

We presented a new method for customizing the resource binding to the unique charac-
teristics of each IC in the postsilicon stage. Multiple binding candidates with diversely
different resource usages were constructed. The construction method utilized orthog-
onal arrays to diversify the task distributions across different candidates. We showed
how multiple candidate can be embedded into the controller with a low overhead. The
evaluation results on various benchmark circuits show that our method reduces power
consumption by 14.2% in the low variation scenario and up to 24.0% in the extreme
variation scenario.
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