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Abstract Technological advancements in the silicon industry, as predicted by
Moore’s law, have resulted in an increasing number of processor cores on a single
chip, giving rise to multicore, and subsequently many-core architectures. This work
focuses on identifying key architecture and software optimizations to attain high per-
formance from tiled many-core architectures (TMAs)—an architectural innovation in
the multicore technology. Although embedded systems design is traditionally power-
centric, there has been a recent shift toward high-performance embedded computing
due to the proliferation of compute-intensive embedded applications. The TMAs are
suitable for these embedded applications due to low-power design features in many
of these TMAs. We discuss the performance optimizations on a single tile (processor
core) as well as parallel performance optimizations, such as application decompo-
sition, cache locality, tile locality, memory balancing, and horizontal communica-
tion for TMAs. We elaborate compiler-based optimizations that are applicable to
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TMAs, such as function inlining, loop unrolling, and feedback-based optimizations.
We present a case study with optimized dense matrix multiplication algorithms for
Tilera’s TILEPro64 to experimentally demonstrate the performance and performance
per watt optimizations on TMAs. Our results quantify the effectiveness of algorith-
mic choices, cache blocking, compiler optimizations, and horizontal communication
in attaining high performance and performance per watt on TMAs.

Keywords High-performance · Performance per watt · Embedded systems ·
Optimization · Many-core · Tiled many-core architecture

1 Introduction

The scaling of complementary metal-oxide-semiconductor (CMOS) transistors into
the nanometer regime unveils the possibility of integrating millions of transistors on a
single chip. A major challenge for the computer industry is efficient utilization of this
ever-increasing number of on-chip transistors. Increasing clock frequency and single-
core architectural innovations, such as deep pipelines, out-of-order execution, and
prefetching, to exploit instruction-level parallelism (ILP) for enhancing single-thread
performance yield diminishing returns as these innovations/techniques hit the power
wall and the ILP wall [1]. Consequently, major segments of the computer industry
conclude that future performance improvements must largely come from increasing
the number of on-chip processor cores.

The transformation in the computer industry from single-core to multicore, and
subsequently many-core necessitates efficient exploitation of thread-level parallelism
(TLP) for attaining high performance. The terms many-core and massively multicore
are sometimes used to refer to multicore architectures with an especially high num-
ber of cores (tens or hundreds) [2, 3]. Many-core technologies aim to exploit concur-
rency, high computational density, workload distribution, or a combination of these
methods to attain high performance. The term high-performance refers to attaining
superior performance quantified in terms of Mega operations per second (MOPS) or
Mega floating point operations per second (MFLOPS) from an architecture. A tiled
many-core architecture (TMA) is an emerging trend in many-core architecture in
which processor cores (known as tiles in a TMA) are arranged in a regular, grid-
like fashion, and a network on-chip (NoC) connects these tiles with each other and
with I/O (input/output) devices. The increasing number of tiles in TMAs shifts the
design focus from computation-oriented to communication-oriented, which makes a
scalable NoC design imperative for TMAs.

TMAs are suitable for supercomputing and cloud computing [4] as well as embed-
ded computing applications. Embedded system design is traditionally power-centric,
but there has been a recent shift toward high-performance embedded computing due
to the proliferation of compute-intensive embedded applications (e.g., networking,
security, image processing). TMAs with massive computing resources on-chip and
energy-saving features can be suitable for these high-performance embedded appli-
cations. Many TMAs (e.g., Tilera’s TMAs [5]) offer low-power design features that
allow idle tiles to be either clock gated (to save dynamic power) or power gated (to
save static as well dynamic power).
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Although TMAs offer tremendous computational power, extracting this compu-
tational power is non-trivial due to two main challenges: (1) on-chip data commu-
nication becomes more expensive as the number of on-chip processing cores/tiles
increases; and (2) insufficient off-chip memory bandwidth limits the sustainable com-
putational power. Overcoming these challenges requires many-core programmers to
possess thorough knowledge of the underlying architecture. Without knowledge of
the underlying TMAs’ architectural features, programmers may experience perfor-
mance degradation when migrating single-core software designs to TMAs [6]. John
Hennessy, President of Stanford University, quotes on the challenge involved in at-
taining high-performance from parallel computers [7]:

“. . . when we start talking about parallelism and ease of use of truly parallel
computers, we’re talking about a problem that’s as hard as any that computer
science has faced. . . . I would be panicked if I were in industry.”

The programming challenge in emerging TMAs is to exploit massive intrachip
parallelism to obtain sustainable high performance. Many of these TMAs only sup-
port proprietary languages to exploit this intra-chip parallelism, which increases the
programming effort and the time required to parallelize applications, which includes
the learning curve of proprietary languages. Support for widely accepted high-level
programming models, such as OpenMP (Open multiprocessing), would be beneficial
for fast prototyping of applications on these TMAs. However, programming ease with
high-level programming models comes at the expense of limited scalability for sys-
tems with a large number of processing elements. For example, language constructs
in OpenMP can account for up to 12 % of the total execution time and develop-
ers are often advised to reduce the number of parallel regions to limit the impact
of these overheads [8]. Nevertheless, quantifying the impact of existing and novel
performance optimizations on TMAs would be beneficial for parallel programmers
aiming to attain sustainable high performance from TMAs.

Attaining high performance from TMAs is typically an iterative process. Even
a good design requires running the application, measuring the application’s per-
formance, identifying bottlenecks, and determining opportunities for improvement,
modifying the application to achieve higher performance, and then remeasuring the
application’s performance, and so on. Obtaining high performance from TMAs re-
quires determining how and where the execution time is being spent. Many times the
bottleneck for attaining high performance is external memory latency or I/O through-
put. Code optimizations and design decisions reflected in algorithmic-level changes
can improve the performance by reducing external memory accesses. In cases where
algorithmic-level changes and code optimizations fail to reduce the number of exter-
nal memory accesses for an application, the attainable performance will be bounded
by external memory bandwidth.

Previous works [9–12] discuss multicore architectures and performance of par-
allel applications, however, there has been limited discussion on high-performance
optimization techniques that are applicable to TMAs. In this work, we focus on iden-
tifying key architecture and software optimizations to attain high performance from
TMAs using Tilera’s TILEPro64 and a dense matrix multiplication (MM) case study.
Tilera’s TMAs, to the best of our knowledge, are the first commercial TMA offer-
ing. Although dense MM algorithms have been studied extensively, optimizations on
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TMAs have not yet been explored in detail. We discuss performance optimizations
on a single tile as well as platform considerations for parallel performance optimiza-
tions, such as cache locality, tile locality, translation look-aside buffer (TLB) locality,
and memory balancing. Our main contributions are as follows:

• A discussion of the architectural features of contemporary TMAs.
• Identification and discussion of key architecture and software optimization tech-

niques that are applicable to TMAs.
• Elaboration and experimental demonstration of various compiler optimization

techniques for TMAs, including inlining, loop unrolling, software pipelining, and
feedback-based optimizations.

• Experimental demonstration of performance and performance per watt advantages
of algorithmic optimizations that exploit cache blocking, parallelization, and hori-
zontal communication on Tilera’s TILEPro64 with dense MM as a case study.

• Quantification of the peak attainable performance from Tilera’s TILEPro64.

Although dense MM algorithms have been studied extensively, optimizations on
TMAs have not yet been explored in detail. Our work contributions advance the
state of the art since TMAs are a potential architectural choice for future many-core
embedded systems. Considering the TILEPro64’s suitability to networking, security,
video processing, and wireless network domains [2, 13, 14], this study provides in-
sights for signal processing, security, and networking experts that aim to leverage the
TILEPro64 for applications acceleration in their respective domains.

We point out that many of the optimizations discussed in this paper are also ap-
plicable to traditional CPUs, however, our work investigates these optimizations on
TMAs and quantifies the impact of these optimizations on TMAs. The authors be-
lieve that it is imperative to investigate traditional optimization techniques on emerg-
ing many-core architectures to make programmers aware of the impact of existing
optimization techniques on these many-core architectures. Programming experience
with TMAs reveals that the compiler for these emerging TMAs (e.g., TILEPro64)
supports sophisticated feedback-based optimizations that are not commonly available
for traditional multicore architectures. Results highlight the effectiveness of algorith-
mic choices, cache blocking, compiler optimizations, and horizontal communication
in attaining high performance from TMAs.

The remainder of this paper is organized as follows. A review of related work is
given in Sect. 2. Section 3 gives an overview of architectural features of contempo-
rary TMAs. Section 4 defines parallel computing metrics for TMAs and outlines the
dense MM algorithms considered in our case study. Performance optimizations for
TMAs including platform optimizations and compiler-based optimizations are dis-
cussed in Sect. 5. Section 6 presents the performance optimization results for our
MM case study on Tilera’s TMAs, with a focus on the TILEPro64. Section 7 sum-
marizes conclusions and insights obtained from this study.

2 Related work

Previous work investigated performance analysis and optimization on multicore ar-
chitectures. This section summarizes previous work related to performance analysis
on multicore architectures, parallelized MM algorithms, cache blocking, and TMAs.
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2.1 Performance analysis and optimization

In the area of performance analysis on parallel architectures, Brown et al. [15] com-
pared the performance and programmability of the Born calculation (a model used
to study the interactions between a protein and surrounding water molecules) using
both OpenMP and Message Passing Interface (MPI). The authors observed that the
OpenMP version’s programmability and performance outperformed the MPI version,
however, the scalability of the MPI version was superior to the OpenMP version. Sun
et al. [16] investigated performance metrics, such as speedup, efficiency, and scal-
ability, for shared memory systems. The authors identified the causes of superlinear
speedups, such as cache size, parallel processing overhead reduction, and randomized
algorithms for shared memory systems.

Some previous work explored performance optimizations. David Cortesi [17]
studied performance tuning of programs running on the Silicon Graphics’ SN0 sys-
tems, including the Origin2000, Onyx2, and Origin200 multiprocessor systems. The
author described the architectural features and memory management of SN0 sys-
tems that impacted performance. The author further discussed cache optimizations
including array padding to avoid cache thrashing, loop fusion, and cache blocking.
Although the work captured performance tuning for Silicon Graphics’ multiproces-
sors, our work applies the performance optimization techniques to emerging TMAs.

2.2 Parallelized MM algorithms

Krishnan et al. [18] described a new parallel algorithm for dense MM that had an
efficiency equal to Cannon’s algorithm for clusters and shared memory systems. The
experimental results on clusters (IBM SP, Linux-Myrinet) and shared memory sys-
tems (SGI Altix, Cray X1) demonstrated the high performance of the proposed MM
algorithm. The paper, however, did not compare the performance of the proposed
algorithm with Cannon’s algorithm. Our work implements both a blocked MM algo-
rithm and Cannon’s algorithm to provide an insight into the attainable performance
of the two algorithms on TMAs.

Lee et al. [19] generalized Cannon’s algorithm for the case when the input ma-
trices were block-cyclic distributed (blocks separated by a fixed stride in the column
and row directions were assigned to the same processor) across a two-dimensional
(2D) processor array with an arbitrary number of processors and toroidal mesh inter-
connections. Performance analysis revealed that the generalized Cannon’s algorithm
generated fewer page faults than the previously proposed algorithm SUMMA (Scal-
able Universal Matrix Multiplication Algorithm) [20] that utilized broadcast commu-
nication primitives for the MM algorithm. Experimental results on an Intel Paragon
showed that the generalized Cannon’s algorithm performed better than SUMMA
when the blocks were larger than 65 × 65, however, the generalized Cannon’s al-
gorithm exhibited worse performance than SUMMA for smaller block sizes. Results
indicated that SUMMA maintained the same performance for all block sizes.

Much research focuses on evaluating parallel performance optimizations using
MM as a case study. Li et al. [21] optimized MM for NVIDIA’s Tesla C1060 graph-
ics processing unit (GPU) and were able to attain 60 % of the GPU’s theoretical
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peak performance (calculated from datasheets). To understand the impact of parallel
algorithms on performance, A. More [22] implemented several versions of MM in-
cluding simple, blocked, transposed, and BLAS (Basic Linear Algebra Subroutine)
on an Intel Core Duo T2400 running at 1.83 GHz. Results revealed that carefully
optimized MM implementations outperformed straightforward unoptimized imple-
mentations by orders of magnitude.

N. Higham [23] described FORTRAN-based level 3 BLAS (BLAS3) algorithms
that were asymptotically faster than conventional versions. The author focused on
Strassen’s method for fast MM, which is practically useful for matrix dimensions
greater than 100. Goto et al. [24] described the basic principles of a high-performance
MM implementation that were used in the GotoBLAS library. The authors observed
that the GotoBLAS MM attained near peak performance for various symmetric mul-
tiprocessor (SMP) architectures, such as Intel’s Pentium 4, Intel’s Itanium 2, and
AMD’s Opteron. We point out that BLAS algorithms are not available for existing
TMAs, such as Tilera’s TILE64/TILEPro64, nor do the existing TMAs’ compilers
support FORTRAN code fragments. Therefore, optimizations on TMAs can only be
attained by parallelized algorithms tailored for TMAs, platform considerations, and
compiler-based optimizations, which is the focus of this work.

2.3 Cache blocking

Optimizations using cache blocking have been studied in literature. Nishtala et al. [25]
studied performance models of cache blocking for sparse matrix-vector multiply. The
authors analyzed and verified the performance models on three processor architec-
tures (Itenium 2, Pentium 3, and Power 4) and observed that while the performance
models predicted performance and appropriate block sizes for some processors, none
of the performance models were able to accurately predict performance and block
sizes for all of the processor architectures. Our work takes an experimental approach
to determine the best block size for cache blocking on TMAs.

Lam et al. [26] analyzed the performance of blocked code on machines with caches
considering MM as a case study. By combining theory and experimentation, the work
showed that blocking is effective generally for enhancing performance by reducing
the memory access latency for caches, however, the magnitude of the performance
benefit is highly sensitive to the problem size. The work focused only on blocking for
single-core processor (DECstation 3100), however, our work analyzes blocking on
multiple cores along with various compiler optimizations to attain high performance.

2.4 Tiled many-core architectures

TMAs have been studied in previous work. Wu et al. [11] described a tiled multicore
stream architecture (TiSA) that consisted of multiple stream cores and an on-chip
network to support stream transfers between tiles. In the stream programming model,
which originated from the vector parallel model, an application is composed of a
collection of data streams passing through a series of computation kernels running
on stream cores. Stream cores were the basic computation units in TiSA, where the
stream cores implemented stream processor architecture [27]. Each stream core had
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its own instruction controller, register file, and fully pipelined arithmetic and logic
units (ALUs) that could perform one multiply-add operation per cycle. The authors
implemented several benchmarks, such as MM, 3D-FFT, and StreamMD, on TiSA
and were able to attain 358.9 GFLOPS for the MM benchmark. The paper, however,
did not discuss high-performance optimizations for TiSA. Enric Musoll [10] studied
performance, power, and thermal behavior of TMAs executing flow-based packet
workloads and proposed a load-balancing policy of assigning packets to tiles that
minimized the communication latency. The emphasis of the work was, however, on
load-balancing and communication and not on performance optimization.

Vangal et al. [9] described the NoC architecture and Mattson et al. [12] described
the instruction set, the programming environment, and their programming experience
for Intel’s TeraFLOPS research chip. The authors [9, 12] mapped several kernels,
such as stencil, dense MM, spreadsheet, and 2D fast Fourier transform (FFT), to the
TeraFLOPS chip. The authors were able to attain 1.0 teraFLOPS (TFLOPS) (73.3 %
of theoretical peak attainable performance) for stencil, 0.51 TFLOPS (37.5 % of the-
oretical peak attainable performance) for dense MM, 0.45 TFLOPS (33.2 % of the-
oretical peak attainable performance) for spreadsheet, and 0.02 TFLOPS (2.73 %
of theoretical peak attainable performance) for 2D FFT. Results indicated that the
experimentally attainable performance on the research chip was far less than the the-
oretical peak attainable performance. These previous works, however, provided little
discussion for attaining high performance from the chip.

Zhu et al. [28] investigated the performance of OpenMP language constructs on
IBM’s Cyclops-64 (C64) many-core architecture based on microbenchmarks. The au-
thors observed that the overhead of OpenMP on the C64 was less than conventional
SMPs. Our work differs from Zhu et al.’s work in that we investigate high perfor-
mance on the TILEPro64 many-core architecture using Tilera’s ilib application pro-
gramming interface (API), which is designed to attain high performance on Tilera’s
architectures since the TILEPro64 does not support OpenMP.

Cuvillo et al. [8] mapped the OpenMP parallel programming model to IBM’s C64
architecture. To realize this mapping, the authors exploited optimizations, such as the
memory aware run time library that placed frequently used data structures in scratch-
pad memory and a barrier for collective synchronization that used C64 hardware sup-
port. The work, however, did not discuss techniques to obtain high performance from
the C64. Garcia et al. [29] optimized MM for the C64 focusing on three optimiza-
tions: (1) balancing work distribution across threads; (2) minimal memory transfer
and efficient register usage; and (3) architecture-specific optimizations, such as using
special assembly functions for load and store operations. Their optimized MM imple-
mentation attained 55 % of the C64’s theoretical peak performance. Our work differs
from [29] in that we discuss additional optimizations, such as algorithmic optimiza-
tions, cache blocking, horizontal communication, and compiler-based optimizations.

Yuan et al. [1] investigated key architectural mechanisms and software optimiza-
tions to attain high performance for a dense MM on the Godson-T many-core proto-
type processor. The authors focused on optimizing on-chip communication and mem-
ory accesses. Results on a cycle-accurate simulator revealed that the optimized MM
could attain 97 % (124.3 GFLOPS) of the Godson-T’s theoretical peak performance
due in part to the use of a BLAS-based MM sequential kernel. Although a BLAS-
based kernel, in most cases, attains the best attainable performance, the absence of
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BLAS-based routines for existing TMAs required us to use other optimizations in our
work. The development of BLAS routines for Tilera’s TMAs can be an interesting av-
enue for future research. Furthermore, since the BLAS-based routines are applicable
only to some linear algebra applications, study of other high-performance techniques
is important for parallel programmers to attain high performance for algebraic as well
as nonalgebraic applications, which is the focus of our work.

Safari et al. [30] implemented a class of dense stereo vision algorithms on the
TILEPro64 and were able to attain a performance of 30.45 frames per second for
video graphics array (VGA) (640×480) images. The work demonstrated that emerg-
ing TMAs can achieve good performance in low level image processing computa-
tions. Our work is complementary to that work and focuses on high-performance
optimization techniques for TMAs.

In our prior work, we cross-evaluated two multi-core architectural paradigms:
symmetric multiprocessors (SMPs) and TMAs [31]. We based our evaluations on a
parallelized information fusion application, Gaussian elimination, and an embarrass-
ingly parallel benchmark. We compared and analyzed the performance of an Intel-
based SMP and Tilera’s TILEPro64 TMA. Results revealed that Tilera’s TMAs were
more suitable for applications with more TLP and little communication between the
parallelized tasks (e.g., information fusion) whereas SMPs were more suitable for
applications with floating point computations and a large amount of communication
between processor cores due to better exploitation of shared memory in SMPs than
TMAs. Insights obtained for SMPs, however, were limited to eight processor cores
and the scalability of SMPs beyond eight processor cores was not investigated be-
cause of inexistence of an SMP platform with more than eight processor cores at the
time of experimentation. Our current work differs from our previous work in that our
current work does not cross-evaluate architectures, but rather focuses on attaining
high-performance from TMAs.

3 Tiled many-core architecture (TMA) overview

A TMA is an emerging trend in many-core architecture that aims at exploiting mas-
sive on-chip resources furnished by recent advances in CMOS technology. TMAs
combine each processor core with a switch/router to create a modular element called
a tile, which can be replicated to create a many-core architecture with any number of
tiles. The tiles are connected to an on-chip network and the switch (router) in each tile
interconnects with the neighboring tiles. Each tile may consist of one or more com-
puting cores and a router, which includes logic responsible for routing and forwarding
the packets based on the routing policy. Examples of TMAs include the Raw proces-
sor, Intel’s TeraFLOPS research chip, IBM’s C64, and Tilera’s TILE64, TILEPro64,
and TILE-Gx processor family [14, 32, 33]. This section discusses three TMAs:
Intel’s TeraFLOPS research chip, IBM’s C64, Tilera’s TILEPro64, and Tilera’s
TILE64.

3.1 Intel’s TeraFLOPS research chip

Intel’s TeraFLOPS research chip contains 80 tiles arranged as an 8 × 10 2D mesh
network that is designed to operate at a maximum frequency of 5.7 GHz. The 80-
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Fig. 1 Intel’s TeraFLOPS research chip (adapted from [9])

tile NoC architecture is implemented in 65 nm process technology and integrates a
total of 100 million transistors on a 275 mm2 die. The tiled design approach per-
mits designers to use smaller cores that can easily be replicated across the chip.
A single-core chip of this size (≈100 million transistors) would require twice as
many designers and roughly twice the design time [34]. The TeraFLOPS research
chip uses a 2D mesh because of the large number of tiles and requirements of high
bisection bandwidth and low average latency between tiles. The 2D on-chip mesh
network provides a bisection bandwidth in excess of 320 GB/s. Intel’s TeraFLOPS
leverages low-power mesochronous clock distribution that facilitates scalability, high
integration, and single chip realization of the TeraFLOPS processor.

Figure 1 shows one tile of Intel’s TeraFLOPS research chip. Each tile consists of a
processing engine (PE) connected to a 5-port router. The router in each tile connects
to its four neighbors and the local PE via point-to-point links that can deliver data
at 20 GB/s. These links support mesochronous interfaces (MSINT) that can provide
phase-tolerant communication across tiles and lightweight global clock distribution
at the expense of synchronization latency [35]. The router forwards packets between
the tiles and can support 16 GB/s over each port. The PE contains two independent
nine-stage pipelined single-precision floating-point multiply-accumulator (FPMAC)
units, 3 KB single cycle instruction memory, and 2 KB data memory. The PE operates
on a 96-bit Very Long Instruction Word (VLIW) that can encode up to eight opera-
tions per cycle. The 3 KB instruction memory can hold 256 96-bit VLIW instructions
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Table 1 Theoretical peak
performance and power
consumption of Intel’s
TeraFLOPS research chip
[12, 34]

Frequency Voltage Performance Power

3.16 GHz 0.95 V 1.01 TFLOPS 62 W

4.27 GHz 1.07 V 1.37 TFLOPS 97 W

5.1 GHz 1.2 V 1.63 TFLOPS 175 W

5.7 GHz 1.35 V 1.81 TFLOPS 265 W

and the 2 KB data memory can hold 512 single-precision floating point numbers. The
PE contains a 10-port (6 read and 4 write) register file that enables the PE to allow
scheduling to both FPMACs, simultaneous loads, and stores from the data memory,
packet send/receive from the mesh network, program control, and dynamic sleep in-
structions. The packet encapsulation between the router and the PE is handled by a
router interface block (RIB). The fully symmetric architecture of Intel’s TeraFLOPS
research chip permits any tile’s PE to send (receive) instruction and data packets to
(from) any other tile.

The programming model for Intel’s TeraFLOPS research chip is based on message
passing. Each tile runs its own program and the tiles exchange messages to share data
and to coordinate execution between the tiles. The message passing model is anony-
mous one-sided wherein any tile can write into the instruction or data memory of any
other tile including itself. The TeraFLOPS chip can handle both single program mul-
tiple data (SPMD) as well as multiple program multiple data (MPMD) applications.

Since Intel’s TeraFLOPS is a research chip, the TeraFLOPS chip has a very modest
software environment with no compiler or operating system [12]. The programs for
the TeraFLOPS chip are assembly coded and hand optimized. The program instruc-
tions are laid out in the instruction memory and the program is then launched simulta-
neously on all the tiles and progresses through the set of instructions in the program.
The chip supports self-modifying code by sending new instructions as messages. The
chip only supports single loop level with a single fixed stride (offset) across the mem-
ory. Nested loops require unrolling of the inner loops by hand. Hence, nested loops
should be minimized or eliminated where possible. This modest software environ-
ment precludes the chip from full-scale application programming but is suitable for
application kernels research.

The Intel’s TeraFLOPS research chip implements fine-grained power management
techniques to deliver power-efficient performance. The chip implements fine-grained
clock gating and sleep transistor circuits to reduce active and standby leakage power,
which can be controlled at chip, tile-slice/block, and individual tile levels depending
on the workload. Approximately 90 % of the floating point units and 74 % of each PE
is sleep-enabled [35]. The instruction set provides WAKE/NAP instructions that expose
power management to the programmer, enabling the programmer to turn on/off the
floating point units depending on the application’s requirements. The chip allows any
tile to issue sleep packets to any other tile or wake up any other tile depending on the
processing task demands.

Table 1 summarizes Intel’s TeraFLOPS research chip’s available voltage and fre-
quency settings for adjusting the performance and power. Operation at higher voltage
and frequency can result in performance improvements but at a significant associated
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Fig. 2 IBM Cyclops-64 chip (adapted from [8])

power consumption cost. For example, increasing (voltage, frequency) from (0.95 V,
3.16 GHz) to (1.35 V, 5.7 GHz) increases the performance by 79 % with an associated
power consumption increase of 327 %.

3.2 IBM’s Cyclops-64 (C64)

IBM’s C64 is a petaFLOPS supercomputer that is intended to serve as a dedicate com-
pute engine for high-performance applications, such as molecular dynamics, to study
protein folding or image processing for real-time medical procedures [8]. A C64 chip
is attached to a host system over several Gigabit Ethernet links. The host system fa-
cilitates application software developers and end users of the chip by providing a
familiar computing environment.

Figure 2 depicts IBM’s C64 chip, which consists of 80 processors, each with two
thread units (TUs), one 64-bit floating point (FP) unit, and two static random-access
memory (SRAM) banks of 32 KB each. Each TU is a 64-bit, single-issue, in-order, re-
duced instruction set computing (RISC) processor that operates at a clock frequency
of 500 MHz. The FP unit can issue one double precision FP multiply and add instruc-
tion per cycle for a total peak theoretical performance of 80 GFLOPS per chip when
running at 500 MHz. A portion of each SRAM bank can be configured as scratch-
pad (SP) memory. The remaining portions of SRAM together form a global memory
(GM) that is uniformly accessibly from all TUs. The C64 chip provides 32 KB in-
struction caches (not shown in Fig. 2) where each instruction cache is shared by five
processors. The C64 chip has no data caches. The C64 on-chip resources (e.g., TUs,
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on-chip memory banks) are connected to a 96-port crossbar network, which provides
a bandwidth of 4 GB/s per port and a total bandwidth of 384 GB/s in each direc-
tion. The C64 chip provides an interface to the off-chip double data rate 2 (DDR2)
synchronous dynamic random-access memory (SDRAM) and bidirectional interchip
routing ports.

A C64 chip has an explicit three-level memory hierarchy: SP memory, on-
chip memory (SRAM), and off-chip memory (DRAM). The memory hierarchy is
software-managed such that the programmer can control the data movement between
different levels of memory hierarchy. Having a software-managed memory hierarchy
without caches saves the die area that would be required for hardware cache con-
trollers and over-sized caches. The software-managed memory hierarchy provides the
potential to improve not only performance but also energy efficiency at the cost of rel-
atively complex programming as compared to architectures with hardware-controlled
caches.

The C64 instruction set architecture provides efficient support for thread-level ex-
ecution, hardware barriers, and atomic in-memory operations. The C64 architecture
provides no resource virtualization mechanisms [8] (i.e., execution is non-preemptive
and there is no hardware virtual memory manager). Only one single application can
be run on the C64 chip at a time and the C64 microkernel will not interrupt the ap-
plication execution unless an exception occurs. Lack of a virtual memory manager
allows the three-level memory hierarchy of the C64 chip to be visible to the program-
mer.

The C64 architecture is a general purpose many-core architecture and energy-
efficiency was not a key design consideration [29], therefore, there are no special
features for energy savings. For example, the architecture does not allow processors
to be turned off when unused nor can the clock rate to a set of processors or the whole
chip be reduced.

3.3 Tilera’s TILEPro64

Figure 3 depicts Tilera’s TILEPro64 architecture. The TILEPro64 processor features
an 8 × 8 grid of 64 tiles (cores) implemented in 90 nm process technology. The tiles
are connected via multiple 2D mesh networks, designated as the iMesh interconnect
by Tilera. The TILEPro64 integrates external memory and I/O interfaces on-chip that
are connected to the tiles via the iMesh interconnect. Each tile shares an external off-
chip global memory (also referred to as external memory henceforth), which consists
of DRAM supported by four DDR2 memory controllers. Since Tilera’s TMAs do not
fall under the SMP architectural paradigm, a tile’s access latency to external memory
can be variable depending on the distance between the tile and external memory.
Each tile can independently run a complete operating system or multiple tiles can be
grouped together to run a multiprocessing operating system, such as SMP Linux [36].
Each tile contains a processor engine, a cache engine, and a switch engine [37].

The processor engine consists of a three-way VLIW pipelined processor with three
instructions per bundle. Each tile has a program counter and is capable of issuing
up to three instructions per cycle. Compile-time scheduling of VLIW operations re-
sults in lower power consumption as compared to dynamically-scheduled superscalar
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processors. The TILEPro64 includes special instructions to support commonly-used
operations in digital signal processing (DSP), encryption, network packet processing,
and video processing, such as sum of absolute differences, hashing, and checksums.

The processor engine’s VLIW architecture defines a 64-bit instruction bundle,
which can specify either two or three instructions. The two-instruction (X1, X0) bun-
dle encoding is known as X-mode and the three-instruction bundle encoding (Y2,
Y1, Y0) is known as Y-mode where X0 ∈ {arithmetic, compare, logical instructions,
bit/byte instructions, multiply instructions} and X1 ∈ {arithmetic, compare, logical
instructions, control transfer instructions, memory management instructions}; Y0 =
X0, Y1 ∈ {arithmetic, compare, logical instructions}, and Y2 ∈ {memory instruc-
tions}. The individual instructions are typical RISC instructions.

The three-way VLIW processor engine in each tile contain three computing
pipelines: P0, P1, and P2. P0 executes all arithmetic and logical operations, bit and
byte manipulation, and all multiply and fused multiply (multiply-add) instructions.
P1 can execute all arithmetic and logical operations, control flow instructions, and
special-purpose register reads and writes. P2 executes all memory operations includ-
ing loads, stores, and test and set instructions. Both the X- and Y-modes can issue
instructions in any of three pipelines (P0, P1, and P2). The Y-mode instruction issue
uses all of the three pipelines simultaneously whereas one of the pipelines remains in
idle mode during X-mode instruction issue.

The cache engine contains the translation look-aside buffers (TLBs), caches, and
a direct memory access (DMA) engine. Each tile has a 16 KB level one cache (8 KB
instruction cache and 8 KB data cache) and a 64 KB level two cache, resulting in
a total of 5.5 MB of on-chip cache with Tilera’s dynamic distributed cache (DDC)
technology. DDC provides a hardware-managed, cache-coherent approach to shared
memory. DDC enables a tile to holistically view all of the tiles’ on-chip caches as one
large shared, dynamic distributed cache. DDC increases on-chip cache access and
reduces the off-chip memory bottleneck. Each tile also contains a 2D DMA engine
that can be configured by the application programmer to move data between the tiles
and between the level two cache and the main memory. Tilera’s ilib API provides
various functions that enable application programmers to perform background DMA
operations. The DMA engine operates autonomously from the processor engine and
issues DMA load and store operations during cycles in which the cache pipeline is
not being used by the processor engine.

The cache subsystem is nonblocking and supports multiple concurrent outstand-
ing memory operations. The cache subsystem supports hit under miss and miss under
miss, and permits the loads and stores to different addresses to be reordered to achieve
high bandwidth and to overlap miss latencies, while ensuring that true memory de-
pendencies are enforced. The processor engine does not stall on load or store cache
misses and execution of subsequent instructions continue until the data requested by
the cache miss is actually needed by another instruction.

The switch engine consists of six independent networks: one static network (STN)
and five dynamic networks. The five dynamic networks are: the I/O dynamic network
(IDN), memory dynamic network (MDN), coherence dynamic network (CDN), tile
dynamic network (TDN), and user dynamic network (UDN). The STN and the five
dynamic networks constitute Tilera’s iMesh interconnect and due to the mesh layout,
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each of the six networks intersects in every tile. The STN transfers scalar data be-
tween tiles with very low latency. The dynamic networks facilitate the switch engine
by routing packet-based data between tiles, tile caches, external memory, and I/O con-
trollers. The dynamic networks leverage dimension-order routing—the x-direction
first, and then the y-direction—until the packets reach the destination tile’s switch en-
gine. To reduce latency, packet routing is pipelined so that portions of the packet can
be sent over a network link even before the remainder of the packet arrives at a switch.
The IDN is used for data transfers between tiles and I/O devices and between I/O de-
vices and memory. The MDN transfers data resulting from loads, stores, prefetches,
cache misses, or DMAs between tiles and between tiles and external memory. The
MDN has a direct hardware connection to the cache engine. The CDN carries cache
coherence invalidation messages. The TDN supports data transfers between tiles and
has a direct hardware connection to the cache engine.

Of the five dynamic networks, only the UDN is visible to the user and, therefore,
we elaborate on the UDN’s functionalities. User-level APIs, such as ilib, are built on
the UDN, which abstract the details of the underlying packetization, routing, trans-
port, buffering, flow control, and deadlock avoidance in the network. The UDN sup-
ports low-latency communication using a packet-switched mesh network and can be
used by applications to send messages between tiles. The UDN enables fine-grained
stream programming and supports efficient streaming through a register-level first in-
put first output (FIFO) interface and hardware supported steering of distinct streams
into separate FIFOs. The UDN-based stream data transfers have high bandwidth and
have an overhead of only a few cycles.

The tile architecture provides a cache-coherent view of data memory to applica-
tions (i.e., a read by a thread or process at address A will return the value of the
most recent write to address A). The hardware does not maintain coherence for the
instruction memory but provides hardware cache coherence for I/O accesses.

Tilera’s TILEPro64 supports 32-bit virtual memory addressing and can swap
pages between the DRAM and the hard disk [4, 5]. The memory is byte address-
able and can be accessed in units of 1, 2, and 4 bytes. Portions of the physical address
space can be declared private or shared at the page granularity. Memory allocation
requests by a tile (e.g., by using malloc()) allocate private memory to the tiles by
default. When referencing private memory, a given virtual address on different tiles
will reference different memory locations. Hence, the use of private memory enables
efficient SIMD processing (i.e., the same code can be run on different tiles with each
tile working on different data). The private memory is automatically cached in the
on-chip caches when referenced by a tile. Shared memory allows multiple tiles to
share instructions and data conveniently. A shared memory address on different tiles
refers to the same global memory location.

Tiles in Tilera’s TMAs can allocate shared memory using Tilera’s multicore com-
ponents (TMC) cmem API. Tilera’s processor architecture provides flexibility of
structuring shared memory as either distributed coherent cached or uncached shared
memory. The uncached shared memory is allocated in uncached global shared mem-
ory, which can be accessed by an application using DMA. DMA operations copy
uncached memory into the tiles’ local caches. Using DMAs to create local private
copies of data from uncached memory is suitable for coarse-grained data sharing
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where a process/tile wants to operate exclusively for some duration on a chunk of
shared data before relinquishing control of that data to other processes/tiles. Tilera’s
processor architecture provides sequential consistency within a single thread of exe-
cution and relaxed memory consistency for the memory shared among multiple tiles.
The architecture provides a memory fence instruction to force ordering when needed,
as depicted in our parallel MM code scripts in Appendixes A.3 and A.4.

Tilera’s run time software stack enables executing applications on the tile proces-
sor [38]. The run time software stack includes an application layer, a supervisor layer,
and a hypervisor layer. The application layer runs standard libraries, such as the C run
time library and Tilera’s TMC library. The supervisor layer, which is composed of
the Linux kernel, provides system calls for user-space applications and libraries. The
supervisor layer also enables multiprocess applications and multi-threaded processes
to exploit multiple tiles for enhanced performance. The hypervisor layer abstracts the
hardware details of Tilera’s processors from the supervisor and manages communi-
cation between the tiles and between the tiles and the I/O controllers. Each tile runs
a separate instance of the hypervisor.

Tilera’s TMAs support energy saving features. The tile processor implements
clock gating for power-efficient operation. The architecture includes a software-
usable NAP instruction that can put the tile in a low-power IDLE mode until a user-
selectable external event, such an interrupt or packet arrival.

3.4 Tilera’s TILE64

The architecture for Tilera’s TILE64 is similar to the architecture for Tilera’s
TILEPro64 (Sect. 3.3) with a few differences. In this section, we highlight only
the differences between the TILE64 and TILEPro64. Regarding interconnection net-
work, the TILE64 has one static network and four dynamic networks (the CDN is not
present in the TILE64) as compared to the TILEPro64’s five dynamic networks. The
addition of the CDN in the TILEPro64 increases the available network bandwidth.
The TILEPro64 provides memory bandwidth that exceeds 205 Gbps as compared to
200 Gbps for the TILE64. The bisection bandwidth provided by the TILEPro64 is
2660 Gbps as compared to 2217 Gbps for the TILE64. The TILEPro64 also imple-
ments additional instructions that are not present in the TILE64, which accelerate
DSP applications that require saturating arithmetic and unaligned memory accesses
[37, 39].

4 Parallel computing metrics and matrix multiplication (MM) case study

Parallel computing metrics quantify the performance and performance per watt of
parallel architectures, such as TMAs, and enable architectural comparisons. The most
appropriate metrics for a parallel architecture depends on the targeted application do-
main. For example, run time performance is an appropriate metric for comparing
high-performance systems whereas performance per watt is a more appropriate met-
ric for embedded systems that have a limited power budget. In this section, we char-
acterize the parallel computing metrics for TMAs and briefly outline the dense MM
algorithms that we consider for our case study.
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4.1 Parallel computing metrics for TMAs

We discuss the following parallel computing metrics: run time, speedup, efficiency,
computational density, power, and performance per watt.

Run time The serial run time Ts of a program is the time elapsed between the be-
ginning and end of the program on a sequential computer. The parallel run time
Tp is the time elapsed from the beginning of a program to the moment the last
processor finishes execution.

Speedup Speedup measures the performance gain achieved by parallelizing a given
application/algorithm over the best sequential implementation of that applica-
tion/algorithm. Speedup S is defined as Ts/Tp , which is the ratio of the serial
run time Ts of the best sequential algorithm for solving a problem to the time
taken by the parallel algorithm Tp to solve the same problem on p processors.
The speedup is ideal when the speedup is proportional to the number of proces-
sors used to solve the problem in parallel (i.e., S = p).

Efficiency Efficiency measures the fraction of the time that a processor is usefully
employed. Efficiency E is defined as S/p, which is the ratio of the speedup S to
the number of processors p. An efficiency of one corresponds to the ideal speedup
and implies good scalability.

Computational density/peak theoretical performance The computational density
(CD) metric measures the peak theoretical performance of a parallel architecture.
The CD for a TMA with p tiles can be given as

CD = p × f ×
∑

i

Ni

CPIi
(1)

where f denotes the operating frequency, Ni denotes the number of instructions
of type i requiring integer or floating point computations that can be issued simul-
taneously, and CPIi denotes the average number of cycles per instruction of type
i. CD can be useful in estimating the peak theoretical performance of an archi-
tecture. For example, the CD for Tilera’s TILEPro64 with each tile containing a
32-bit, 3-way issue VLIW processor and operating at 866 MHz can be computed
as: CDTILEPro64 = 64 × 866 × 3 MOPS = 166,272 MOPS = 166.272 GOPS. We
point out that this is merely peak theoretical performance that cannot be attained
for most real-world applications.

Power Power consumption of a tile in a TMA is composed of a dynamic compo-
nent and a static component. The dynamic power consumption depends on the
supply voltage, clock frequency, capacitance, and the signal activity. The static
power consumption mainly depends on the supply voltage, temperature, and ca-
pacitance [10]. The power consumption P of tile (both static and dynamic) can be
divided into three components: the core’s power Pcore, the router’s power Prouter,
and the interconnect power Pnet:

P = Pcore + Prouter + Pnet (2)

The core’s power is the power consumption in the tile’s processor core. The router
power is the power consumption in the tile’s router, and the interconnect power
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is the power dissipated in the interconnection network due to traversal of mes-
sages/packets caused by the requests originating from that tile.
We propose a system-level power model to estimate the power consumption of
TMAs that can be used in estimating the performance per watt. Our power model
considers both the active and idle modes’ power consumptions. Given a TMA
with a total of N tiles, the power consumption of the TMA with p active tiles can
be given as

P p = p · P active
max

N
+ (N − p) · P idle

max

N
(3)

where P active
max and P idle

max denote the maximum active and idle modes’ power con-
sumptions, respectively. P active

max /N and P idle
max/N give the active and idle modes’

power, respectively, per tile and associated switching and interconnection net-
work circuitry (and can be determined by Eq. (2)). Our power model incorpo-
rates the power saving features of state-of-art TMAs (e.g., Tilera’s TILEPro64),
which provide instructions to switch the processor cores and associated circuitry
(switches, clock, interconnection network) not used in a computation to a low-
power idle state. For example, a software-usable NAP instruction can be executed
on a tile in Tilera’s TMAs to put the tile into a low-power IDLE mode [37, 39]. In-
vestigation of a comprehensive power model for TMAs is the focus of our future
work.

Performance per Watt The performance per watt metric takes into account the
power consumption of a device while quantifying performance. For quantifying
the performance per watt, we leverage our power model given by Eq. (3).

4.2 Matrix multiplication (MM) case study

To demonstrate high-performance optimizations for TMAs, our work optimizes
dense MM algorithms for Tilera’s TMAs since MM is composed of operational pat-
terns that are amenable for providing high performance. MM provides a wide range
of insights since MM is a key building block in many scientific and engineering
applications. The sequential run time for the conventional MM algorithm multiply-
ing two n × n matrices is O(n3) and requires 2n3 operations [40]. To demonstrate
high-performance optimizations, we implement the following variants of the MM
algorithm: (1) nonblocked sequential algorithm; (2) blocked sequential algorithm;
(3) parallelized blocked algorithm; and (4) blocked Cannon’s algorithm. The code
for our MM algorithms’ implementations on Tilera’s TILEPro64 is presented in the
Appendix and interested readers can find further discussions on the MM algorithms
in [40], which are not discussed in this paper for brevity.

The original matrices for all of our MM algorithms reside in the shared memory.
Our optimized blocked MM algorithm divides the matrices into submatrix blocks
such that the submatrices fit in the caches for faster data access. Cannon’s algorithm
is a memory-efficient MM technique for parallel computers with toroidal mesh inter-
connections. The original Cannon’s algorithm assumes that the input matrices are
block-distributed among the processors doing the computation for the MM algo-
rithm [19]. Our case study implementation of Cannon’s algorithm also divides the
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original matrices into submatrix blocks that fit in the caches, however, all of the
participating tiles load the submatrix blocks from shared memory by appropriately
calculating the indices.

5 Performance optimization on a many-core architecture

As with any other parallel architecture, the application performance while executing
on a TMA depends on both the performance per tile and the scaling of the perfor-
mance across multiple tiles. Hence, optimizations on a TMA require optimizing for
a single tile as well as optimizing for multiple tiles, which results from the applica-
tion decomposition into several parts for parallel execution. In order to fully exploit
multiple-tile optimizations, parallel programming for a TMA requires programmers
to have a more detailed understanding of the underlying architectural features as com-
pared to the serial programming for a single-core architecture. This section presents
performance optimizations on a single tile as well as platform considerations for par-
allel performance optimizations, such as chip locality, tile locality, cache locality, and
memory balancing. This section also discusses compiler-based optimizations, such as
scalar optimizations, function inlining, alias analysis, loop unrolling, loop nest opti-
mizations, software pipelining, and feedback-based optimizations.

5.1 Performance optimization on a single tile

Performance optimizations on a single TMA tile requires effective use of the central
processing unit (CPU) and memory subsystem (including the caches and TLBs) as
well as an optimized working set [41]. We point out that the effective use of aspects
for a single tile is also important for parallel performance optimizations, thus to avoid
redundancy with parallel performance optimizations (Sect. 5.2), this subsection only
discusses the CPU, memory subsystem, and optimized working set.

5.1.1 CPU

Efficiently using the CPU for performance optimizations requires selecting efficient
algorithms, compiler optimizations, and special-purpose instructions available on a
TMA, such as sum of absolute differences, hashing, and checksums, depending on the
application. The sequential code should be written to take advantage of ILP as much
as possible. For fast access, frequently used variables should be directed as register-
stored in the code when possible using the register keyword (in the C programming
language).

5.1.2 Memory subsystem

Efficiently using the memory subsystem, which comprises the cache subsystem and
external memory, for performance optimizations aims at reducing the required ex-
ternal memory bandwidth. Since each level of the memory hierarchy is at least an
order of magnitude faster than the next lower level (e.g., level one cache is faster than
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the level two cache), a fundamental guideline of good on-chip memory management
(e.g., caches/SP memory) that is equally applicable to TMAs is to fetch data from
external memory, which has much larger latency than on-chip memory, only once,
and use as many fetched words as possible before fetching the next data. The exter-
nal memory bandwidth demand can be reduced in three ways: (1) maximizing the
use of local caches (and SP memory if available) by keeping the code and data work-
ing sets small; (2) exploiting temporal locality by reusing recently accessed data; and
(3) exploiting spatial locality by accessing nearby locations.

5.1.3 Working set

An application’s working set refers to the code and/or data currently (at any given in-
stance) used by the application. For the best performance, the working set’s code size
should be kept small enough to fit in the instruction caches. Compiler performance
optimizations, such as function inlining, and loop unrolling, must take the instruction
cache sizes into consideration otherwise aggressive compiler optimizations may de-
grade performance due to increased code size. Similarly, the working set’s data must
be small enough to fit in the data caches, otherwise the program’s performance will
degrade due to excessive accesses to the external memory.

Blocking is a technique that enables the data’s working set to fit in the on-chip
caches. Blocking, which follows a divide-and-conquer paradigm, divides a problem
into smaller subproblems such that the smaller subproblems fit in the on-chip caches.
To enhance performance, blocking can be done in a nested fashion taking into account
both the level one and level two cache sizes. However, blocking adds complexity to
the code. Cache blocking is advantageous when the benefits from the added local-
ity due to cache blocking outweighs the cost of the additional overhead to access
the data structure due to blocking. Furthermore, proper blocking granularity (block
sizes) is not easy to determine theoretically (only an upper bound can be calculated
in most cases) and the best blocking granularity for an algorithm is determined by
experiments, as shown in Sect. 6.

5.2 Parallel performance optimizations

TMAs provide high computational density on-chip using multiple tiles, and a good
understanding of parallel computing issues is necessary to fully leverage this com-
putational density. Attaining high performance from a parallel architecture including
TMAs requires efficient/balanced application decomposition as well as efficient use
of hardware resources by exploiting architectural considerations such as chip locality,
tile locality, cache locality, and memory balancing.

5.2.1 Application decomposition

A TMA’s parallel performance depends on an application’s decomposition into sev-
eral parts that can run in parallel. There are two types of application decomposition:
data decomposition and functional decomposition. In data decomposition, the data
that the application processes is divided into parts that can be processed in parallel.
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Functional decomposition separates subfunctions of an application and distributes
the subfunctions across multiple tiles. Ideally, an application should be decomposed
such that each of the participating tiles share an equal amount of the processing load.
The effectiveness of this decomposition, along with task mapping (how tasks/parts
of an application are assigned to available tiles) and the communication mechanism,
determines the scalability and attainable performance.

5.2.2 Chip locality and parallel programming paradigms

Chip locality refers to keeping communication, synchronization, and storage on-chip
where possible. Different application programming paradigms exploit chip locality
differently and, therefore, can affect the attained performance from a TMA. In dis-
tributed memory programming, the applications’ decomposed components have pri-
vate local memory and communicate explicitly with other components using message
passing. Managing messages and explicitly distributing data structures in distributed
memory programming can add considerable complexity to the software development.
Shared memory programming uses shared memory objects to communicate with an
application’s decomposed components. Since sharing of data is not explicit as com-
pared to the message passing, the accesses to these shared memory objects are in-
distinguishable from accesses to the local objects in the program source code and
can only be determined by resolving the allocation point of memory and by use of
specialized tools [41].

There are advantages of supporting distributed memory programming in TMAs.
Although message passing requires explicitly managing data structures and adds
complexity to the software development, the complexity is balanced by greater ease
in avoiding race conditions when all data sharing is through explicit messages rather
than through a shared address space [12]. Shared address space presents challenges
to the programmers trying to attain high performance from a TMA. While a program-
mer can block data to fit into a cache or use prefetching to prepare a cache ahead of
computation, programmers have little or no control over data eviction from the cache.
Hence, software writing with predictable performance can be challenging given that
the state of the cache is difficult to control. Furthermore, it is difficult to assure in a
shared address space that no unintended sharing is taking place whereas a message
passing architecture naturally supports isolation between modules since sharing can
only occur through explicit exchange of messages. A TMA relying on the message
passing paradigm can alleviate these issues at the cost of complex software develop-
ment.

In practice, parallel applications aiming to attain high performance from a TMA
may benefit from a hybrid of distributed and shared memory programming (supported
by Tilera’s TMAs) such that bulk data transfers are done explicitly using distributed
memory programming whereas more dynamic accesses use shared memory program-
ming. Explicit communication as in message passing, enabled by ilib API in Tilera’s
TILE64/TILEPro64 that leverages UDN, exploit chip locality better as compared to
using shared memory for communication via read and writes, which may spill data
out of the caches into the external memory.
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5.2.3 Tile locality

Tile locality refers to accessing data locally or from nearby tiles’ on-chip memory. In
Tilera’s TMAs, every fragment of code and data has a home tile, where the code/data
can be cached. For the best performance, code and data accesses from the home
tile should hit in the local cache. Code and data accesses from other (remote) tiles
traverse the on-chip interconnect, which is faster than going to the external memory
but slower than accessing a local cache. Tile locality is affected by cache coherence
and thread migration.

Code and data accesses from caches in multi-core/many-core architectures must
ensure cache coherence, which can have an impact on performance. Coherence en-
sures that there is only one value for each memory location at any point in time.
Some TMAs, such as the TILE64, maintain coherence using single-caching, which
restricts each memory location to be cacheable on only one tile at a time, requiring
other tiles to access that location through the home tile where it is cached. For TMAs
that maintain coherence via single-caching, tile locality can be exploited by caching
data in the tiles that will most often access that data (these tiles become the home
tile for that data). Shared-default programming styles, such as multi-threading where
global variables are shared across all threads, make tile locality difficult to achieve in
single-caching architectures. Fortunately, some TMAs with single-caching (such as
the TILE64) offer neighborhood caching, which exploits tile locality. Neighborhood
caching enables data and code to be cached locally and spread across neighboring
tiles to benefit from the large aggregate cache size of the neighboring tiles and min-
imizes off-chip memory references. Therefore, programmers should take advantage
of tile locality by enabling neighborhood caching when using TMAs that support this
functionality.

Some of Tilera’s TMAs, such as the TILEPro64, implement a DDC technology
(Sect. 3.3) that maintains coherence across multiple copies of cached data. DDC
technology also leverages the home tile concept, and directs all write updates and
invalidates from other caches containing stale data after a write to the home tile.
The TILEPro64 hardware distributes home tiles for memory regions at the cache line
granularity. Each cache line’s address is hashed where the hashing result determines
which of the tiles to use as the home tile for that cache line. This hashing approach,
referred to as hash-for-home, reduces potential hot spots when a particular region of
memory is in heavy use and the home tile for that region of memory receives a dispro-
portionate number of requests. On the TILEPro64, read-only data sections are cached
using hash-for-home so that the cache lines are scattered across all of the hashing
tiles. Additionally, the TILEPro64 caches read-only data noninclusively, which does
not evict cache lines from the level two caches when a cache line is evicted from the
level three cache on the home tile.

Tile locality is also affected by thread migration, which is an operating system’s
process management policy (handled by the supervisor layer in Tilera’s processors
(Sect. 3.3)) for moving threads/processes from one tile to another depending on the
available resources. Thread migration is essentially a dynamic load-sharing policy
that aims to ensure that there are no idle tiles when there are tasks waiting for ex-
ecution on other tiles. Thread migration, which is enabled by default, can reduce
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performance in some cases due to context-switching overheads. To maintain the
mapping between the home tile of frequently-accessed data/code and the accessing
threads/processes, threads/processes can be locked to tiles using affinity. This lock-
ing prevents threads/processes from unnecessarily sharing tiles and mitigates context-
switching overheads, which can help in attaining high performance.

5.2.4 Cache locality

A TMA generally consists of a large number of tiles, where each tile has a private
processor and cache subsystem. Each tile is computationally less powerful and has
small and low associativity caches, however, the aggregate cache size across all of
the tiles is comparable to the cache size in high-end SMPs. Applications benefit from
temporal and spatial locality, which in turn benefit from cache associativity. High
associativity is important for exploiting cache locality because lower associativity
caches suffer from conflicts (i.e., cache thrashing where multiple memory locations
with temporal locality map to the same cache line, continually evicting each other),
resulting in excess memory traffic.

Considering the significance of associativity for high performance, contemporary
TMAs, which provide on-chip caches, offer a mix of cache associativities—from
direct-mapped to fully-associative for different caches in the cache subsystem. For
example, the TILEPro64 has direct-mapped level one instruction caches, two-way
associative level one data caches, four-way associative unified level two caches, and
fully-associative unified TLBs. To exploit temporal locality, memory accesses should
be spread out so that the memory locations map to different cache lines over short
spans of time. Instructions have natural spatial locality because when one instruc-
tion is executed, typically the next instruction is likely to execute as well, except for
branches, which account for approximately 20–30 % of the instructions [41]. Instruc-
tions also exhibit temporal locality, such as program loops or functions that are called
repeatedly.

5.2.5 Translation look-aside buffer (TLB) locality

Most modern multicore architectures and some TMAs (e.g., Tilera’s TMAs) use vir-
tual memory so that the size of usable memory is not constrained by the size of the
physical memory. Physical memory is typically partitioned into fixed-sized pages.
Page tables map virtual addresses to physical addresses and keep track of whether
a page resides in memory or the page’s disk location. Page tables reside in memory,
which adds additional memory access latency to perform virtual-to-physical address
translations. To mitigate this additional latency, a small TLB stores information for
the most recently used pages, acting as a cache for the page table. A TLB makes a
virtual-to-physical address translation faster whenever the virtual address hits in the
TLB. On a TLB miss, the page table is accessed and the translation is added to the
TLB. Some recent architectures (e.g., Intel’s Nehalem, Cortex-A15 MPCore [42])
use two-level TLBs to increase performance, under the same premise as two-level
caches in processors.

In Tilera’s TMAs, a TLB maps virtual address to physical addresses of the home
tile at a virtual memory page size granularity. On most architectures, the page size is
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64 KB by default, implying that the total amount of memory mapped by each TLB
is small. Instruction and data TLBs are maintained separately (e.g., the TILEPro64
has an 8-entry instruction TLB and a 16-entry data TLB). TLB misses are handled
effectively by hypervisor in approximately 100 cycles when the hypervisor’s internal
data structure contains the TLB entry. If the hypervisor’s internal data structure does
not contain the TLB entry, the hypervisor must access the page table entry, which can
require 1000 cycles. The hypervisor stores TLB entries as a direct-mapped cache that
holds approximately 1000 TLB entries. Tilera’s TLBs support variable-sized pages
with a minimum page size of 4 KB. To reduce TLB misses for applications refer-
encing a wide span of code or data, programmers can use the huge pages or large
pages option in Tilera’s Linux kernel, where each TLB entry maps 16 MB of con-
tiguous virtual memory as opposed to the default 64 KB page size. For example,
hugepages=0,4,4,0 reserves 4 huge pages on memory controllers 1 and 2, and
none on memory controllers 0 and 3 [38]. Although huge pages enable referencing
a wide span of code or data, huge pages consume more physical memory and limit
flexibility in mapping different pages with different cache properties.

An important difference between a cache miss and a TLB miss is that a cache miss
does not necessarily stall the CPU [24]. A TLB miss causes the CPU to stall until the
TLB has been updated with the new address. A small number of cache misses can be
tolerated by algorithmic prefetching techniques as long as the data is read fast enough
from the memory such that the data arrives at the CPU by the time the data is needed
for computation. Prefetching can mask a cache miss, but not a TLB miss. Since TLB
misses are more expensive than cache misses, minimizing TLB misses can enhance
performance. Hence, programmers should use available options to adjust the mapping
size of TLB entries (such as huge pages option in Tilera’s TMAs) depending on the
application size and the function call graph.

5.2.6 Memory balancing

The overall memory bandwidth is maximized if external memory accesses are evenly
balanced across the available memory controllers. High-order bits in the physical ad-
dress select the memory controller and the hypervisor maps virtual addresses to phys-
ical addresses to maximize the memory balance. For the TILEPro64, the programmer
can view the chip as divided into four quadrants of sixteen tiles where each tile maps
memory to a memory controller adjacent to a quadrant. To achieve memory balanc-
ing, the TILEPro64 supports memory striping, which automatically spreads accesses
across the available four memory controllers. The memory striping can be controlled
by hypervisor’s command: options stripe_memory. The stripe_memory
option requests the hypervisor to configure the architecture to stripe memory accesses
across all available memory controllers. Even with striped memory, the client super-
visor and user programs see one unified physical address space rather than four sep-
arate address spaces. Striping is performed at a granularity of 8 KB (i.e., if physical
address A is on controller N, physical address A + 8192 will be on controller N + 1,
and so forth). By default, the hypervisor stripes memory if all memory controllers
have an equal amount of memory. Hence, to achieve memory balancing and conse-
quently high performance, parallel programmers for TMAs should enable memory
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striping if the parallelized application is to be run on a large number of tiles (greater
than 16 for Tilera’s TILE64 and TILEPro64).

5.2.7 On-chip mesh interconnect

A parallel application’s performance and scalability can be improved by reducing the
load on the on-chip interconnect since the interconnect is shared by all of the tiles.
If an algorithm’s data flow is not carefully organized, excessive communication over
the interconnect can become a performance bottleneck.

5.3 Compiler-based optimizations

Compiler-based optimizations remove artificial constraints imposed by a program-
mer and a programming language to improve efficiency and expose inherent paral-
lelism. The primary benefits of compiler-based optimizations include faster execu-
tion time and typically smaller object code size. Compiler-based optimizations can
speed up development time by reducing the time required for performance optimiza-
tions and letting the compiler optimizer improve low-level code quality. The compiler
optimization options determine the optimization level applied to the program to be
optimized. We point out that the compiler optimization options are compiler ven-
dor specific. For example, Sun’s Studio compiler provides five compiler optimization
levels, -O1 to -O5, where each increasing level adds more optimization strategies for
the compiler, with -O5 being the highest level [43]. The compiler optimization levels
for Tilera’s TMAs vary from -O0 to -O3. The -O0 option applies no optimizations
and the -O3 option provides the highest level of aggressive compiler optimizations.
The -Os optimization option optimizes the program for both size and performance.
The -Os option applies -O2 optimizations except those optimizations that increase the
program size. In this subsection, we discuss compiler-based optimizations for TMAs,
focusing on the TILEPro64 compiler tile-cc/c++.

5.3.1 Scalar optimizations

Scalar optimizations improve the execution time of a program using local and/or
global optimizations. Local optimizations are applied to instructions within a basic
block and do not leverage a holistic view of the function/program, such as consider-
ing data flow analysis to make optimization decisions. Local optimizations include
constant propagation, copy propagation, common subexpression elimination, con-
stant folding, operation folding, redundant load/store elimination, constant combin-
ing, strength reduction, and code reordering [44]. Global optimizations are applied
among operations within the same function. Global optimizations include loop in-
duction variable recognition and elimination, loop global variable migration, loop in-
variant code removal, and dead code removal [44]. Scalar optimizations are enabled
at optimization level -O2 or above.
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5.3.2 Function inlining

An application’s performance can benefit from function inlining because function in-
lining exposes more context to the scalar and loop-nest optimizers and eliminates the
function call overheads, such as register saving and restoring, the call and return in-
structions, etc. Function inlining can be user-directed and/or automatic. User-directed
function inlining is performed at all optimization levels and can be specified by using
the keyword inline or #pragma directives inline and noinline. We point out that the inline

keyword is advisory, not mandatory (i.e., the keyword serves as a hint to the compiler
to inline the function, but the function might or might not actually be inlined). The
#pragma inline and the #pragma noinline directives instruct the compiler to inline or not
inline, respectively, a function or set of functions. These #pragma directives can have
next-line, entire routine, or global scope. Automatic inlining is enabled by default at
the -O3 optimization level, but restricts large increases in code size. Automatic inlin-
ing is also enabled by default at nonzero optimization levels below -O3, but function
inlining is only allowed for functions that are not estimated to increase the code size.
Too much inlining may degrade performance due to the code working set problem
discussed in Sect. 5.1.3.

5.3.3 Alias analysis

Memory aliases are caused when multiple pointers resolve to the same physical mem-
ory location. Compilers are conservative in optimization of memory references in-
volving pointers because aliases can be difficult, or impossible, to detect at compile
time. The compiler must conservatively assume that locations referenced by different
pointers point to the same location, which limits the effectiveness of certain opti-
mizations, such as instruction scheduling. Programmers can assist the compiler with
alias analysis by marking a pointer with the restrict keyword, which guarantees that
the memory region referenced by that pointer is the only way to access that memory
region over the lifetime of that pointer.

5.3.4 Loop unrolling

Loop unrolling exposes more ILP, eliminates branches, amortizes loop overhead, and
enables cross-loop-iteration optimizations, such as read/write elimination across the
unrolled iterations. For example, loop unrolling can amortize loop overhead by re-
placing four loop counter increments i+ = 1 with one loop counter addition i+ = 4
if the loop unrolling factor is four. Loop unrolling can be performed if the loop to
be unrolled satisfies the following conditions: the loop does not have internal cycles;
the loop does not have an indirect branch that may jump back into the loop; the loop
contains a single basic block; and the loop is a counter-based loop. Loop unrolling
can be guided by placing a #pragma unroll n immediately before the loop where n is
a constant specifying the loop unrolling factor. The pragma can be applied to both
inner and noninner loops. An n value of 0 or 1 directs the compiler not to unroll the
loop. We point out that the unroll pragma is only processed if the optimization level
is high enough (i.e., -O2 or -Os for inner loops, and -O3 for outer loops).
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5.3.5 Loop nest optimizations

A numerical program’s execution time is mostly spent in loops. Loop nest optimiza-
tions perform loop optimizations that can greatly increase performance by better ex-
ploiting caches and ILP. Loop nest optimizations include loop interchange, cache
blocking, outer loop unrolling, loop fusion, and loop fission. The order of loops in a
nest can affect the number of cache misses, the number of instructions in the inner
loop, and the compiler’s ability to schedule an inner loop. Cache blocking and outer
loop unrolling are closely related optimizations used to improve cache and register
reuse. Loop fusion fuses multiple loop nests to improve cache behavior, to reduce
the number of memory references, and to enable other optimizations, such as loop
interchange and cache blocking. Loop fission, which is the opposite of loop fusion,
distributes loops into multiple pieces. Loop fission is particularly useful in reducing
register pressure in large inner loops. Loop fusion and fission can be enabled using
#pragma fuse and #pragma fission, respectively. Loop nest optimizations are enabled by
default with -O3 optimization flag.

5.3.6 Code generation phase optimizations

The compiler’s code generator processes an input program in an intermediate rep-
resentation format to produce an assembly file. A program is partitioned into basic
blocks, such that a new basic block is started at each branch target and large blocks
arbitrarily end after a certain number of operations/instructions. Code generation op-
timizations are not done at optimization level -O0. The code generator performs stan-
dard local optimizations on each basic block, such as copy propagation and dead code
elimination, at optimization level -O1. The code generator performs global register
allocation and various innermost loop optimizations at optimization levels -O2, -Os,
and -O3.

5.3.7 Software pipelining

Software pipelining is a type of out-of-order execution where reordering is done by
the compiler instead of the processor. Software pipelining schedules innermost count-
ing loops (i.e., loops with no other terminating conditions or conditional statements)
such that the hardware pipeline remains full. Software pipelining can be enabled and
disabled using #pragma swp and #pragma noswp, respectively.

5.3.8 Feedback-based optimizations

Feedback-based optimizations are an advanced compiler optimization technique that
replaces a compiler’s estimations with actual data collected at run time using a spe-
cially instrumented executable. Collected data includes how many times a given loop
executes and how often an if predicate is true. Feedback-based optimizations require
compiling the program at least twice: the first compilation creates an instrumented
executable and second compilation uses the information collected by the first ex-
ecutable to generate the optimized executable. Feedback-based optimizations help
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Fig. 4 Feedback-based
optimization workflow

compilers with loop unrolling and other loop optimizations, in addition to determin-
ing frequently executed blocks of code, which can be used to guide code scheduling,
layout, and register allocation decisions.

Figure 4 depicts the feedback mechanism’s workflow. The main steps are: (1) The
source code/program is compiled and linked with the feedback collect option
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that creates an instrumented code that collects feedback data; (2) one or more train-
ing runs are performed on the instrumented executable with test inputs, also known as
training set, to collect information about the program’s typical behavior; (3) the com-
piler gathers information from the training run(s) in a raw feedback directory; (4) the
compiler converts the contents of the raw feedback directory into a single feedback
file, using the convert feedback option, suitable for use in the feedback opti-
mization process; and (5) recompile and relink the source code with the feedback
use option, which will optimize the executable using the feedback information gen-
erated previously. We point out that the same compiler optimization flag should be
used for both the instrumented binary and the final optimized executable.

Feedback-based optimizations improve performance by leveraging both compiler
and linker feedback. The compiler feedback improves code generation by record-
ing various facts such as branch probabilities and executed loop counts. Based on
the compiler feedback, the compiler rearranges code to straighten out likely code
paths (e.g., remove branches) for more effective cache use. Linker feedback helps
the compiler in selecting addresses for functions that reduce cache conflicts. Dur-
ing the creation of the instrumented executable, each instrumented function calls a
run time library that tracks the order in which the functions execute. For example, if
a program executes function f1, then function f2, and then function f1 again. The
feedback mechanism identifies if f1 and f2 alias in the cache, in which case f2 will
evict f1, causing cache misses when f1 is executed again. The feedback mechanism
selects nonaliasing addresses for f1 and f2 so that both of these functions can coexist
in the cache at the same time given a sufficient cache size.

A modern compiler uses feedback-based optimizations as a hint for optimizations
and not as a guarantee of what future program input will look like since the data
is gathered using a training/synthetic input. Therefore, a compiler does not make
assumptions based on feedback-based optimizations that may produce incorrect code
for inputs different than the training input.

6 Results

Attaining high performance and high performance per watt on TMAs is challenging
mainly due to intricacies in parallel programming and parallel algorithms, complex
hardware architecture, and scalability issues as the number of tiles increases. Some of
the main factors influencing performance on TMAs include algorithmic choices, fea-
tures of the underlying architecture, such as cache sizes, tile locality, and compiler-
based optimizations. This section illustrates performance optimizations for TMAs,
first on a single tile and then on multiple tiles, focusing on the TILEPro64 and dense
MM as a case study. Each tile can independently run a complete operating system
or multiple tiles can be grouped together to run a multiprocessing operating sys-
tem, such as SMP Linux [36]. The TILEPro64 runs Linux kernel 2.6.26.7-
MDE-2.1.2.112814 version #1 SMP. We use Tilera’s multicore development en-
vironment ilib API for parallelizing our MM algorithms and Tilera’s tile-cc
compiler for compiling and optimizing our programs. tile-cc is the cross-platform
C compiler, which compiles ANSI (American National Standards Institute) standard
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C to an optimized machine code for Tilera’s processors. The compiler also supports
software emulation of operations on data types such as floating-point and 64-bit inte-
gers.

Due to the limited programmability of the TILEPro64 as well keeping the num-
ber of experiments manageable, we were not able to evaluate all the optimizations
discussed in Sect. 5. However, programmers can still benefit from the discussions in
Sect. 5 for high-performance optimizations on contemporary and future TMAs that
support these optimizations. Since some hardware architecture optimizations, such
as memory balancing are automatically enabled by the TILEPro64’s hypervisor, we
do not elaborate on these hardware optimizations in our results. To obtain the perfor-
mance and performance per watt results in this section, we implemented serial and
parallel versions of MM with and without cache blocking (Sect. 4.2), and with and
without leveraging compiler optimizations on the TILEPro64. Performance per watt
calculations leverage our power model in Eq. (3). The power consumption values for
the TMAs can be obtained from the devices’ respective datasheets. For example, the
TILEPro64 has a maximum active and idle mode power consumption of 28 W and
5 W, respectively [45, 46].

Table 2 summarizes the notations used for the performance and performance per
watt optimization results for the MM algorithm. Figures 5 and 6 summarizes the
impact of various high-performance optimizations on the execution time and perfor-
mance per watt, respectively, for MM on the TILEPro64. We present the performance
per watt results in MOPS per watt (MOPS/W). Results reveal that execution time can
be reduced by 152× and performance per watt can be increased by 76× when us-
ing compiler optimizations and parallelization of the optimized MM algorithm (that
leverages cache blocking) on 16 tiles as compared to a naive MM algorithm (without
cache blocking as shown in Appendix A.1) on a single tile without any compiler op-
timizations (higher performance per watt gains can be achieved by parallelization on
a greater number of tiles). The detailed results and discussion of these optimizations
are presented in the following subsections.

6.1 Data allocation, data decomposition, data layout, and communication

Data allocation, data decomposition, data layout, and communication depend on the
application and the architecture, and play an important role in attainable performance.
This section discusses these aspects as well as the communication networks lever-
aged for communicating the data between the tiles and between the tiles and external
memory for the MM algorithms implemented in this work.

For MM algorithms on a single tile, we allocate the data in external memory using
the malloc() function. The data allocated using malloc()is only accessible to
the tile allocating the data. For our parallel algorithms, we leverage Tilera’s TMC
cmem API for data allocation. We allocate the data in external memory and make the
data shared for our parallel algorithms using the tmc_ cmem_malloc() function,
which maps the allocated shared memory at the same address on all the participating
tiles/processes. Since our parallel MM algorithms operate on the same original ma-
trices (A, B, and C), the data must be shared in the external memory. We point out
that for parallel applications that can operate on their own private data, data can be
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Table 2 Performance and performance per watt optimization notations used in our MM case study

Notation Description

b Level two cache block size for the blocked MM algorithm

b′ Level one cache subblock size for the blocked MM algorithm

T
(p)
NB Execution time of the nonblocked MM algorithm on p tiles with no compiler

optimization flag

T
(p)
NB-O3 Execution time of the nonblocked MM algorithm on p tiles with compiler

optimization flag -O3

T
(p)
B Execution time of the blocked MM algorithm on p tiles with no compiler

optimization flag

T
(p)
B-O3 Execution time of the blocked MM algorithm on p tiles with compiler optimization

flag -O3

T
(p)
B-FBO Execution time of the blocked MM algorithm on p tiles with feedback-based

optimizations

Perf(p)
NB Performance of the nonblocked MM algorithm on p tiles with no compiler

optimization flag

Perf(p)
NB-O3 Performance of the nonblocked MM algorithm on p tiles with compiler optimization

flag -O3

Perf(p)
B Performance of the blocked MM algorithm on p tiles with no compiler optimization

flag

Perf(p)
B-O3 Performance of the blocked MM algorithm on p tiles with compiler optimization flag

-O3

Perf(p)
B-FBO Performance of the blocked MM algorithm on p tiles with feedback-based

optimizations

Perf/W(p)
NB Performance per watt of the nonblocked MM algorithm on p tiles with no compiler

optimization flag

Perf/W(p)
NB-O3 Performance per watt of the nonblocked MM algorithm on p tiles with compiler

optimization flag -O3

Perf/W(p)
B Performance per watt of the blocked MM algorithm on p tiles with no compiler

optimization flag

Perf/W(p)
B-O3 Performance per watt of the blocked MM algorithm on p tiles with compiler

optimization flag -O3

Perf/W(p)
B-FBO Performance per watt of the blocked MM algorithm on p tiles with feedback-based

optimizations

Fig. 5 The impact of
high-performance optimizations
on the execution time of MM on
the TILEPro64 (∼ denotes
corresponds to)
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Fig. 6 The impact of
high-performance optimizations
on the performance per watt of
MM on the TILEPro64
(∼ denotes corresponds to)

declared private for each tile/process in the external memory. Our experiments with
various benchmarks on the TILEPro64 indicate that parallel applications with private
data can attain better performance on the TMA as compared to the applications using
shared data [31].

For our blocked MM algorithms, data is decomposed into small blocks of the
original matrices that reside in the shared memory. Each data access from the shared
memory by a tile fits in the local cache of the operating tile. Communication is over-
lapped by computation in our blocked MM algorithms as the tiles start operating on
the requested data as soon as the first requested data byte is available from the mem-
ory. All subsequent computations by a tile on a given block access the data from the
tile’s local cache without accessing external memory until the computation requires
processing data not already present in the cache.

For our MM algorithms, the tiles access data from the external memory using
MDN (Sect. 3.3), which transfers data resulting from loads, stores, prefetches, and
cache misses. Cannon’s MM algorithm that uses horizontal communication (commu-
nication between tiles) leverages MDN as well as TDN that supports data transfers
between tiles. The CDN, which carries cache coherence invalidation messages, is
leveraged by both our blocked parallel MM algorithm and Cannon’s MM algorithm.
ilib functions used in our algorithms (see Appendixes A.3 and A.4 for code snippets)
leverage UDN, which abstract the details of the underlying packetization, routing,
transport, buffering, flow control, and deadlock avoidance in the network.

6.2 Performance optimizations on a single tile

Single-tile performance optimizations are important to attaining high performance
on a TMA. Blocking algorithms that take into account cache sizes can significantly
improve performance, however, selection of the appropriate block size is important
for attaining high performance. Furthermore, compiler optimization flags, such as
-Os, -O2, or -O3, enable most of the compiler-based optimizations to attain high per-
formance. Feedback-based optimizations can further enhance performance by elim-
inating the compiler’s guesswork for certain optimizations, such as loop unrolling.
This subsection highlights these performance optimizations on a single tile of the
TILEPro64.
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Table 3 Performance and performance per watt of a blocked (B) and a nonblocked (NB) MM algorithm
on a single tile of the TILEPro64 for different matrix sizes n

n T
(1)
NB-O3

(s)
T

(1)
B-O3

(s)
T

(1)
NB-O3/T

(1)
B-O3 Perf(1)

NB-O3
(MOPS)

Perf/W(1)
NB-O3

(MOPS/W)
Perf(1)

B-O3
(MOPS)

Perf/W(1)
B-O3

(MOPS/W)

1024 134.59 22.65 5.9 15.96 2.98 94.81 17.69

2048 2171.58 215.33 10 7.91 1.47 79.78 14.88

6.2.1 Algorithmic optimizations and compiler optimizations

To evaluate the impact of algorithmic choices on performance and performance per
watt, we implement a blocked integer MM algorithm considering the TILEPro64’s
cache sizes. We use an integer MM because the TILEPro64 does not have FP units
and software emulation of FP may not provide meaningful insights into the perfor-
mance gains achieved by various performance optimizations.

The blocked MM algorithm divides the original MM into optimized smaller sub-
MMs that leverage the cache hierarchy using nested blocking for level one and level
two data cache sizes of 8 KB and 64 KB, respectively, for the TILE64/TILEPro64.
All three sub-MMs (corresponding to matrices A, B, and C) must fit in the cache for
blocking to be useful. The required memory size for the blocks should also incorpo-
rate the size of data types, which depends on the processor architecture and compiler
(e.g., 4 bytes for integer data types for a 32-bit processor and 32-bit compiler). For
the level two cache, we calculate the block size b as 4 · 3 · b2 ≤ 64 KB, which gives
b ≤ 74. For a power of two block size, b ≤ 64. There is no need for our algorithms to
use block sizes that are powers of two, however, we use block sizes that are powers of
two to keep the number of experiments manageable and still show scaling. We use the
constant 3 in the block size calculation corresponding to the level two cache because
all of the three blocks from matrices A, B, and C (C = A · B) must fit in the cache si-
multaneously and we use the constant 4 because the integer data type requires 4 bytes
(32 bits) on the TILEPro64. Similar calculations for the block size corresponding to
the level one cache b′ gives b′ ≤ 26, or b′ ≤ 16, when considering the block size as a
power of two.

To illustrate the impact of the algorithmic choices and cache blocking on attain-
able performance and performance per watt, we compare the performance and per-
formance per watt of our blocked MM algorithm with a nonblocked MM algorithm.
Table 3 depicts the performance and performance per watt of a blocked (B) and a
nonblocked (NB) MM algorithm on a single tile using the compiler optimization
level -O3 for two matrix sizes, n = 1024 and n = 2048, respectively, where n de-
notes the matrix dimensions of the square matrices A, B, and C. For the blocked MM
algorithm, we select b = 64 and b′ = 4, which satisfies the constraints on the calcu-
lated block sizes. The results indicate that the blocked MM algorithm provides 5.9×
and 10× performance and performance per watt improvements over the non-blocked
MM algorithm for n = 1024 and n = 2048, respectively. These results highlight the
significance of carefully optimizing algorithms that are tailored for the underlying ar-
chitectural specifications, such as the cache sizes, for attaining high performance and
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performance per watt from TMAs. The results also reveal that although compiler op-
timizations help both the blocked and nonblocked algorithms, compiler optimizations
alone are not sufficient to achieve the maximum attainable performance (i.e., a non-
blocked algorithm with aggressive compiler optimizations cannot attain the perfor-
mance of a blocked optimized algorithm). We verified the results with other compiler
optimization levels as well and present results show the best attainable performance
from the compiler optimization levels.

Results in Table 3 highlight the effect of data sizes on the attainable performance
per watt. For example, the attainable performance per watt for n = 1024 is 2× greater
than that for n = 2048 for the nonblocked MM algorithm. Similarly, the attainable
performance per watt for n = 1024 is 1.2× greater than that for n = 2048 for the
blocked MM algorithm. This higher attainable performance per watt for smaller data
sizes is due to the fact that smaller data sizes fit better in the cache and require lesser
main memory requests to transfer data from main memory to the caches as compared
to larger data sizes. We observe that even with large data sizes, the blocked MM
algorithm helps in alleviating the performance per watt penalty for additional memory
accesses. For example, the blocked MM algorithm reduces the performance per watt
penalty due to additional memory accesses for n = 2048 over n = 1024 by 67 % as
compared to the nonblocked MM algorithm.

6.2.2 Evaluating block sizes and compiler optimizations

Table 4 shows the performance and performance per watt of the MM algorithm run-
ning on a single tile with and without compiler optimizations for different matrix
sizes n, block sizes b, and subblock sizes b′. The results reveal that as with tradi-
tional CPUs, block sizes are important in optimizing performance and performance
per watt for a given TMA. Experiments indicate that block size calculations only
give a constraint/upper bound (i.e., the maximum block size, for a given cache size)
and the optimal block size for an algorithm can only be determined using a hit and
try method (i.e., by selecting block sizes less than the maximum size obtained by
the block size calculations, running the algorithm with each block size, measuring
the performance, and then selecting the best block size based on the performance
results). The results also reveal that compiler optimization level -O3 yields a sig-
nificant improvement in execution time, performance, and performance per watt as
compared to not using any compiler optimizations. For example, -O3 provides per-
formance and performance per watt improvements of 5.6× and 4.8× for n = 1024
and n = 2048, respectively, when b = 64 and b′ = 4. We also evaluated our blocked
MM algorithm with other compiler optimization levels, such as -O2 and -Os, how-
ever, since -O3 yields the best performance, we present only results with -O3 for
brevity.

The results in Table 4 depict that b = 128 and b′ = 8 give the best results for
n = 1024 and these sizes could be used for n ≤ 1024, however, b = 128 and b′ = 8
impose a 2× lower performance than b = 64 and b′ = 4 for n = 2048. Hence, we
apply further optimizations based on block and subblock sizes of b = 64 and b′ = 4,
respectively.
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Table 4 Performance of the blocked MM algorithm on a single tile of the TILEPro64 for different matrix
sizes n, block sizes b, and subblock sizes b′

n b b′ T
(1)
B

(s)
T

(1)
B-O3

(s)
Perf(1)

B
(MOPS)

Perf/W(1)
B

(MOPS/W)
Perf(1)

B-O3
(MOPS)

Perf/W(1)
B-O3

(MOPS/W)

1024 32 4 126.08 22.97 17.03 3.18 93.49 17.44

64 4 125.71 22.65 17.08 3.19 94.81 17.69

128 4 125.56 22.53 17.1 3.19 95.32 17.78

1024 32 8 107.77 19.63 19.9 3.71 109.4 20.4

64 8 107.52 19.4 19.97 3.72 110.7 20.65

128 8 107.42 19.3 19.99 3.73 111.27 20.76

1024 32 16 117.73 29 18.24 3.4 74.05 13.82

64 16 117.6 28.86 18.26 3.4 74.41 13.88

128 16 117.55 28.82 18.27 3.4 74.51 13.9

2048 32 4 1042.06 218.21 16.49 3.08 78.73 14.69

64 4 1033.87 215.33 16.62 3.1 79.78 14.88

128 4 1040.77 216.22 16.5 3.08 79.46 14.82

2048 32 8 1164.97 414.43 14.75 2.75 41.45 7.73

64 8 1162.07 412.22 14.78 2.76 41.68 7.78

128 8 1162.04 419.41 14.78 2.76 40.96 7.64

2048 32 16 1362.94 434.48 12.6 2.35 39.54 7.38

64 16 1360.57 433.25 12.63 2.36 39.65 7.4

128 16 1360.07 418.55 12.63 2.36 41.05 7.66

6.2.3 Compiler directives-based optimizations

Programmers can specify appropriate compiler directives to achieve performance im-
provements. In this subsection, we discuss the performance improvements attained
by some of the compiler directives discussed in Sect. 5.3. We point out that not all
of the available compiler directives are appropriate for a given program/application
to attain high performance. A programmer needs to speculate which compiler direc-
tives can be beneficial and then apply these compiler directives selectively depending
on the program’s constructs. Hit and try can also be beneficial with some compiler
directives, such as loop unrolling to determine the best loop unrolling value. Using
appropriate compiler directives for attaining high performance requires programming
experience as inappropriate use of compiler directives can deteriorate performance.

Table 5 depicts the impact of various compiler directives with the -O2 optimiza-
tion level on the performance of the nonblocked MM algorithm on a single tile of
the TILEPro64 for n = 1024. We point out that many compiler directives are enabled
only at specific compiler optimization levels. Experiments reveal that the compiler di-
rectives presented in Table 5 have a negligible impact on performance with compiler
optimization levels -O0 and -O1. Results indicate that compiler optimization direc-
tives with the -O2 flag can increase the performance by 1.8× or by 77 % as compared
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Table 5 Compiler directives-based optimizations with compiler optimization level -O2 for the nonblocked
MM algorithm

Compiler directives T
(1)
NB-O2(s)

Without any compiler directives 136.32

#pragma inline here where call to MM kernel is made 121.43

#pragma inline here + #pragma blocking size (4,8) for outer MM loop 111.81

#pragma inline here + #pragma blocking size (4,8) for outer MM loop +
#pragma blocking size (2,8) for inner MM loop

87.65

#pragma inline here + #pragma blocking size (4,8) for outer MM loop +
#pragma blocking size (2,8) for inner MM loop + #pragma blocking size (2,8) for
innermost MM loop

87.65

#pragma inline here + #pragma blocking size (4,8) for outer MM loop +
#pragma blocking size (2,8) for inner MM loop + #pragma blocking size (2,8) for
innermost MM loop + #pragma unroll 4

76.99

#pragma inline here + #pragma blocking size (4,8) for outer MM loop +
#pragma blocking size (2,8) for inner MM loop + #pragma blocking size (2,8) for
innermost MM loop + #pragma unroll 4 + #pragma swp

77.0

to not using any compiler directives. We also use hit and try to determine suitable pa-
rameters for compiler directives. For example, our experiments with #pragma unroll 2

does not give any performance improvement whereas #pragma unroll 4 increases the
performance by 14 % for the nonblocked MM algorithm. We also observe that not all
the compiler directives result in performance improvement, (e.g., #pragma swp does
not enhance performance for the nonblocked MM algorithm).

In Table 5, #pragma blocking size (n1, n2) directs the compiler that if the specified
loop is involved in blocking of the primary or level one (secondary or level two)
cache will have the blocking size of n1 (n2). The specification of the blocking size
for the secondary cache is optional, however, we observe better performance results
are attained if the blocking size for both primary and secondary caches are specified.
We point out that this compiler blocking directive is loop-based and different from
cache blocking sizes we calculated earlier for MM algorithms. If a blocking size of 0
is specified, then the loop is not split and the entire loop is inside the block. #pragma

unroll (n) directs the compiler to add (n − 1) copies of the inner loop body to the inner
loop.

6.2.4 Feedback-based optimizations

Tables 6 and 7 depict performance and performance per watt, respectively, for the
feedback-based optimizations applied to the blocked MM algorithm to investigate
further performance and performance per watt enhancements on the TILEPro64. The
results reveal that feedback-based optimizations do not improve performance and per-
formance per watt for the TILEPro64 as compared to the when using compiler opti-
mization level -O3. However, both the compiler optimization level -O3 and feedback-
based optimization improve the performance and performance per watt by 5.5× and
4.8× for n = 1024 and n = 2048, respectively, for the blocked MM algorithm as
compared to the blocked MM algorithm without any compiler optimizations.
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Table 6 Performance of the blocked MM algorithm on a single tile of the TILEPro64 using feedback-
based optimizations for different matrix sizes n

n b b′ T
(1)
B

(s)
T

(1)
B-O3

(s)
T

(1)
B-FBO

(s)
Perf(1)

B
(MOPS)

Perf(1)
B-O3

(MOPS)
Perf(1)

B-FBO
(MOPS)

1024 64 4 125.71 22.65 22.96 17.08 94.81 93.53

2048 64 4 1033.87 215.33 214.73 16.62 79.78 80.0

Table 7 Performance per watt
of the blocked MM algorithm on
a single tile of the TILEPro64
using feedback-based
optimizations for different
matrix sizes n

n b b′ Perf/W(1)
B

(MOPS/W)
Perf/W(1)

B-O3
(MOPS/W)

Perf/W(1)
B-FBO

(MOPS/W)

1024 64 4 3.19 17.69 17.45

2048 64 4 3.1 14.88 14.92

Table 8 Performance of the blocked MM algorithm on a single tile of the TILE64 using feedback-based
optimizations for different matrix sizes n

n b b′ T
(1)
B

(s)
T

(1)
B-O3

(s)
T

(1)
B-FBO

(s)
Perf(1)

B
(MOPS)

Perf(1)
B-O3

(MOPS)
Perf(1)

B-FBO
(MOPS)

1024 64 4 130.18 28.98 22.96 16.5 74.1 93.53

2048 64 4 1109.08 307.34 214.71 15.49 55.9 80.01

Table 9 Performance per watt
of the blocked MM algorithm on
a single tile of the TILE64 using
feedback-based optimizations
for different matrix sizes n

n b b′ Perf/W(1)
B

(MOPS/W)
Perf/W(1)

B-O3
(MOPS/W)

Perf/W(1)
B-FBO

(MOPS/W)

1024 64 4 3.08 13.82 17.45

2048 64 4 2.89 10.43 14.93

To investigate whether feedback-based optimizations can be useful for TMAs
other than the TILEPro64), we evaluated the TILE64. Tables 8 and 9 depict per-
formance and performance per watt results, respectively, for the feedback-based op-
timizations applied to the blocked MM algorithm implemented on the TILE64 to
provide comparison with the corresponding results for the TILEPro64 (Tables 6
and 7). By using only compiler optimization flags, the better performance of the
TILEPro64 over the TILE64 could be attributed to slightly higher memory bandwidth
of the TILEPro64 than the TILE64 (Sect. 3.4). The results for the TILE64 reveal that
feedback-based optimizations can improve the performance as compared to compiler
optimization level -O3, which indicates that there is room for improvement even after
applying optimization level -O3. For example, feedback-based optimizations provide
1.3× and 1.4× performance and performance per watt improvements for n = 1024
and n = 2048, respectively, when b = 64 and b′ = 4 for the TILE64. These results in-
dicate that the TILEPro64 can exploit compiler optimizations better than the TILE64,
which is why the TILEPro64 is able to attain performance close to feedback-based
optimizations only with the compiler optimization flags. Since a programmer does
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not know in advance how much an architecture can exploit optimizations enabled by
compiler optimization flags, the programmer can leverage feedback-based optimiza-
tions, when feasible, to provide further performance enhancements over the attainable
performance using only compiler optimization flags.

6.3 Parallel performance optimizations

Parallel performance optimizations are important to leverage the high computing den-
sity of TMAs and require a parallel algorithm to be run on multiple tiles of a TMA.
The parallel algorithm can either be a parallel version of a corresponding sequen-
tial algorithm or the parallel algorithm can be designed from scratch considering a
parallel architecture. Block size selection for a parallel blocking algorithm is equally
important as that for the serial blocking algorithm. The block sizes selected from the
single-tile optimization of a serial blocking algorithm may be suitable for the paral-
lel algorithm if the parallel blocking algorithm’s design is such that the decomposed
algorithm running on a single tile is similar in structure to the corresponding serial
blocking algorithm. As with the optimizations on a single-tile, compiler optimization
flags also help in attaining high performance from the parallel algorithm. Depending
on the data distribution, parallel algorithms that leverage TMA features, such as hori-
zontal communication, can be useful for attaining high performance from the parallel
algorithm. Additionally, feedback-based optimizations are also beneficial in attain-
ing parallel performance optimizations for TMAs. This subsection discusses these
parallel performance optimizations focusing on the TILEPro64.

6.3.1 Algorithmic optimizations and compiler optimizations

We parallelize our blocked MM algorithm for the TILEPro64 to achieve performance
enhancements via parallelization. Tables 10 and 11 depict the performance and per-
formance per watt, respectively, of parallelized blocked MM algorithm running on
four and sixteen tiles, p = 4 and p = 16, respectively, for different block sizes b

and subblock sizes b′ with and without compiler optimizations. The results reveal
that compiler optimizations can greatly improve the performance and performance
per watt of a parallelized blocked algorithm. For example, compiler optimization
level -O3 yields 5.6× and 5.4× performance and performance per watt improve-
ments when the blocked MM algorithm is executed on p = 4 and p = 16, respec-
tively, when n = 1024, b = 64, and b′ = 4. Similarly, compiler optimization level
-O3 yields 5× and 4.8× performance and performance per watt improvements when
the blocked MM algorithm is executed on p = 4 and p = 16, respectively, when
n = 2048, b = 64, and b′ = 4.

To quantify the parallel performance improvements, Table 12 also depicts the
speedups attained by our parallelized blocked MM algorithm. We use the serial and
parallel run times with compiler optimization level -O3 to calculate the speedups:
S(4) = T

(1)
O3 /T

(4)
O3 and S(16) = T

(1)
O3 /T

(16)
O3 where S(4) and S(16) denote speedups for

p = 4 and p = 16, respectively. The results reveal that the parallelized blocked MM
algorithm attains ideal or close to ideal speedups for our selected block and sub-
block sizes (b = 64 and b′ = 4). The results also reveal that a poorly-selected block
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Table 10 Performance of the parallelized blocked MM algorithm for a different number of tiles p for the
TILEPro64 for different matrix sizes n, block sizes b, and subblock sizes b′ (S(p) denotes the speedup
using p tiles)

n b b′ T
(4)
B

(s)
T

(4)
B-O3

(s)
S(4) T

(16)
B

(s)
T

(16)
B-O3

(s)
S(16) Perf(4)

B
(MOPS)

Perf(4)
B-O3

(MOPS)
Perf(16)

B
(MOPS)

Perf(16)
B-O3

(MOPS)

1024 32 4 31.53 5.73 3.4 7.9 1.49 13.0 68.1 374.78 271.83 1,441.26

64 4 31.42 5.64 3.4 7.87 1.45 13.3 68.35 380.76 272.87 1,481.02

128 4 31.39 5.61 3.4 15.73 2.84 6.8 68.41 382.8 136.52 756.16

1024 32 8 26.94 4.88 4.0 6.75 1.25 15.4 79.7 440.06 318.14 1,717.99

64 8 26.86 4.82 4.0 6.73 1.22 15.8 79.95 445.54 319.09 1,760.23

128 8 26.85 4.79 4.0 13.48 2.46 7.8 79.98 448.33 159.31 872.96

1024 32 16 29.45 7.44 2.6 7.43 2.07 9.3 72.92 288.64 289.03 1,037.4

64 16 29.39 7.38 2.6 7.41 2.05 9.4 73.07 290.99 289.81 1,047.55

128 16 29.37 7.36 2.6 15.01 3.92 4.9 73.12 291.78 143.07 547.83

2048 32 4 258.72 52.65 4.0 64.82 13.8 15.6 66.4 326.3 265.04 1,244.92

64 4 257.59 51.84 4.0 64.56 13.49 16.0 66.69 331.4 266.11 1,273.53

128 4 257.93 52.05 4.0 64.73 13.6 15.8 66.61 330.06 265.41 1,263.22

2048 32 8 287.14 107.33 2.0 72.7 30.57 7.0 59.83 160.06 236.31 561.98

64 8 286.87 107.12 2.0 72.76 30.52 7.0 59.89 160.38 236.12 562.9

128 8 286.88 107.13 2.0 72.8 30.53 7.0 59.88 160.36 235.99 562.72

2048 32 16 353.04 152.85 1.4 90.61 52.74 4.1 48.66 112.4 189.6 325.75

64 16 352.47 150.57 1.4 90.4 51.57 4.2 48.74 114.1 190.04 333.14

128 16 352.29 152.76 1.4 90.38 52.8 4.1 48.77 112.46 190.08 325.38

and subblock sizes can give results far from ideal. For example, using b = 128 and
b′ = 8 for n = 1024 gives S(16) = 7.8, an efficiency of only 49 %. We observe that
the blocked MM algorithm can attain 8.4× and 8.2× better performance and per-
formance per watt as compared to the nonblocked MM algorithm for p = 4 and
p = 16, respectively, when n = 1024, b = 64, and b′ = 4. Similarly, the performance
and performance per watt improvements for the blocked MM algorithm over the non-
blocked MM algorithm is 10.8× and 11.5× for p = 4 and p = 16, respectively, when
n = 2048, b = 64, and b′ = 4.

Results for the parallelized MM algorithm also verify that the attainable perfor-
mance per watt for smaller data sizes is better than the attainable performance per
watt for larger data sizes because smaller data sizes require fewer memory accesses
as compared to larger data sizes. For example, the attainable performance per watt
is 15 % and 16 % higher for p = 4 and p = 16, respectively, for n = 1024 as com-
pared to that for n = 2048. We point out that ideal speedups may not be attainable
with different kernels, such as comparison-based sorting and some real-world ap-
plications, because of frequent memory accesses, data sharing, load imbalance, and
inherent overheads in parallelization, such as synchronization and data communica-
tion between tiles.
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Table 11 Performance per watt of the parallelized blocked MM algorithm for a different number of tiles
p for the TILEPro64 for different matrix sizes n, block sizes b, and subblock sizes b′

n b b′ Perf/W(4)
B

(MOPS/W)
Perf/W(4)

B-O3
(MOPS/W)

Perf/W(16)
B

(MOPS/W)
Perf/W(16)

B-O3
(MOPS/W)

1024 32 4 10.57 58.2 25.29 134.07

64 4 10.6 59.12 25.38 137.77

128 4 10.62 59.44 12.7 70.34

1024 32 8 12.38 68.33 29.59 159.81

64 8 12.41 69.18 29.68 163.74

128 8 12.42 69.62 14.82 81.2

1024 32 16 11.32 44.82 26.89 96.5

64 16 11.35 45.18 26.96 97.45

128 16 11.35 45.3 13.31 50.96

2048 32 4 10.31 50.67 24.65 115.81

64 4 10.36 51.46 24.75 118.47

128 4 10.34 51.25 24.69 117.51

2048 32 8 9.29 24.85 21.98 52.28

64 8 9.3 24.9 21.96 52.36

128 8 9.3 24.9 21.95 52.35

2048 32 16 7.56 17.45 17.64 30.3

64 16 7.57 17.72 17.68 30.99

128 16 7.57 17.46 17.68 30.27

Table 12 Performance and performance per watt for a parallelized nonblocked (NB) and a parallelized
blocked (B) MM algorithm for a different number of tiles p for the TILEPro64 for different matrix sizes
n. SB denotes the speedup for the blocked MM algorithm

n p T
(p)
NB-O3

(s)
T

(p)
B-O3

(s)
SB T

(p)
NB-O3/

T
(p)
B-O3

Perf(p)
NB-O3

(MOPS)
Perf/W(p)

NB-O3
(MOPS/W)

Perf(p)
B-O3

(MOPS)
Perf/W(p)

B-O3
(MOPS/W)

1024 4 47.55 5.64 4.0 8.4 45.16 7.01 380.76 59.12

1024 16 11.84 1.45 15.6 8.2 181.38 16.87 1,481.02 137.77

2048 4 558.78 51.84 4.0 10.8 30.74 4.77 331.4 51.46

2048 16 154.64 13.49 16 11.5 111.1 10.33 1,273.53 118.47

Table 12 also illustrates the impact of algorithmic choices on parallel performance
and performance per watt by providing a comparison between parallelized blocked
(B) and parallelized nonblocked (NB) MM algorithms. The results reveal that the
parallelized blocked MM algorithm attains ideal or near-ideal speedups when block
sizes are selected appropriately (e.g., ideal or near-ideal speedups are attained for
b = 64 and b′ = 4 whereas the attained speedups are far from ideal for inappropri-
ate block sizes). Results indicate that with appropriate block size selection, the par-
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allelized blocked MM algorithm provides better performance and performance per
watt as compared to the non-blocked MM algorithm. For example, the parallelized
blocked MM algorithm attains 743 % and 717 % better performance per watt than
the parallelized nonblocked MM algorithm for p = 4 and p = 16, respectively, when
n = 1024 (b = 64 and b′ = 4 for the blocked MM algorithm).

6.3.2 Horizontal communication

Conventional inter-thread communication on shared memory can be inefficient due to
the memory subsystem’s limited bandwidth. Although all contemporary architectures
provide vertical data communication (communication between different levels of the
memory hierarchy), many TMAs (e.g., Tilera’s TMAs) also support horizontal data
communication (communication between different caches at the same level). Hori-
zontal data communication provides efficient interthread communication by leverag-
ing low on-chip communication latency and high on-chip bandwidth. To illustrate
horizontal data communication for attaining high performance and performance per
watt, we implement Cannon’s MM algorithm [40] on the TILEPro64.

In Cannon’s algorithm, only neighboring tiles communicate with each other using
horizontal communication. Horizontal communication in Cannon’s algorithm min-
imizes level two cache and main memory accesses whereas communication with
neighboring tiles minimizes the network contention [1]. We also use blocking with
Cannon’s algorithm so that the submatrix blocks fit in the caches. For Cannon’s al-
gorithm, we also experiment with separate temporary submatrices (D, E, F) to store
the blocked submatrices to overlap communication and computation, however, we
are able to attain similar performance without using temporary matrices because the
memory footprint/size increases by using separate temporary matrices. Hence, we
present results for Cannon’s algorithm that does not use separate temporary subma-
trices.

Tables 13 and 14 depict the performance and performance per watt, respectively,
of parallelized blocked Cannon’s algorithm for MM running on p = 4 and p = 16
tiles for different block sizes b and b′, with compiler optimization level -O3 and
without compiler optimizations. The results reveal that Cannon’s algorithm attains
close to ideal speedups for appropriate block and subblock sizes. We also observe su-
perlinear speedup for n = 2048, p = 4, b = 64, and b′ = 4. Superlinear speedups are
achieved when a working set’s data completely fits in the tiles’ combined caches but
was unable to fit in an individual tile’s cache. The larger combined cache size, as well
as the horizontal communication exploited by Cannon’s algorithm, help in attaining
superlinear speedup for appropriate block and subblock sizes. Results show that com-
piler optimizations can significantly enhance performance and performance per watt
in addition to the horizontal communication leveraged in Cannon’s algorithm. For
example, compiler optimization level -O3 yields 5× and 4.8× improvements when
Cannon’s algorithm is executed on p = 4 and p = 16, respectively, when n = 1024,
b = 64, and b′ = 4. Similarly, compiler optimization level -O3 yields 4.5× and 4.2×
improvements when the blocked Cannon’s MM algorithm is executed on p = 4 and
p = 16, respectively, when n = 2048, b = 64, and b′ = 4.
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Table 13 Performance of a parallelized blocked Cannon’s algorithm for MM for a different number of
tiles p for the TILEPro64 for different matrix sizes n, block sizes b, and subblock sizes b′

n b b′ T
(4)
B

(s)
T

(4)
B-O3

(s)
S(4) T

(16)
B

(s)
T

(16)
B-O3

(s)
S(16) Perf(4)

B
(MOPS)

Perf(4)
B-O3

(MOPS)
Perf(16)

B
(MOPS)

Perf(16)
B-O3

(MOPS)

1024 32 4 28.82 5.79 3.3 7.25 1.52 12.7 74.51 370.9 296.2 1,412.8

64 4 28.73 5.68 3.3 7.22 1.5 12.9 74.75 378.1 297.43 1,431.6

128 4 28.7 5.65 3.3 7.24 1.49 13.0 74.82 380.1 296.61 1,441.3

1024 32 8 24.28 5 3.9 6.13 1.3 14.8 88.45 429.5 350.32 1,651.91

64 8 24.18 4.89 3.9 6.1 1.28 15.1 88.81 439.16 352.05 1,677.72

128 8 24.15 4.84 4.0 6.1 1.26 15.3 88.92 443.7 352.05 1,704.35

1024 32 16 26.89 7.48 2.6 7.14 2.28 8.5 79.86 287.1 300.77 941.88

64 16 27.03 7.47 2.6 7.1 2.26 8.5 79.45 287.48 302.46 950.21

128 16 26.9 7.5 2.6 7 2.23 8.6 79.83 286.33 306.78 963.0

2048 32 4 238.64 52.79 4.0 60.33 14.36 15.0 72.0 325.44 284.76 1,196.37

64 4 236.42 52.1 4.1 60.1 14.11 15.3 72.67 329.75 285.85 1,217.57

128 4 237.09 53 4.0 60.04 14.55 14.8 72.46 324.15 286.14 1,180.75

2048 32 8 264.62 106.98 2.0 70.23 30.83 7.0 64.92 160.59 244.62 557.24

64 8 265.77 107.12 2.0 69.68 31.93 6.7 64.64 160.38 246.55 538.05

128 8 266.05 107.84 2.0 69.87 32.27 6.7 64.57 159.31 245.88 532.38

2048 32 16 331.5 150.82 1.4 86.32 51.89 4.1 51.82 113.91 199.02 331.08

64 16 331.04 150.82 1.4 86.06 52.15 4.1 51.9 113.91 199.63 329.43

128 16 331.29 151.03 1.4 85.87 52.33 4.1 51.86 113.75 200.07 328.3

Comparison of Tables 10 and 13 reveals that our parallelized blocked MM algo-
rithm always attains equal or better performance than the parallelized blocked Can-
non’s algorithm on the TILEPro64 for our selected block and subblock sizes b = 64
and b′ = 4. One explanation for the blocked MM algorithm’s better performance than
Cannon’s algorithm for optimal block and subblock sizes could be that Cannon’s al-
gorithm stresses the on-chip network both for communication with external memory
and for inter-tile communication, whereas the blocked MM algorithm uses the on-
chip network only for communication with external memory.

6.3.3 Feedback-based optimizations

After observing that our parallelized blocked MM algorithm attains performance
that is comparable to the blocked Cannon’s algorithm, we investigate the impact of
feedback-based optimizations on the performance of the parallelized blocked MM
algorithm. Tables 15, 16, 17 depict the execution time, performance, and perfor-
mance per watt, respectively, of our parallelized blocked MM algorithm with com-
piler optimization level -O3 and with feedback-based optimizations. Results reveal
that feedback-based optimizations provide only a negligible performance improve-
ment over compiler optimization level -O3 for the TILEPro64, which corroborates
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Table 14 Performance per watt of a parallelized blocked Cannon’s algorithm for MM for a different
number of tiles p for the TILEPro64 for different matrix sizes n, block sizes b, and subblock sizes b′

n b b′ Perf/W(4)
B

(MOPS/W)
Perf/W(4)

B-O3
(MOPS/W)

Perf/W(16)
B

(MOPS/W)
Perf/W(16)

B-O3
(MOPS/W)

1024 32 4 11.57 57.59 27.55 131.42

64 4 11.61 58.71 27.67 133.17

128 4 11.62 59.02 27.59 134.07

1024 32 8 13.73 66.69 32.59 153.67

64 8 13.79 68.19 32.75 156.1

128 8 13.81 68.9 32.75 158.54

1024 32 16 12.4 44.58 27.98 87.62

64 16 12.34 44.65 28.14 88.39

128 16 12.4 44.46 28.54 89.58

2048 32 4 11.18 50.53 26.49 111.29

64 4 11.28 51.2 26.59 113.26

128 4 11.25 50.33 26.62 109.84

2048 32 8 10.08 24.94 22.76 51.84

64 8 10.04 24.9 22.93 50.05

128 8 10.03 24.74 22.87 49.52

2048 32 16 8.05 17.69 18.51 30.8

64 16 8.06 17.69 18.57 30.64

128 16 8.05 17.66 18.61 30.54

Table 15 Execution time of the parallelized blocked MM algorithm for a different number of tiles p for
the TILEPro64 for different matrix sizes n

n b b′ T
(4)
B

(s)
T

(4)
B-O3

(s)
T

(4)
B-FBO

(s)
T

(16)
B

(s)
T

(16)
B-O3

(s)
T

(16)
B-FBO

(s)

1024 64 4 31.42 5.64 5.62 7.87 1.45 1.44

2048 64 4 257.59 51.84 50.73 64.56 13.49 13.23

our findings for a single tile of the TILEPro64. These results indicate that com-
piler optimization level -O3 provides close to peak attainable performance for the
TILEPro64 when proper load balancing and cache blocking is used.

6.3.4 Peak attained parallel performance

Leveraging our algorithmic and compiler optimizations, we are able to attain peak
performance of 7.2 GOPS for the MM algorithm running on p = 57 tiles of the
TILEPro64. We also quantify the peak attainable performance for FP benchmarks
on the TILEPro64. For FP performance benchmarking, we use an embarrassingly
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Table 16 Performance of the parallelized blocked MM algorithm for a different number of tiles p for the
TILEPro64 for different matrix sizes n

n b b′ Perf(4)
B

(MOPS)
Perf(4)

B-O3
(MOPS)

Perf(16)
B

(MOPS)
Perf(16)

B-O3
(MOPS)

Perf(4)
B-FBO

(MOPS)
Perf(16)

B-FBO
(MOPS)

1024 64 4 68.35 380.76 272.87 1,481.02 382.11 1,491.31

2048 64 4 66.69 331.4 266.11 1,273.53 338.65 1,298.55

Table 17 Performance per watt of the parallelized blocked MM algorithm for a different number of tiles
p for the TILEPro64 for different matrix sizes n

n b b′ Perf/W(4)
B

(MOPS/W)
Perf/W(4)

B-O3
(MOPS/W)

Perf/W(16)
B

(MOPS/W)
Perf/W(16)

B-O3
(MOPS/W)

Perf/W(4)
B-FBO

(MOPS/W)
Perf/W(16)

FBO
(MOPS/W)

1024 64 4 10.61 59.12 25.38 137.77 59.33 138.73

2048 64 4 10.36 51.46 24.75 118.47 52.58 120.8

parallel benchmark that generated normally distributed random variates based on
Box-Muller’s algorithm. We are able to attain 618.4 MFLOPS for the embarrass-
ingly parallel benchmark running on 57 tiles of the TILEPro64. We observe that the
TILEPro64 delivers higher performance for benchmarks with integer operations as
compared to the benchmarks with FP operations. For example, we were able to attain
11.6× better performance for integer benchmarks as compared to FP benchmarks
while running the benchmarks on 57 tiles. The better performance and performance
per watt for integer operations on the TILEPro64 is because Tilera’s TMAs do not
contain dedicated FP units. We point out that benchmarks could not be run on more
than 57 tiles of the TILEPro64 as remaining tiles are reserved by the TILEPro64 for
other purposes [47].

7 Conclusions and insights

This work provides an overview of tiled many-core architectures (TMAs) and dis-
cusses contemporary TMA chips, including Intel’s TeraFLOPS research chip, IBM’s
C64, and Tilera’s TILEPro64. Research on TMAs indicates that the TeraFLOPS re-
search chip is suitable for kernel studies whereas IBM’s C64 and Tilera’s TILEPro64
can run full-scale applications. Our work focuses on Tilera’s TILEPro64 for demon-
strating performance optimizations on TMAs. We highlight platform considerations
for parallel performance optimizations, such as chip locality, cache locality, tile lo-
cality, translation look-aside buffer locality, and memory balancing. We elaborate on
compiler-based optimizations for attaining high performance, such as function inlin-
ing, alias analysis, loop unrolling, loop nest optimizations, software pipelining, and
feedback-based optimizations.

To demonstrate high-performance optimizations on TMAs, we optimize dense ma-
trix multiplication (MM) on Tilera’s TILEPro64. Results verify that an algorithm
must consider the underlying architectural features, such as the cache sizes, in order
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to maximize the performance attained from TMAs. For example, our blocked MM
algorithm, which exploits cache blocking, provides 6× and 10× performance and
performance per watt improvements over a nonblocked MM algorithm for n = 1024
and n = 2048, respectively (n denotes the matrix size). Results reveal that the perfor-
mance advantage of blocking increases as the data size increases. Experiments ver-
ify that the best blocking granularity for an algorithm is determined by experiments
whereas calculations can only specify an upper bound for block sizes in most cases.
We parallelize our blocked MM algorithm on multiple tiles to enhance performance
by exploiting thread-level parallelism. We are able to attain linear speedups using
parallelization and proper load balancing on Tilera’s TMAs. Experiments reveal that
appropriate use of the cache subsystem (e.g., by blocking) also significantly improves
attainable performance and performance per watt gains from parallelism. For exam-
ple, the blocked MM algorithm attains 743 % and 717 % better performance per
watt than the non-blocked MM algorithm for p = 4 and p = 16, respectively, when
n = 1024 (p denotes number of tiles).

Experiments indicate that blocking and parallelization alone are not sufficient to
achieve maximum attainable performance from TMAs and compiler-based optimiza-
tions can provide tremendous enhancements in attainable performance and perfor-
mance per watt. Results show that compiler optimization level -O3 yields 5.6× and
5.4× performance and performance per watt improvements when the blocked MM
algorithm is executed on p = 4 and p = 16, respectively. Furthermore, as with tra-
ditional processors, appropriate use of compiler directives can enhance attainable
performance from TMAs. For example, compiler optimization directives with opti-
mization level -O2 can increase the performance by 1.8× (77 %) as compared to not
using any compiler directives for Tilera’s TILEPro64. Experiments on the TILE64
and TILEPro64 suggest that advanced compiler optimization techniques, such as
feedback-based optimizations, can improve performance on some TMAs, but can-
not contribute much to the performance enhancements on other TMAs. For example,
feedback-based optimizations provide 1.3× and 1.4× performance and performance
per watt improvements for n = 1024 and n = 2048, respectively, for the TILE64
whereas negligible performance improvements are observed for the TILEPro64.

Results demonstrate that an algorithm exploiting horizontal communication, such
as Cannon’s algorithm, provides an effective means of attaining high performance
on TMAs. However, our results reveal the our parallelized blocked MM algorithm,
which is much simpler than Cannon’s algorithm, is able to obtain comparable per-
formance as that of Cannon’s algorithm. Results suggest that optimized code that
takes advantage of the memory hierarchy sizes via blocking can attain comparable
performance to the algorithms that exploit horizontal communication on TMAs.

Leveraging our algorithmic and compiler optimizations, we are able to attain
peak performance of 7.2 GOPS for the MM algorithm running on 57 tiles of the
TILEPro64. We are able to attain 618.4 MFLOPS for an embarrassingly parallel
floating point benchmark running on 57 tiles of the TILEPro64.

Our programming experience with TMAs suggest that TMAs can deliver scalable
performance per watt for applications with sufficient thread-level parallelism (TLP).
These application domains include, but are not limited to, networking, security, video
processing, and wireless networks. In networking applications, packets of different
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flows have little or no dependencies among them, and thus enable exploitation of
TLP to the fullest extent. An example of a security application exploiting available
TLP effectively could be encryption of different data blocks in parallel on different
tiles. Similarly, in image processing applications, different blocks of pixels can be
operated on in parallel on different tiles. TMAs in base stations for wireless networks
can handle processing for different users on different tiles exploiting inherent TLP in
the application. For all these application domains, the working set can be chosen to
fit in the TMA’s tiles’ caches based on appropriate cache blocking. As demonstrated
in our experiments, different compiler optimization flags as well as compiler direc-
tives (pragmas) can enhance the attainable performance and performance per watt
for these applications. Furthermore, feedback-based optimizations, where feasible,
can further enhance the attainable performance and performance per watt for these
applications.

Research and programming experience with TMAs suggest some hardware/soft-
ware optimizations. Research suggests that a portion of on-chip transistors should be
used for on-die memory to provide sustainable high performance. Programming ex-
perience advocates that application programmers input need to be considered in the
design of many-core chips as small easier to incorporate changes in the instruction
set can potentially have a large impact on the chip programmability. For example,
incorporation of jump instruction in Intel’s TeraFLOPS research chip could have
allowed addition of nested loops [12]. Research on TMAs reveals the scalability ad-
vantages of message passing architectures that allow data sharing through explicit
messages rather than through a shared address space, which enables easy avoidance
of race conditions. However, since software development with message passing alone
can be complex, a TMA supporting both shared memory and message passing pro-
gramming paradigm can benefit large scale applications development. This hybrid
messaging passing-shared memory programming paradigm would enable program-
mers to take advantage of the two programming paradigms’ features depending on
the application structure and decomposition.
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Appendix: Matrix multiplication algorithms’ code snippets for Tilera’s
TILEPro64

This appendix section provides code snippets of our matrix multiplication algorithms
for Tilera’s TILEPro64. The code snippets are presented selectively to provide an
understanding of our algorithms and some portions of the code are skipped for con-
ciseness.
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A.1 Serial non-blocked matrix multiplication algorithm

A.1.1 SerialNonBlockedMM.h

#ifndef MATRIXMULTIPLICATION_H_
#define MATRIXMULTIPLICATION_H_

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>

#define m 1024 // specify the dimension of matrices
#define n 1024 // specify the dimension of matrices

void MatrixMultiplication(int *A, int *B, int *C);

#endif /* MATRIXMULTIPLICATION_H_ */

A.1.2 SerialNonBlockedMM.c

#include "SerialNonBlockedMM.h"

int main(int argc, char **argv)
{

int *A, *B, *C;
// pointers pointing to input matrices A and B and output matrix C

A = (int *) malloc (m * n * sizeof(int));
B = (int *) malloc (m * n * sizeof(int));
C = (int *) malloc (m * n * sizeof(int));

// initialize matrices
.
.
.

MatrixMultiplication(A, B, C);

return 0;

} /* main function */

// integer matrix multiplication kernel
void MatrixMultiplication(int *A, int *B, int *C)
{

int i, j, k;
for (i = 0; i < n; i++)
{

for (j = 0; j < n; j++)
{

for (k = 0; k < n; k++)
{

C[i*n+j] = C[i*n+j] + (A[i*n+k] * B[k*n+j]);
}

}
}

} /* MatrixMultiplication function */



478 A. Munir et al.

A.2 Serial blocked matrix multiplication algorithm

A.2.1 SerialBlockedMM.h

#ifndef MATRIXMULTIPLICATION_H_
#define MATRIXMULTIPLICATION_H_

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>

#define m 1024 // specify the dimension of matrices
#define n 1024 // specify the dimension of matrices
#define bs 64 // block size for L2
#define ssb 4 // block size for L1

void MatrixMultiplicationBlockedMain(int *A, int *B, int *C, int N);

void MatrixMultiplicationSubBlockedL2(int *A, int *B, int *C, int N);

void MatrixMultiplicationSubBlockedL1(int *A, int *B, int *C);

#endif /* MATRIXMULTIPLICATION_H_ */

A.2.2 SerialBlockedMM.c

#include "SerialBlockedMM.h"

int main(int argc, char **argv)
{

int *A, *B, *C;

// The algorithm tiles n x n original matrix in NxN sub-matrices
int N = n/bs;

A = (int *) malloc (m * n * sizeof(int));
B = (int *) malloc (m * n * sizeof(int));
C = (int *) malloc (m * n * sizeof(int));

// initialize matrices
.
.
.

MatrixMultiplicationBlockedMain(A, B, C, N);

return 0;

} /* main function */

void MatrixMultiplicationBlockedMain(int *A, int *B, int *C, int N)
{

int i, j, k;
int tempbsn, tempibsn, tempjbs, tempC;
tempbsn = bs * n;
for (i = 0; i < N; i++)
{

tempibsn = i * tempbsn;
for (j = 0; j < N; j++)
{

tempjbs = j*bs;



High-performance optimizations on tiled many-core embedded systems 479

tempC = tempibsn + tempjbs;

for (k = 0; k < N; k++)
{

MatrixMultiplicationSubBlockedL2(&A[tempibsn + k * bs],
&B[k * tempbsn + tempjbs], &C[tempC], N);

}
}

}
} /* MatrixMultiplicationBlockedMain function */

void MatrixMultiplicationSubBlockedL2(int *A, int *B, int *C, int N)
{

int i, j, k, M;
int tempissbbsN, tempssbbsN, tempjssb, tempC;
tempssbbsN = ssb * bs * N;
M = bs/ssb;

for (i = 0; i < M; i++)
{

tempissbbsN = i * tempssbbsN;

for (j = 0; j < M; j++)
{

tempjssb = j * ssb;
tempC = tempissbbsN + tempjssb;

for (k = 0; k < M; k++)
{

MatrixMultiplicationSubBlockedL1(&A[tempissbbsN + k * ssb],
&B[k * tempssbbsN + tempjssb], &C[tempC]);

}
}

}
} /* MatrixMultiplicationSubBlockedL2 function */

void MatrixMultiplicationSubBlockedL1(int *A, int *B, int *C)
{

int i, j, k, temp;
for (i = 0; i < ssb; i++)
{

for (j = 0; j < ssb; j++)
{

temp = 0;
for (k = 0; k < ssb; k++)
{

temp += A[i*n+k] * B[k*n+j];
}
// storing the value of temp in C[i*n+j]
C[i*n+j] += temp;

}
}

} /* MatrixMultiplicationSubBlockedL1 function */

A.3 Parallel blocked matrix multiplication algorithm

A.3.1 ParallelBlockedMM.h

#ifndef MATRIXMULTIPLICATION_H_
#define MATRIXMULTIPLICATION_H_
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#include <stdio.h>
#include <stdlib.h>
#include <ilib.h> // Tilera’s parallel API ilib
#include <tmc/cmem.h>
#include <time.h>
#include <sys/time.h>

#define m 1024 // specify the dimension of matrices
#define n 1024 // specify the dimension of matrices
#define bs 64 // block size for L2
#define ssb 4 // block size for L1
#define NUM_TILES 16
#define MASTER_RANK 0

// The implementation of the following functions is similar to the
// serial blocked MM algorithm and are skipped in the ParallelBlockedMM.c
// file for brevity
void MatrixMultiplicationSubBlockedL2(int *A, int *B, int *C, int N);

void MatrixMultiplicationSubBlockedL1(int *A, int *B, int *C);

#endif /* MATRIXMULTIPLICATION_H_ */

A.3.2 ParallelBlockedMM.c

#include "ParallelBlockedMM.h"

int main(int argc, char **argv)
{

int *A, *B, *C;

ilibStatus status;

int processRank = 0;
int N = n/bs; // number of sub-blocks of main matrix of size n x n

// is equal to N^2; each NxN is of size bs x bs

ilib_init(); // initializes ilib library state

// creating parallel processes
if (ilib_proc_go_parallel(NUM_TILES, NULL) != ILIB_SUCCESS)

ilib_die("Failed to go parallel.");

// determining rank of processes
processRank = ilib_group_rank(ILIB_GROUP_SIBLINGS);

// Let process with rank 0 (root process) handle the initialization
// of matrices
if(processRank == 0)
{

// process rank 0 (root process) allocates shared memory for
// matrices A, B, and C
tmc_cmem_init(0);
A = (int *) tmc_cmem_malloc (m * n * sizeof(int));
B = (int *) tmc_cmem_malloc (m * n * sizeof(int));
C = (int *) tmc_cmem_malloc (m * n * sizeof(int));

// initialize matrices
.
.
.
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// Performing memory fence to guarantee that the initialized
// array values are visible to other processes
ilib_mem_fence();

}

// broadcasts the shared memory addresses of A, B, and C
// from tile 0/process 0 to the other tiles
if(ilib_msg_broadcast(ILIB_GROUP_SIBLINGS, MASTER_RANK,

&A, sizeof(A), &status) != ILIB_SUCCESS)
ilib_die("Failed to broadcast address of A");

if(ilib_msg_broadcast(ILIB_GROUP_SIBLINGS, MASTER_RANK,
&B, sizeof(B), &status) != ILIB_SUCCESS)

ilib_die("Failed to broadcast address of B");

if(ilib_msg_broadcast(ILIB_GROUP_SIBLINGS, MASTER_RANK,
&C, sizeof(C), &status) != ILIB_SUCCESS)

ilib_die("Failed to broadcast address of C");

// This barrier ensures that the broadcast of shared addresses
// is complete before further processing
ilib_msg_barrier(ILIB_GROUP_SIBLINGS);

for (i = 0; i < N; i++)
{

for (j = 0; j < N; j++)
{

if(processRank == ((i + j) % NUM_TILES))
{

for (k = 0; k < N; k++)
{

MatrixMultiplicationSubBlockedL2(&A[i * bs * n + k * bs],
&B[k * bs * n + j * bs], &C[i * bs * n + j * bs], N);

}
}

}
}

// This barrier makes sure that all the processes have finished the
// assigned computations of matrix multiplication
ilib_msg_barrier(ILIB_GROUP_SIBLINGS);

// The process with rank 0 frees the allocated memory
if(processRank == 0)
{

free(A);
free(B);
free(C);

}

ilib_finish();

return 0;

} /* main function */
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A.4 Parallel blocked cannon’s algorithm for matrix multiplication

A.4.1 ParallelBlockedCannonMM.h

#ifndef MATRIXMULTIPLICATION_H_
#define MATRIXMULTIPLICATION_H_

#include <stdio.h>
#include <stdlib.h>
#include <ilib.h> // Tilera’s parallel API ilib
#include <tmc/cmem.h>
#include <time.h>
#include <sys/time.h>

#define m 1024 // specify the dimension of matrices
#define n 1024 // specify the dimension of matrices
#define bs 64 // block size for L2
#define ssb 4 // block size for L1
#define NUM_TILES 16
#define N 4 // equal to sqrt(NUM_TILES)
#define MASTER_RANK 0

void MatrixMultiplicationSubBlockedL2(int *A, int *B, int *C, int L2B);

void MatrixMultiplicationSubBlockedL1(int *A, int *B, int *C);

#endif /* MATRIXMULTIPLICATION_H_ */

A.4.2 ParallelBlockedCannonMM.c

#include "ParallelBlockedCannonMM.h"

int main(int argc, char **argv)
{

int r, c, s; // loop variables for Cannon Rounds
int loop;

int *A, *B, *C;

ilibStatus status;

int processRank = 0;

int pi, pj; // pi for i index of tile rank and pj for j index of tile rank

// operates on this matrix size in one Cannon Round
int CannonMatrix = bs * N;
int L2B = n/bs;
int M = n/CannonMatrix;

int Ai, Aj, Bi, Bj, Ci, Cj; // (i,j) coordinates of blocks
int As, Bs, Cs; // start indices of blocks

int tempnbs = n*bs;
int pipluspj= 0;

ilib_init();

// creating parallel processes
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if (ilib_proc_go_parallel(NUM_TILES, NULL) != ILIB_SUCCESS)
ilib_die("Failed to go parallel.");

processRank = ilib_group_rank(ILIB_GROUP_SIBLINGS);

pi = processRank/N;
pj = processRank % N;
pipluspj = pi + pj;

// Let process with rank 0 (root process) handle the initialization
// of matrices
if(processRank == 0)
{

// process rank 0 (root process) allocates shared memory for
// matrices A, B, and C
tmc_cmem_init(0);
A = (int *) tmc_cmem_malloc (m * n * sizeof(int));
B = (int *) tmc_cmem_malloc (m * n * sizeof(int));
C = (int *) tmc_cmem_malloc (m * n * sizeof(int));

// initialize matrices
.
.
.

// Performing memory fence to guarantee that the initialized
// array values are visible to other processes
ilib_mem_fence();

}

// broadcasts the shared memory addresses of A, B, and C
// from tile 0/process 0 to the other tiles
if(ilib_msg_broadcast(ILIB_GROUP_SIBLINGS, MASTER_RANK,

&A, sizeof(A), &status) != ILIB_SUCCESS)
ilib_die("Failed to broadcast address of A");

if(ilib_msg_broadcast(ILIB_GROUP_SIBLINGS, MASTER_RANK,
&B, sizeof(B), &status) != ILIB_SUCCESS)

ilib_die("Failed to broadcast address of B");

if(ilib_msg_broadcast(ILIB_GROUP_SIBLINGS, MASTER_RANK,
&C, sizeof(C), &status) != ILIB_SUCCESS)

ilib_die("Failed to broadcast address of C");

// This barrier ensures that the broadcast of shared addresses is complete
// before further processing
ilib_msg_barrier(ILIB_GROUP_SIBLINGS);

int temprN = 0, tempcN = 0, tempsN = 0;

for (r = 0; r < M; r++)
{

temprN = r*N;
for (c = 0; c < M; c++)
{

tempcN = c*N;
for (s = 0; s < M; s++)
{

tempsN = s*N;
Ai = temprN + pi;
Aj = tempsN + (pipluspj) % N;
Bi = tempsN + (pipluspj) % N;
Bj = tempcN + pj;
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if(s == 0)
{

Ci = temprN + pi;
Cj = tempcN + pj;

}

As = (Ai * tempnbs) + (Aj * bs);
Bs = (Bi * tempnbs) + (Bj * bs);
Cs = (Ci * tempnbs) + (Cj * bs);

for (loop = 1; loop <= N; loop++)
{

// performs matrix multiplication on the local block
MatrixMultiplicationSubBlockedL2(&A[As], &B[Bs], &C[Cs], L2B);
if (loop != N)
{

Ai = temprN + pi;
Aj = tempsN + (pipluspj + loop) % N;
Bi = tempsN + (pipluspj + loop) % N;
Bj = tempcN + pj;
As = (Ai * tempnbs) + (Aj * bs);
Bs = (Bi * tempnbs) + (Bj * bs);

}
}

}
}

}

ilib_msg_barrier(ILIB_GROUP_SIBLINGS);

// The process with rank 0 frees the allocated memory
if(processRank == 0)
{

free(A);
free(B);
free(C);

}

ilib_finish();

return 0;

} /* main function */

void MatrixMultiplicationSubBlockedL2(int *A, int *B, int *C, int L2B)
{

int i, j, k, L1B; // L1B for L1 cache block size
int tempissbbsL2B, tempssbbsL2B, tempjssb, tempC;
tempssbbsL2B = ssb * bs * L2B;
L1B = bs/ssb;

for (i = 0; i < L1B; i++)
{

tempissbbsL2B = i * tempssbbsL2B;

for (j = 0; j < L1B; j++)
{

tempjssb = j * ssb;
tempC = tempissbbsL2B + tempjssb;
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for (k = 0; k < L1B; k++)
{

MatrixMultiplicationSubBlockedL1(&A[tempissbbsL2B + k * ssb],
&B[k * tempssbbsL2B + tempjssb], &C[tempC]);

}
}

}
} /* MatrixMultiplicationSubBlockedL2 function */

void MatrixMultiplicationSubBlockedL1(int *A, int *B, int *C)
{

int i, j, k, temp, tempin;

for (i = 0; i < ssb; i++)
{

tempin = i*n;
for (j = 0; j < ssb; j++)
{

temp = 0;
for (k = 0; k < ssb; k++)
{

temp += A[tempin+k] * B[k*n+j];
}
C[tempin+j] += temp;

}
}

} /* MatrixMultiplicationSubBlockedL1 function */
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