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Abstract– Physical Unclonable Functions (PUF) are of in-
creasing importance due to their many hardware security applica-
tions including chip fingerprinting, metering, authentication, anti-
counterfeiting, and supply-chain tracing, e.g., DARPA SHIELD.
This paper presents BIST-PUF, the first built-in-self-test (BIST)
methodology for online evaluation of weak and strong PUFs.
BIST-PUF provides a paradigm shift in the evaluation of the un-
clonable circuit identifiers: unlike earlier known PUF evaluation
suites that are software-based and offline, BIST-PUF enables on-
the-fly assessment of the desired PUF properties all in hardware.
More specifically, the BIST-PUF structure is designed to evaluate
two main properties of PUFs, namely unpredictability and stability.
These properties are important for ensuring robustness and
security in face of operational, structural, and environmental
fluctuations due to variations, aging or adversarial acts. For BIST-
PUF unpredictability evaluation, we identify and adopt the tests
of randomness that are amenable to hardware implementation.
For stability assessment, the BIST-PUF suggests three distinct
methods, namely, sensor-based, parametric interrogation, and
multiple interrogations. Proof-of-concept implementation of the
BIST-PUF in FPGA demonstrates its low overhead, effectiveness,
and practicality.

Keywords: Built In Self Test, Physical Unclonable Functions,
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I. INTRODUCTION

Identifying and tracing of individual fabricated silicon
chips throughout their lifetime is a challenge. To keep a
low cost and complexity of manufacturing, a single mask
(blueprint) is used for mass production of integrated circuits
(ICs) which cannot be uniquely identified [1], [2], [3], [4].
Classic IC identification and tracing methods including se-
rial numbers on chip/package and ID storage in non-volatile
memory are subject to attacks such as removal and remarking.
Unclonable marking of the chips is important in that it can
enable a low overhead identification, fingerprinting, authen-
tication, metering, and tracing of semiconductor components
along the untrusted supply chain [5].

The key idea behind PUF is exploitation of inherent and
naturally occurring physical disorder (fingerprint) of the device
as its unique signature, e.g., silicon manufacturing variations.
A PUF is a (partially) disordered physical system: when
interrogated by a challenge (or input, stimulus), it generates
a unique device response (or output). The response shall
depend on the incident challenge, specific physical disorder
and PUF device structure. It is common to call an input and its
corresponding output a challenge-response pair (CRP). Weak

PUFs have a limited number of CRPs, while strong PUFs are
capable of generating an exponential number of CRPs [6].

A recent timely solicitation by DARPA has called for
innovative research proposals for an IC SHIELD that enables
advanced supply chain hardware authentication capability [7].
While PUFs are promising enablers for generation of inherent
and indelible chip IDs in several hardware security solutions
including SHIELD, they cannot guarantee a fully stand-alone
solution as the root-of-trust for ICs without a careful analysis.
As shown several times in practice, when the random PUF
response values are not exactly random, catastrophic security
failures occur. For example, several analysis and attacks on
PUF have highlighted the need for appending input or output
transformations for safeguarding purposes [8], [9], [10].

To date, there have been very few works on the evaluation
of usability (stability or repeatability) and security (random-
ness) properties of PUFs. A comprehensive methodology to
test the security of PUFs was first introduced by Majzoobi et
al. in [11]. Their method was based on testing the randomness
of the responses or conditional probability of responses (or a
transformation of them) given the challenges, e.g., properties
of the probability distributions, NIST [12] or Diehard [13]
tests. Later research efforts have defined a more formal set
of properties to evaluate PUFs, e.g., [14]. However, to the best
of our knowledge, all of the existing PUF assessment methods
rely on software-based evaluation of outputs or CRPs.

This paper introduces BIST-PUF, the first methodology for
online hardware-based assessment of the robust generation
of streams of truly random (unpredictable) CRPs that are
unique to each PUF device. Two main characteristics of PUF
are evaluated by the BIST-PUF: stability and unpredictability.
These evaluations can reveal the operational, structural, and
environmental fluctuations in the PUf behavior that may be
caused by variations, aging, or attacks. The continuous and
online monitoring of PUF characteristics by the BIST-PUF
yields several advantages including: (i) low overhead detection
of changes/attacks during the PUF operation, (ii) providing an
on-the-fly measure of confidence on the randomness/robustness
of the CRPs, (iii) reporting the exact conditions in the local
PUF test site for a more granular debugging, and (iv) enabling
active adjustment and improvements of the PUF operations.

Our main contributions are as follows.

• We design the first BIST for online assessment of
the PUFs (in hardware) to quantitatively report and



evaluate both the PUF stability and its security (un-
predictability).

• For BIST-PUF unpredictability evaluation, we identify
and adopt the tests of randomness that are amenable
to hardware implementation. For BIST-PUF stability
assessment we propose three distinct methods namely,
sensor-based, parametric interrogation, and multiple
interrogations.

• To remove the biases in challenge generation, our
novel BIST-PUF architecture includes a high entropy
TRNG module. Other than the testing components, the
BIST-PUF architecture also includes a low-overhead
control circuitry and memory for saving the test re-
sults.

• Proof-of-concept implementation of the BIST-PUF on
FPGA demonstrates the effectiveness, practicability
and low overhead of the proposed architecture.

Note that although BIST-PUF is applicable to both weak
and strong PUFs, this paper focuses on strong PUF testing
since it is a more general case. The rest of the paper is
organized as follows. In the next section we outline the
basics of PUFs and standard tests for randomness. The related
literature is surveyed in Section III. In Section IV we discuss
the novel BIST-PUF methodology and architecture. Section V
describes the details of our implementation and the BIST-PUF
evaluation results. The paper concludes in Section VI.

II. BACKGROUND

A. Physical Unclonable Function

To make sure that a PUF is secure and stable it must posses
the following properties [11]:

• Unpredictability: This property ensures the uniqueness
of the PUF behavior, i.e., the CRPs. For the PUF
to be truly unpredictable two conditions need to be
met: First, the response bits form the PUF should
be completely random. Second, the transition of the
response bit should be completely uncorrelated with
the transition of one or more bits of the challenge
vector. The second condition ensures that the response
from the PUF cannot be predicted based on known
challenge-response pairs.

• Stability: In a strict sense, for a PUF to be used as
an identification circuitry it must always generate the
same response when excited by the same challenge
vector. Since PUF uses physical components and are
inherently noisy, this criteria is difficult to meet pre-
cisely. But the stability shall be present in a majority
of the output bits to ensure usability.

One question that may arise is the need for online testing of
PUFs. One may argue that PUFs CRPs can be evaluated offline
for their randomness property during the initial testing phase;
since CRPs need to be stable, there is no need for further online
tests. This argument has at least two ramifications: (i) since the
CRPs have to be robust, the protocols have to work even if
the response bits change up to a certain percentage (typically
20% in current generations of PUFs.) One could seriously

bias the bits within this high percentage of robustness (e.g.,
by changing the temperature) to facilitate machine learning
attacks [9]; (ii) one may use the side-channel information
at various operational points to break the PUF security as
demonstrated by our work [15], [10]. Adapting the randomness
tests for online PUF evaluations would detect these scenarios
and could even provide a sensing mechanism to avoid such
attacks and thus, improve the robustness of PUFs.

Note that although BIST-PUF is applicable to both weak
and strong PUFs, without a loss of generality, this paper
focuses on strong PUF testing. Since a weak PUF only
differs with strong PUF in the number of possible responses,
evaluation of weak PUF randomness is simpler since it is
confined to the small space of responses. For more information
about the PUF, its properties, and recent directions, we refer
the interested readers to comprehensive articles on this topic
[6], [16].

1) PUF implementation: A number of different realizations
of the strong PUFs have been reported to date. In an Arbiter
PUF [17], [18] two electrical pulses race simultaneously
through two paths consisting of several stages. The exact paths
are determined by the challenge vector. After the last stage,
an arbiter, usually a latch or flip-flop determines which signal
has arrived first and generates a binary response based on that.
In [19] the response from several Arbiter PUF stages were
XORed to generate the PUF response. A Lightweight Secure
PUF [20] has a similar structure, but the input challenge is
passed through a complicated mapping to increase security
against modeling attacks. We evaluate an improved version
of the lightweight secure PUF presented in [20] with our
BIST scheme. To implement the FPGA PUF we use the
comprehensive methodology introduced in [21], [22].

B. Standard Randomness Tests

Batteries of randomness tests were originally designed to
evaluate the performance of the random number generators.
As discussed above, randomness of the response bits of PUF
are mandatory to ensure that the PUF cannot be modeled as a
deterministic process. Here we utilize the standard randomness
test suits to evaluate the unpredictability of PUF response.
Several standard test suites such as NIST [12], DIEHARD
[13] , AIS.31 [23] are available for this purpose. A number of
FPGA implementations of the randomness tests are reported
in the literature. Four relatively simpler test from AIS.31 [24]
are implemented in [25]. In [26] four DIEHARD tests whose
implementation requires similar structures are selected so that
execution time is reduced. In [27] , eight simple tests from
NIST are chosen and made even simpler by mathematical
manipulation to achieve both fast operation and low area.
BIST-PUF adopts this latter design.

III. RELATED WORK

The work on the testing of security of PUF is rather limited.
The seminal work by Majzoobi et al. introduced the first formal
methodology to test the security of strong PUFs in [11]. Four
different tests are proposed: (i) predictability, (ii) collision,
(iii) sensitivity, and (iv) reverse-engineering. Predictability test
identifies the difficulty of correctly calculating or predicting
the PUF output for a given input. Collision assessment studies



how often two PUFs produce same outputs for an incident
challenge. Sensitivity test ensures that the amount of process
variation is sufficient such that a PUF is stable when the
operational, structural, and environmental conditions change.
Reverse-engineering determines the hardness of characterizing
the PUF circuit component. These offline, software-based tests
were important because they paved the way for understanding
the PUF attack surface. They also enabled suggestions of novel
input and output transformation for safeguarding the PUFs
against attacks [20], [28].

Some more extensions and implementation of the testing
methodologies presented in [11] were suggested in later works.
In particular, Maiti et al. extended the work in PUF evaluation
by some additional parameters: reliability, bit-aliasing, and
probability of misidentification [29]. They also analyzed the
parameters proposed by several other authors to determine any
redundancy and tried to define a compact set. Note that the
unpredictability assessment methods in [11] and its extensions
were based on examining the probability of the output bit
values and transitions, which is equivalent to the frequency test
form NIST or Diehard tests. None of these earlier, software-
based evaluations apply other standard randomness tests to
PUF.

Evaluation of the weak PUF has been the subject of a
number of earlier publications. Armknecht et al. provided
theoretical analysis on robustness, physical unclonability and
unpredictability properties of weak PUFs in [14]. Leest et al.
used software-based Hamming weight test, inter-class unique-
ness test, context tree weighting test and NIST randomness
tests to evaluate the randomness and entropy [30]. Cortez
et al. tried to increase the fault coverage of physical faults,
like stuck-at-fault, of Fuzzy Extractor (FE), which is the main
component of weak PUFs, and proposed a secure BIST scheme
to perform the fault tests [31].

To the best of our knowledge, BIST-PUF is the first online
and hardware-based testing methodology that includes higher
order NIST randomness tests (other than the frequency test)
and is applicable to all PUF families (weak and strong).

IV. ARCHITECTURE OF THE BIST SCHEME

The BIST scheme presented in this paper evaluates the
PUF under test based on the two major properties described
earlier: unpredictability and stability. The overall architecture
of the proposed BIST-PUF is shown in Fig. 1. The finite state
machine (FSM) controls the aforementioned two test sets, each
of which consisting of three tests that shall be described in
Sections IV-A and IV-B. The BIST generates the challenges
as appropriate for each test. In addition to outputing N -bit
challenges to the PUF input, the BIST output also includes the
appropriate K-bit PUF tuning parameter. The input to the BIST
block is the PUF output(s) or responses. The tests themselves
are performed by the block denoted as “hardware randomness
tests” in the figure. There is also a random challenge generation
component. The exact implementation details of the figure
blocks is outlines in Section V where we describe the hardware
overhead and implementation of the BIST-PUF.

A. Unpredictability Test

The unpredictability tests checks the randomness of the
response from the PUF. We exploit the standard tests from the

NIST battery of randomness test to evaluate the randomness.
The test module resides on the same chip as the PUF. Each
test operates on a block of response bits and outputs one for
success and zero for failure. Unpredictability is evaluated in
the three following ways, denoted by UT 1.1, UT 1.2, and UT
1.3 respectively.

UT 1.1: Randomness of Response(s). In each round of this
test, the PUF is excited with a set of random challenges and
the corresponding response bits are fed to the NIST module.
The test is repeated for several hundred rounds and the result
bits are added up to calculate the average success rate over the
multiple test rounds.

UT 1.2: Effect of Individual Bit Transition. This test checks
whether an output bit transition is correlated with the transition
of any particular challenge bits. First, the PUF is excited
with an N -bit random challenge vector. The PUF is then
interrogated by a similar vector where only the i-th bit is
inverted i ∈ {1, 2, . . . , N}. The XOR of the response bits for
these two challenges (differing in one bit) are applied to the
test module. For an unpredictable PUF, the transition in the
response must be completely arbitrary (i.e., uncorrelated with
the input bit change). Thus, the XOR of the two response bits
must pass the randomness tests. This test is performed several
hundred times for each value of i (i = 1, 2, . . . , N ) and the
success rate is reported as a function of the inverted bit index,
i.

UT 1.3: Effect of Multiple Bit Transitions. This test checks
for the correlation between the response bit transition and
transition of one or more challenge bits. First the PUF is
excited with an N -bit random challenge vector. The PUF is
then evaluated with a similar vector where h bits are inverted.
Thus, the Hamming distance between these two challenge
vectors is h, where h ∈ {1, 2, . . . , N}. This test is performed
several hundred times for each value of h and the success rate
is reported as a function of the Hamming distance, h.

B. Stability Tests

The PUF operation is very sensitive to the silicon, en-
vironmental and operational conditions. One way to ensure
stability is to comprehend these conditions and their impact
of the responses, and then stratify the results for each situ-
ation. Basically, an evaluation methodology would sense the
condition, learn the effect of the condition on the PUF CRPs
through preliminary analysis, and adjust the responses for the
particular mode. Hardware-based sensors are very useful for
comprehending the mode of operation and they form our first
stability testing method.

The second proposed methodology for stability testing
is based on changing the parameter(s) affecting the stability
and then check the impact on the response. We demonstrate
a recent representative evaluation method for this category.
The third and last stability testing method utilizes multiple
evaluations of the same input. A simple consensus method
can be used for combining the results of multiple tests and
enhance the stability.

1) Sensor-based Evaluation: The most impactful condi-
tions on the PUF operation are those that change the random-
ness (entropy) of the circuit output. Some of the conditions that
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Fig. 1: Architecture of the BIST-PUF Scheme

could affect the PUF behavior include: light, magnetic field, IC
aging, and on-chip voltage and temperature. A good BIST for
PUF shall include sensors that comprehend these conditions.

Note that the sensors that can detect mechanical invasive
attacks or optical exploits are also of increasing significance
in tamper detection, for e.g. SHIELD [32], [33]. A discussion
of these sensors is outside the scope of the present paper.

Many modern ICs already include a (built-in) temperature
sensor. However, one temperature sensor can only report the
average chip temperature and is unable to report the granular
temperature fluctuations throughout the chip. Although there
are a number of proposals for on-chip voltage sensors in the
literature, but they are more complicated to implement and less
used.

Perhaps the simplest and most widely suggested/used sen-
sors for on-chip sensing of the process variation, temperature,
and aging are the architectures based on ring-oscillators (ROs).
In particular, the RO-based sensors exploits the temperature
dependence of the threshold voltage and carrier mobility of
CMOS transistors that in turn affect the frequency of a RO.

2) Active Parametric Interrogation: The PUF randomness
is typically converted to a digital binary format using a
metastable component, for e.g., arbiter metastability. A random
parameter or a set of parameters drive the point of operation
of this metastable part. For instance, in delay based PUF, the
random parameter(s) are the delays of the PUF components
that are combined using the challenge set. Changing this
random parameter by a small amount can potentially alter the
operating mode of the metastable component and yield impor-

tant information/confidence about the robustness of operation.
In parametric interrogation, this random parameter is altered in
deterministic steps around its expected value and the resulting
response is observed.

An example of parametric interrogation for arbiter-based
PUF was suggested and evaluated in [22]. For the sake of com-
pleteness, we briefly describe this procedure. The underlying
hypothesis is that a larger delay difference at the arbiter input
leads to a more robust (stable) response. To parametrically
change the delay at the arbiter input, a programmable delay
line is used which changes the delay difference between the
higher and lower arbiter input in multiple steps of size ±∆t.
If the response of the arbiter after several steps stays the
same, then the response is stable with a high-confidence and
the incident challenge is marked as a robust challenge. If the
response of the arbiter is sensitive and unstable with respect to
the parametric changes to the arbiter input, then the response
confidence and stability are lower. This type of parametric
delay testing is interesting since given a good step size and
number of steps, it can yield a quantitative measure of stability
for each response. In [22] this methodology was also used to
a classify and group challenges into different robustness sets.

3) Multiple Interrogations: To test whether the PUF is
able to reproduce the same response. the multiple interrogation
method excites the PUF with the same challenge vector several
times and computes a consensus of the response bits to the
repeated challenges. This simple method was suggested and
used in [22] for lowering the error in the responses. The
FPGA prototype of this method demonstrated that even a small
number of repetitions, could improve the response stability



as the width of the transition region gets narrower and more
statistics is gathered.The reduction in the metastable window
width is logarithmic with respect to the number of repetitions.

V. IMPLEMENTATION AND EVALUATION

We implement the proposed BIST-PUF on a Xilinx Virtex
6 FPGA. The PUF under test is a delay-based strong PUF
proposed in [21]. It also incorporates the input and interconnect
networks introduced by the lightweight secure PUF in [8]. The
output network is just an XOR mapping with Q′ bits of input
and a 1 bit output. The BIST component resides on the same
chip as the PUF and is able to run its tests automatically. An
overview of the BIST-PUF implementation is displayed in Fig.
1 in Section IV.

A. PUF

The principles of the delay based PUF were first introduced
by Gassend et al. in [18]. In this PUF, generating one bit of
output requires a step signal to travel through two parallel paths
composed of multiple segments that are connected by a series
of 2-input/ 2-output switches. Each switch has a selector bit
which decides whether it is configured as a cross or straight
connector. The path segments are designed to have the same
nominal delays, but their actual timings differ slightly due to
manufacturing process variations. The difference between the
top and bottom path delays are compared by an arbiter at
the end of the two parallel path that generates the response
accordingly. The PUF challenges (inputs) act as the selector
bits of the switches.

In our FPGA implementation, the switches are realized
by the programmable delay lines (PDL) as described in [21],
[22]. A PDL is an LUT where the logical output depends on
only one of the inputs and other inputs act as don’t cares.
These don’t care inputs control the signal propagation path,
and consequently, the delay through the LUTs. The path with
a larger delay is equivalent to the cross connector in the switch.
PDLs are also used to compensate for the bias in a path delay
caused by the asymmetry in signal routing.

The complete PUF circuit with the switch structure and
the tuning blocks is shown in Fig. 2. The triangular elements
represent PDLs. The shown system consists of N switches and
K tuning blocks. In our implementation, we use N = 64 and
K = 16. The tuning blocks insert extra delays into either the
top or bottom path based on their selector inputs to compensate
for the delay bias caused by the routing asymmetry. The
selectors of the top and bottom PDLs in each tuning block
are controlled independently, while a single selector bit drives
both PDLs in a switch block. To increase the unpredictability
(randomness) in the PUF response and make it more secure,
responses from Q(= 16) parallel PUFs are combined.

B. Peripheral Circuitry

The peripheral circuitry adds security to the PUF by
using input/output transformations that thwart active attacks.
It consists of the following components:

1) Input Network: The input network transforms the
challenge by a function satisfying the Strict Avalanche Crite-
rion (SAC). A function is said to satisfy SAC if, whenever
a single input bit is complemented, each of the output bits
changes with a probability of 0.5. The transformation used in
our implementation is:

c(N+i+1)/2 = di, for i = 1 (1)
c(i+1)/2 = di ⊕ di+1, for i = 1, 3, 5, . . . , N − 1 (2)
c(N+i+2)/2 = di ⊕ di+1, for i = 2, 4, 6, . . . , N − 2, (3)

where d is the input to the input network and c is the output
that is fed to the PUF.

2) Output Network: In our implementation, the output
network is a Q-bit XOR gate implemented by one LUT. As
explained in [34] XOR operation reduces the bias present
in a set of random sequences if they are independent and
uncorrelated.

3) Interconnect Network: The interconnect network
connects the challenge bits to the rows of the parallel arbiter-
based PUF lines. The interconnection rule can be expressed
formally as follows.

cmi = cm+1
j for j ∈ Ω and m = 1, 2, . . . , (Q− 1), (4)

where, cmi is the i-th challenge bit in the m-th row, Ω =
1, 2, . . . , N , and j = gm(i), g : Ω → Ω is a one-to-one
permutation function. By imposing a constraint on gm to be
non-identity for all m’s, it can be ensured that it is not possible
to fully bypass more than one input network. We set gm to be

j = gm(i) = (i+m− 1) mod Q. (5)

C. BIST Architecture

The BIST architecture incorporates a challenge generator,
a randomness testing module, an RO based sensor, and a Finite
State Machine (FSM) which controls the flow of all the tests.

1) Challenge Generator: To perform one round of the
randomness tests described in Section IV, several gigabytes of
random challenge vectors are required. To generate these chal-
lenge vectors, we implement an on-chip true random number
generator (TRNG). We adopt the implementation suggested
by Wold et al. in [35] which is an enhancement of the Sunar
type random number generator [36]. Our TRNG comprises of
32 ring oscillators each of which contains three inverters. It
generates random numbers at a 132 Mbits/sec rate. In this
particular implementation, generating a single bit response
requires a 64 bit challenge. We concatenate the outputs from
four TRNGs to generate one challenge vector.

2) Randomness Test Module: The randomness test
module incorporates seven tests from the NIST test suit. These
tests involve complex mathematical functions like comple-
mentary error function (erfc) and incomplete gamma function
(igamc) that are unsuitable for hardware implementation. In
our implementation, we adopt the simplifications suggested
in [27]. Equations (6) and (7) show the general form of



Fig. 2: Internal structure of the PDL based PUF.

simplifications on the erfc and igamc functions respectively.

P value = erfc(x)

P value > α => x < erfcinv(α) (6)
P value = igamc(a, x)

P value > α => x < igamcinv(a, (1− α)) (7)

Here, x is a function of a counter value and the input sequence
length n; a is a function of the number of blocks N ; and α
is the Type I error probability. For a constant set of n, N
and α, one can use the above equations to set conditions on
the counter value. The counter accumulates the respective test
metric.

3) RO Based Sensor : Zick et al. presented a compact
RO based sensor for online measurements of variations in
delay [37]. We incorporate that design in the BIST-PUF to
monitor the stability of the delay-based PUF. This sensor
consists of an RO and a frequency counter.

4) FSM: The FSM is designed to control the tests
described in Sec IV. The unpredictability tests requires the
randomness test module. To optimize the area, we designed
the FSM such that it performs these three tests on the PUF
sequentially using the same module. The random challenge
vectors from the challenge generator is read by the FSM which
performs the necessary manipulations on them as required by
the tests UT 1.2 and UT 1.3. The response from the PUF goes
to the test module via the FSM. Our design provides both
instantaneous results for real-time monitoring and cumulative
results over several hundred rounds of testing. The cumulative
results are stored in a memory block and can be later read to
have a full assessment of the PUF performance using a more
comprehensive data.

Our sensor based evaluation reads the delay measurement
data from the RO-sensor. For active parametric interrogation
test, the FSM changes the tuning parameters of the PUF
for a fixed challenge while the results are accumulated. The
responses are read with three values of the tuning parameter
that (i) creates extra delay on top path, (ii) creates extra delay
on bottom path, and (iii) keeps both delays similar. If the
sum of responses is either 0 or 3, the challenge is noted as
robust. The number of robust challenges and their values will
be stored in the memory. For multiple interrogation tests, the
tuning parameters are set to the optimum value. The same
challenge is applied 100 times and the sum of the responses
are stored in the memory. A sum close to either 0 or 100
indicates a stable PUF. This test is done entirely inside the
FSM without using any external module.

Component Register/
LUT/ Slice

Power(mw)

PUF with Peripheral Circuitry 16/ 1558/ 768 18.92
Challenge Generator 144/ 492/ 184 3.49
Randomness Test Module
1) Frequency
2) Block Frequency
3) Runs
4) Longest Run of Ones
5) N.O. Template Matching
6) Overlapping Template Matching
7) Cumulative Sums

46/ 64/ 27
32/ 50/ 20
64/ 138/ 51
149/ 307/ 119
718/ 836/ 296
30/ 35/ 17
77/ 136/ 59

0
1.88
0.04
0.4
1.55
1.55
0.45

RO-Sensor 8/ 14/ 4 0
FSM 112/ 418/ 128 25.97

TABLE I: Resources usage and reaction time of the NIST tests
implemented on FPGA.

D. Overhead Estimation

The resource and power consumption by different parts of
the BIST-PUF is reported in Table I. The power consumption
by the FSM is about 7 mW larger than that of the PUF. But
it should be noted that the BIST scheme need not always run
in parallel to the PUF. For most applications it is sufficient
to sporadically audit the PUF performance using the BIST
module.

E. Randomness Test Results

For randomness testing, we implement the arbiter-based
PUF on 12 Xilinx Virtex 5 (LX110) FPGAs. The exact details
of this implementation can be found in [22]. Each FPGA
includes 16 PUF rows with parallel racing paths. Each row
of the PUF generates 64K responses to 64K unique random
challenges generated by the TRNG. These PUF responses have
been tested for randomness using the hardware-implemented
NIST Test Suite (outlined in the first column of Table I).
The randomness test results are reported in Table II. The
columns contain the six randomness tests that we have applied.
The test names are shown in the table rows and are self-
explanatory, except for the N.O. Template Matching, which
refers to the Non-Overlapping Template Matching test. Each
column describes the test results for one FPGA. The value
shown in each table cell demonstrates the percentage of the
response bits that pass the pertinent randomness test. The
results show that the responses from the PUF are highly
random with a very high degree of confidence.

Note that we have performed a number of other random-
ness tests for quantifying the effects of a single-bit and multi-



Randomness Tests FPGA
1

FPGA
2

FPGA
3

FPGA
4

FPGA
5

FPGA
6

FPGA
7

FPGA
8

FPGA
9

FPGA
10

FPGA
11

FPGA
12

1) Frequency
2) Block Frequency
3) Runs
4) Longest Run of Ones
5) N.O. Template Matching
6) Cumulative Sums

99.1
99.7
97.7
98.8
99.8
100.0

98.8
99.4
97.2
99.4
99.8
100.0

98.1
98.9
96.6
99.2
100.0
100.0

99.5
99.5
96.9
99.0
99.6
100.0

98.3
99.5
97.5
99.4
100.0
100.0

98.6
100.0
96.6
99.0
99.8
100.0

98.9
99.7
97.0
99.6
100.0
100.0

98.6
99.4
97.3
98.2
99.8
100.0

98.3
99.7
96.7
98.4
99.8
100.0

99.3
99.3
97.5
99.4
100.0
100.0

99.1
99.7
97.2
99.4
99.8
100.0

99.7
99.5
98.1
99.2
99.4
100.0

TABLE II: Percentage of success of each Randomness Test for PUF responses collected from 12 FPGAs.

bits transitions in the PUF challenges. The randomness test
results are promising. Due to space constraints, a full report
of all the randomness tests is outside the scope of the current
paper.

VI. CONCLUSION AND FUTURE DIRECTIONS

Indelible signatures of the ICs extracted by physical un-
clonable functions (PUF) can enable identification, fingerprint-
ing, metering, authentication, and tracing of the components
along the unascertained semiconductor supply chain. Due to
its ability to individually mark each (mass produced) IC, a
PUF may be the only plausible solution for implementing the
root-of-thrust for an IC SHIELD described in a recent DARPA
solicitation [32], [7]. A carefully designed and safeguarded
PUF also provides a low-overhead alternative to secure key
storage and can be the basis of several modern security and
cryptography protocols, e.g., [38].

The rising importance of PUF and its applications in
several security and cryptography methodologies highlight the
need for analysis and evaluation of the PUF input-output
behavior. The BIST-PUF approach presented in this paper
provides the first built-in-self-test (BIST) methodology for
online and hardware-based evaluation of PUF. The BIST-
PUF structure is designed to evaluate two main properties of
PUFs, namely unpredictability and stability. The predictability
tests investigate the randomness of the response bits and
the correlation between the transitions of response bit and
challenge bits. The stability tests study the CRP behavior and
the chip conditions in three distinct ways namely, sensor-based,
parametric interrogation, and multiple interrogations.

To remove the biases in challenge generation, our novel
BIST-PUF architecture includes a high entropy TRNG module.
Other than the testing components, the BIST-PUF architecture
also includes a low-overhead control circuitry and memory
for saving the test results. Proof-of-concept implementation
of the BIST-PUF in FPGA demonstrated the overhead of
the testing components, as well as randomness evaluation
results for a large number of responses collected from 12
FPGA boards. While this paper reports a number of promising
preliminary FPGA implementation results from application of
the suggested BIST-PUF evaluations, several of our test results
are not included due to the space constraints.

Stability testing and/or improvement do not remove the re-
quirement for performing error correction. Several security and
cryptography applications of PUF (e.g., secret key generation)
require an error-free operation which is hard to guarantee for
physical systems. However, improving the stability would help

by lowering the size and other overheads of error correction.
Newer robust PUF protocols which use alternative methodolo-
gies for error correction instead of traditional error correction
codes (ECC) could also benefit from our suggested BIST-
PUF. An interesting example of such protocols is provided
by the SlenderPUF protocol, which utilizes string-matching to
correct for the errors in the PUF operation [39], [40]. Another
important advantage of SlenderPUF protocol is that it increases
the PUF’s resistance against remote machine learning attacks.
There is a need for development of more such robust protocols
which extend the operability range of the PUFs.

Going forward, there is a lot of room for continuing
along the lines of research suggested by the BIST-PUF. A
natural extension is working on built-in-self-repair (BISR)
mechanisms that use the test results from the BIST-PUF for on-
the-fly improvement of randomness (entropy) and robustness
(stability) of the responses. A simple instance of such an
improvement is provided by the multiple interrogation stability
test, which uses the consensus among the responses to a
repeated challenge to increase stability. Development of more
complex repair methodologies is desirable.

Another important direction is development of new
tests that can evaluate the susceptibility of the PUF to
specific attacks. Devising attacks and countermeasures for
modeling/reverse-engineering of PUFs is an active area of
research [6], [16], [9], [15], [10]. One way to attack the
PUF is to perform measurements at multiple operational and
environmental conditions, e.g., various temperature and supply
voltage values [41]. Sensing the changes in these parame-
ters along with reporting of the stability/predictability of the
resulting responses can help in thwarting these attacks. Yet
another possibility is to devise more efficient and compact
tests for evaluations of PUF stability and robustness. While
this paper focuses on strong PUF testing that is also applicable
to several weak PUFs, it is interesting to extend the devised
methodologies by applying them to other families of physical
unclonable functions such as public PUF [42], processor-based
strong PUFs that use aging for response tuning [43], or the
FPGA-based time-bounded PUF that utilize the concept of
erasability [44].
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