IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 10 May 2013; revised 9 October 2013; accepted 22 December 2013. Date of publication xx xxx xxxx;
date of current version xx XXX XXXX.

Digital Object Identifier 10.1109/TETC.2014.2300635

Robust and Reverse-Engineering Resilient
PUF Authentication and Key-Exchange
by Substring Matching

MASOUD ROSTAMI', MEHRDAD MAJZOOBI', FARINAZ KOUSHANFAR?,
DAN S. WALLACH?, AND SRINIVAS DEVADAS? (Fellow, IEEE)

1Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
2Department of Computer Science, Rice University, Houston, TX 77005, USA
3Department of Electrical and Computer Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA

CORRESPONDING AUTHOR: M. ROSTAMI (masoud @rice.edu)

This work was supported by the Army Research Office YIP Award under Grant R17450, the Office of Naval Research YIP Award under Grant
R16480, the Semiconductor Research Corporation Award under Grant Task 1836.039, and NSF Career Award under Grant NSF-0644289.

ABSTRACT This paper proposes novel robust and low-overhead physical unclonable function (PUF)
authentication and key exchange protocols that are resilient against reverse-engineering attacks. The protocols
are executed between a party with access to a physical PUF (prover) and a trusted party who has access to
the PUF compact model (verifier). The proposed protocols do not follow the classic paradigm of exposing
the full PUF responses or a transformation of them. Instead, random subsets of the PUF response strings
are sent to the verifier so the exact position of the subset is obfuscated for the third-party channel observers.
Authentication of the responses at the verifier side is done by matching the substring to the available full
response string; the index of the matching point is the actual obfuscated secret (or key) and not the response
substring itself. We perform a thorough analysis of resiliency of the protocols against various adversarial acts,
including machine learning and statistical attacks. The attack analysis guides us in tuning the parameters of
the protocol for an efficient and secure implementation. The low overhead and practicality of the protocols

are evaluated and confirmed by hardware implementation.

INDEX TERMS Physical unclonable functions, hardware security, security protocols.

. INTRODUCTION

Classic security paradigms rely on a stored digital secret key
and cryptographic algorithms. Secret keys are stored in an
on-chip non-volatile memory (NVM). However, on-chip
NVM storage is prone to invasive physical attacks (e.g.,
probing) and non-invasive imaging attacks (e.g., by scan-
ning electron microscopes). Moreover, correct implementa-
tion of security algorithms based on a pre-distributed secret
key requires Password-Authenticated Key Exchange (PAKE)
protocols. These protocols are provably secure; however, they
require costly exponentiation operations [1], [2]. Therefore,
they are not suitable for many low power resource-intensive
applications.

Physical unclonable functions (PUFs) have been
proposed [3] to provide a desired level of security with low
implementation overhead. One type of PUF is based on
silicon, and is designed to bind secrets to silicon hardware [4].

Silicon PUFs use the unclonable intrinsic process variabil-
ity of silicon devices to provide a unique mapping from a
set of digital inputs (challenges) to a set of digital outputs
(responses). The imperfections and uncertainties in the fab-
rication technology make cloning of a hardware circuit with
the exact same device characteristics impossible, hence the
term unclonable. Moreover, PUFs must be designed to make
it prohibitively hard to simulate, emulate, or predict their
behavior [4]. Excellent surveys of various PUF designs can
be found in [5]-[8].

Strong PUFs are a class of PUFs which have the property
that the number of their possible challenge-response pairs
(CRPs) has an exponential relationship with respect to the
number of their physical components. This huge space of
possible CRPs hinders attacks based on pre-recording and
replaying previously used CRPs. However, physical compo-
nents of a Strong PUF are finite. Therefore, given access to

2168-6750 © 2014 |EEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 2, NO. X, XXX 2014

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 1

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

these components, a compact polynomial-order model of the
CRP relationships can be built.

A trusted IP owner with physical access to the device
(e.g., the original manufacturer) can build such a compact
model by measuring the PUF direct responses. Such compact
models can be treated as a secret which can be used by a
trusted Verifier to authenticate the Prover’s PUF. (It should be
noted that the physical access to these components should be
permanently disabled before field deployment to avoid direct
compact modeling.) An unfortunate fact is that third party
observers may also be able to model the PUF based on a finite
number of CRPs exchanged on the communication channel
as it has been done before, see for e.g., [9]. This type of PUF
modeling by untrusted third parties is also called the machine
learning or reverse engineering attack as it harms the PUF
security. Such attacks were possible because the challenge
and response strings leak structural information about the
PUF and compact models.

In this paper, we propose secure, low overhead, and robust
authentication and key exchange protocols for the Strong
PUFs that thwart the machine learning attack. The proto-
cols enable a Prover with physical access to the PUF to
authenticate itself to a trusted Verifier. It is assumed that
the trusted Verifier has access to the secret compact PUF
model. The protocol leaks minimal amount of information
about secret PUF parameters on the communication channel.
This is because the secret is the index of a response substring
which is randomly selected from the full response string. The
Prover also adds random padding strings to the beginning
and end of the substring, where the indices of the padded
bits is also a part of the secret. Only the substring is sent
on the channel. Since the indices are not correlated with
the substring content in any ways, the secret itself is never
exposed on the communication channel. The Verifier, with
access to the full string, can perform a substring matching
and find the secret index. The matched strings may not be
the same, but as long as they are within a small distance of
each other (defined by a threshold), the matching is success-
ful. Therefore, the method is inherently robust to the noise
in the PUF responses eliminating the need for costly error
correction or fuzzy extraction.

The protocol is devised such that the Verifier and the Prover
jointly generate the challenges to the PUF. The challenges
are generated in a way that neither a dishonest Prover nor a
dishonest Verifier can solely control the challenges used for
authentication. While none of the authenticating parties can
solely control the challenges, the resulting challenge values
are publicly known. The authentication protocol, described
above, can also be leveraged to implement a low-power and
secure key-exchange algorithm. The Prover only needs to
select a random password and then encode it as a set of secret
indices that was used in the authentication protocol.

We provide a thorough discussion of the complexity and
effectiveness of attacks on proposed protocols. The protocols
are designed to achieve robustness against inherent noise in
PUF response bits, without costly traditional error correction

2

modules. We demonstrate that our protocols can be imple-
mented with a few simple modules on the Prover-side. There-
fore, we do not need expensive cryptographic hashing and
classic error correction techniques that have been suggested
in earlier literature for achieving security. Note that recent
work has used pattern matching for correcting errors while
generating secret keys from a PUF [10]. However, unlike our
protocol, the number of generated secret keys were limited.
In addition, a higher level of protection against machine learn-
ing attacks can be achieved by our proposed protocols. To the
best of our knowledge, no application of string matching for
either authentication and key exchange based on Strong PUFs
have been proposed before our work.

An earlier version of this work was published in [11]. Our
previous work only discussed the application of PUFs for
robust and attack-resilient authentication and did not pro-
pose a key exchange protocol based on PUFs. The proposed
authentication protocol in [11] achieves a lower level of secu-
rity than the proposed protocol in this paper. This is because
we also add random padding to the PUF substring which
generates a larger number of secret indices.

In brief, the main new contributions of our work are as
follows:

« We introduce and analyze two lightweight and secure
protocols based on substring-matching of PUF response
strings to perform authentication and session key
exchange.

o The protocols automatically provide robustness against
inherent noise in the PUF response string, without
requiring externally added and costly traditional error
correction modules or fuzzy extraction.

« We perform a thorough analysis of the resiliency of
protocols against a host of attacks.

o Our analyses provide guidelines for setting the protocol
parameters for a robust and low-overhead operation.

« The lightweight nature, security, and practicality of the
new protocol are confirmed by a set of hardware imple-
mentation and evaluations.

The remainder of the paper is organized as follows.
Section II provides a background on Strong PUFs.
In Section III, related literature is discussed and the new
aspects of our work are highlighted. Authentication and key
exchange protocols are described in Section IV. The parame-
ters of our protocols and their security against multiple attacks
are investigated in Section V. The trade-offs in choosing
the parameters of the protocols are explored in Section VI.
Hardware implementation and performance evaluations are
presented in Section VII. Section VIII concludes the paper.
If the reader is familiar with PUF circuits and its related
literature, he can now jump to Section IV.

Il. BACKGROUND ON STRONG PUFs

In this section, without loss of generality, we introduce a
popular instance of Strong PUF known as arbiter PUF or
delay-based PUF. Desired statistical properties of a Strong

VOLUME 2, NO. X, XXX 2014

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

PUF are briefly reviewed, and XOR mixing of arbiter PUFs to
improve the statistical properties is discussed. Note the pro-
posed protocol can work with any Strong PUF that satisfies
the requirements discussed in this section.

A. STRONG PUFs AND THEIR IMPLEMENTATION

There are a number of different PUF types, each with a set
of unique properties and applications. For example, Weak
PUFs, also known as Physically Obfuscated Keys (POKs) are
commonly used for key generation applications. The other
type is called Strong PUF [12]. Strong PUFs are built based
on the unclonable disorder in the physical device features,
with very many challenge-response pairs. The size of the CRP
space is an exponential function of the number of underlying
components. Strong PUFs have the property that they are
prohibitively hard to clone; a complete enumeration of all
their CRPs is intractable. To be secure, they should be resilient
to machine learning and prediction attacks.

In this work, we use a Strong PUF implementation called
“delay-based arbiter PUF” introduced in [13]. In this PUF,
the delay difference between two parallel paths is compared.
The paths are built identically to make their nominal delays
equal by design. However, the delay of fabricated paths on
chips will be different due to process variations, see Fig. 1.
A step input simultaneously triggers the two paths. At the
end of the two parallel (racing) paths, an arbiter (typically a
D-Flip Flop) is used to convert the analog difference between
the paths to a digital value. The arbiter output becomes one
if the signal arrives at its first input earlier than the second
one, otherwise, it stays at zero. The two paths are divided
into several smaller sub-paths by inserting path swapping
switches. Each set of inputs to the switches acts as a challenge
set (denoted by C;).

T

8"

Response
bit

Rising T T T T
edge (¢ Co C3 CN

Challenge bits

FIGURE 1. An arbiter linear PUF block with N challenges and one
response bit. The arbiter converts the analog delay difference
between the two paths to a digital value.

The PUF only consists of linear addition and subtraction of
delay elements. Therefore, the behavior of the PUF in Fig. 1
can be modeled by the following linear inequality [14]:

N . r=0
D (=1)Pisi+yq1 S 0,)
=1 r=1
where §; is the differential segment delay and p; is related to
the input challenge that controls the switch selectors by the

following relation,

pi = @

x=i,i+1,....N

Ce=CidCit1D...0Cy. 2)

VOLUME 2, NO. X, XXX 2014

According to Inequality 1, if the difference between the
sum of delays on the top and bottom paths is greater than zero,
then the response will be ‘1’; the response is ‘0’ otherwise. To
simplify the notations, Inequality 1, can be rewritten as:

r = Sign(A.®), A3)

where A = [81, 82, ..., dn+1] is the delay parameter vector,
@ = [(—=DP, (=12, .., (=D 1] = [g1, 92, .., on41]
is the transformed challenge vector in which ¢; € {—1, 1},
‘> is the scalar product operation, r is the response bit, and
Sign is the sign function. We will refer to C as the input
challenge vector in the remainder of the paper. Note that the
parameters @, p, and C are related to each other.

B. LINEAR ARBITER PUF STATISTICAL PROPERTIES

In this subsection, the statistical properties of a linear arbiter
PUF are reviewed. It has been demonstrated in [15] that when
the delay parameters § € A come from identical symmetric
distributions with zero mean (in particular it is safe to assume
that the §s are independent and identically distributed Gaus-
sian variables, i.e., § € N(0, o)), then the following statistical
properties hold for a linear arbiter PUF:

« The output response bits are equally likely over the

entire space of challenges, i.e, Prob{r = —1} =
Prob{r = 1} = 0.5. Half of the challenges map to
r = —1 and the other half maps to r = 1.

o The responses to similar challenges are similar. In other
words, the probability that the responses ry and 7 to
two input challenge vectors Cy and C; are different is
a monotonically increasing function of the Hamming
distance between the input challenges, i.e., Prob{rg #
r1}=f(HD(Cy, C1)).! For example, in the trivial cases
HD(Cy, C1)=0, i.e. Co=C1q, then Prob{ry # ri} = 0.
s the Hamming distances between the input challenge
vector becomes larger, the probability of having different
PUF response bits increases.

The second property leaks information about the PUF
response sequence which would help in breaking the PUF
security by pattern matching. Ideally, PUFs are expected to
have a property called strict avalanche criterion. Any flip in
the challenge bits of a PUF with avalanche criterion should
cause the response bits to flip with probability of 50%. Any
deviation from this criterion reduces the security of the system
built based on these PUFs. o achieve this criterion, it has
been proposed [15], [16] to mix the responses from the arbiter
PUFs with XOR logic. In the next subsection, we review this
subclass of PUFs.

C. XOR-MIXED ARBITER PUFs

Fig. 2 [15] shows a two-stage XOR-mixed arbiter PUF. In the
figure, note that the challenge sequence in the second stage
is applied in the reverse order. The order is flipped to help
achieve the avalanche criterion. As more independent PUF

IThe Hamming distance between challenges Cx and Cy is defined as
HD(Cx, Cy) = Z{'V:I | Cxlil = Gylil | /N where Cx[i], Cyli] € {1, 1}.

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

s B e B s N
— 44 LG Lo
&
T T
Co C G, C,

FIGURE 2. Two independent linear arbiter PUFs are XOR-mixed
in order to implement an arbiter PUF with better statistical
properties. The challenge sequence in the second stage is
applied in the reverse order to help achieve this property.

response bits are mixed, the probability that output is flipped
when one input bit changes, comes closer to the ideal proba-
bility of 0.5.

In addition to achieving the avalanche criterion, the
XOR-mixed arbiter PUF requires a significantly larger set of
challenge response pairs to successfully train the PUF model
for a given target accuracy level. However, there is a cap on
the number of stages that can be actually used in practice. This
is due to the fact that XOR-mixing causes error accumulation
of PUF responses. For instance, for a single PUF response
bit error of 5%, the probability of error for a 4-XOR-mixed
PUF is 19% [15]. The protocols proposed in this paper allows
higher level of security without increasing the number of
XOR stages.

In the rest of the paper, we build our protocols based on
the assumption that the PUF at hand is a linear XOR-mixed
arbiter PUF with near ideal statistical properties. We argue
that our protocols are applicable to any Strong PUF which
follows the statistical properties discussed in this Section.

lll. RELATED WORK

PUFs have been subject to modeling attacks. The basis for
contemporary PUF modeling attacks is collecting a set of
CRPs, and then building a numerical or an algorithmic model
from the collected data. For the attack to be successful, the
models should be able to correctly predict the PUF response
to new challenges with a high probability. Previous work on
PUF modeling (reverse-engineering) used various machine
learning techniques to attack both implementation and sim-
ulations of a number of different PUF families, including
linear arbiter PUFs and feed-forward arbiter PUFs [9], [14],
[15], [17], [18]. More comprehensive analysis and description
of PUF security requirements to protect against modeling
attacks were presented in [19]-[21]. In recent years, there
have been an ongoing effort to model and protect PUFs
against side channel attacks such as power analysis [22] and
fault injection [23].

Extracting secret keys from PUF responses has been
explored in previous work, including [4], [17], [24]-[26].
Since cryptographic keys need to be stable, error correction
is used for stabilizing inherently noisy PUF response bits.
The classic method for stabilizing noisy PUF bits (and noisy

4

biometrics) is error correction which is done by using helper
bits or syndrome [27], which has a high overhead.

In the context of challenge-response based authentication
for Strong PUFs, sending the syndrome bits for correcting the
errors before hashing was investigated [4]; the necessity for
error correction was due to hashing the responses before send-
ing them to avoid reverse engineering. Naturally, the inputs
to the hash have to be stable to have a predictable response.
The proposed error correction methods in this context are
classic error correction and fuzzy extraction techniques.
A side from sensitivity to PUF noise (because it satisfies the
strict avalanche criterion), hashing and error correction has
the drawback of high overhead in terms of area, delay, and
power.

A newer information-theoretically secure Index-Based
Syndrome (IBS) error correction coding for PUFs was intro-
duced and realized in [26]. In [28], authors proposed the
notion of public physically unclonable functions (PPUF) and
proposed a public key-exchange protocol based on them.

All of the aforementioned methods incur a rather high
overhead of error correction and/or hashing, which prohibits
their usage in lightweight systems. An alternative efficient
error correction method by pattern matching of responses
was very recently proposed [10], which inspired the pattern
matching method used in our protocols. However, their pro-
posed protocol and application area was limited to secret key
generation. Authors lightweight PUF authentication.

This paper introduces lightweight PUF authentication and
key-exchange protocols based on string pattern matching and
covert indices. Modeling attack against these protocols is
thwarted by leaking very limited information from a PUF
response string. The random indices used in the protocols are
inherently independent of the response string content.

IV. AUTHENTICATION AND KEY EXCHANGE
PROTOCOLS

In this section, the proposed authentication and key exchange
protocols are introduced and explained in detail. The proto-
cols are based on a Strong PUF with acceptable statistical
properties, like the one shown in Fig. 2. The authentication
protocol enables a Prover with physical access to the PUF to
authenticate itself to a Verifier, and the key exchange protocol
enables the Prover and the Verifier to securely exchange
secret keys between each other.

It is assumed that an honest Verifier has access to a com-
pact secret model of the relationship between Strong PUF
challenge-response pairs (CRPs). Such a model can be built
by training a compact parametric model of the PUF on a
set of direct challenge response pairs. As long as the PUF
challenge response pairs are obtained from the linear PUF,
right before the XOR-mixing stage, building and training
such a compact model is possible with a relatively small set
of CRPs as demonstrated in [9], [14], [15], [17], and [18].
The physical access to the measurement points should be
then permanently disabled before deployment, e.g., by burn-
ing irreversible fuses, so other entities cannot build the

VOLUME 2, NO. X, XXX 2014

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

same models. Once this access point is blocked, any physical
attack that involves de-packaging the chip will likely alter the
shared secret.

Unlike the original PUF challenge response pair identifi-
cation and authentication methodologies, our protocols are
devised such that both Prover and Verifier jointly participate
in producing the challenges. The joint challenge generation
provides effective protection against a number of attacks.
Unlike original PUF methods, an adversary cannot build a
database of CRPs and use an entry in the database for authen-
tication or key exchange. The next two subsections describe
these protocols in details. The last subsection concludes
the section with some notes about the PUF secret sharing
process.

A. AUTHENTICATION PROTOCOL STEPS

Fig. 3 illustrates the steps of our authentication protocol.
Steps 1-4 of the protocol ensure joint generation of the chal-
lenges by the Prover and the Verifier. In Steps 1-2 the Prover
and the Verifier each uses its own true random number gener-
ator (TRNG) unit to generate a nonce. Note that arbiter PUFs
can also be used to implement a TRNG [29]. The Prover and
Verifier generated nonces are denoted by Nonce,, and Nonce,
respectively. The nonces are exchanged between the parties,
so both entities have access to Nonce, and Nonce,. Step 3
generates a random seed by concatenating the individual
nonces of the Prover and the Verifier; i.e., Seed = {Noncey ||
Noncep}.

Verifier Prover

\J

(1) Nonce,

(2) - Nonce,

(3) Seed={Nonce,|| Nonce,} Seed = {Nonce,|| Nonce,}

(4) C=G(Seed) C = G(Seed)
(5) R’ =PUF_model(C) R =PUF(C)
6) W = sub-seq (ind,Lgub,R)

(7 -« PW=padd (ind,,W)

(8) W =search(R*,PW)
T =match(R’,W,e)
Auth. pass: T = true?

FIGURE 3. The 8 steps of PUF-based authentication protocol.

The generated Seed is used by a pseudo-random number
generator (PRNG) in Step 4. Both the Prover and the Verifier
have a copy of this PRNG module. The PRNG output using
the seed, i.e., C = G(Seed), is then applied to the PUF as a
challenge set (C). Note that in this way, neither the Prover nor
the Verifier has full control over the PUF challenge stream.
In Step 5, the Prover applies the challenges to its physical PUF
to obtain a response stream (R); i.e., R = PUF(C). An honest
Verifier with access to a secret compact model of the PUF
(PUF_model) also estimates the PUF output stream; i.e.,
R = PUF_model(C).

VOLUME 2, NO. X, XXX 2014

Start(ind=0)

FIGURE 4. The steps that are performed on the PUF response
string by the Prover. Top: random selection of ind4 and
extraction of a substring with a predefined length. Bottom:
circular padding the substring at a random location (inds)

with random bits. In this toy example, L = 24, Lpy = 24, and
Lsup = 5. Note the circular manner of extraction and padding.
(a) Circular extraction of PUF substring. (b) Circular padding of
substring.

Let us assume that the full response bitstring is of length L.
In Step 6, the Prover randomly chooses an index (ind;) that
points to a location in the full response bitstring. This index
points to the beginning of a substring (W) with a predefined
length of Lg,,. We use the full response string in a circular
manner, so if the value (ind; + Lgw) > L, the remainder
of the substring values are taken from the beginning of the
full response bitstream. This operation has been illustrated
in Fig. 4(a).

In step 7, the Prover circularly pads the substring W with
random bits to create a bitstream PW of length Lpw. This
bitstream is also referred to herein as ‘“‘the padded substring”.
In this padding process, starting from a randomly chosen
index (indy), the PUF substring from step 6 is inserted.

5

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

We pad the substring in a circular manner. Therefore, if
the value (indy + Lgwb) > Lpw, the remainder of the PUF
substring is inserted at the beginning of the padded stream.
This operation is illustrated in Fig. 4(b).

In step 8, when an honest Verifier receives the padded
substring (PW), he performs a circular maximum-sequence
alignment against his simulated PUF output sequence (R)
to determine which bits belong to PUF response string and
which bits are generated randomly. The authentication is suc-
cessful, only if the Hamming distance between the received
and the simulated substrings is lower than a predefined thresh-
old value. After this operation, the Verifier finds out the values
of the two secret indices. However these values do not affect
the authentication process.

In the proposed authentication, Prover does not reveal the
whole response stream and the protocol leaks a minimal
amount of information. The protocol is also lightweight and
suitable for ultra-low power and embedded devices. Besides
a Strong PUF, the Prover only needs to implement one TRNG
and one PRNG. In addition to exchanging their respective ses-
sion nonces, the Prover only needs to send a relatively short
padded substring to the Verifier. Additionally, the protocol
has the added benefit that the ranges of the respective secret
indices (indy, ind>) are flexible and can be tuned depend-
ing on the security requirements. The matching threshold
can also be calculated to tolerate a predefined PUF error
threshold.

B. SESSION KEY EXCHANGE PROTOCOL STEPS

It is possible to piggyback a session key exchange protocol
on the authentication protocol of Fig. 3. The Prover can
encode secret keys as the secret indices of authentication
protocol (indy, indy). The Verifier can recover these secret
indices at the end of a successful authentication. If the length
of secret indices is not enough to encode the whole secret
key, the authentication protocol may be repeated multiple
times until the required number of secret bits is transmit-
ted to the Verifier. We now describe this concept with an
example.

If the length of PUF response string is 1024 bits, ind; is
chosen from range of 0 to 1023. Therefore, we can encode
10 bits by using ind;. If the length of the padded substring
(Lpw) is 1024 bits, ind, is chosen from range of 0 to 1023.
Therefore, 10 bits of secret key can be encoded by the ind>.
In this configuration, 20 bits overall can be exchanged
between the parties with one run of the protocol. If the length
of secret key is 120-bits, the protocol of Fig. 3 should be
executed 12%) = 6 times to transfer all of the secret key.
This proposed protocol can securely exchange session keys
with minimum overhead, while protecting against machine
learning attacks and PUF response errors.

The key-exchange and authentication protocol can be fol-
lowed up with a step to check whether the Verifier has
received the correct indices. To do so, the Prover only needs
to send the hashed values of the indices to the Verifier for
verification.

C. SECRET SHARING

So far we assumed that the Verifier possesses a model of the
PUF and uses the model to authenticate the Prover. The PUF
in fact uses an e-fuse to protect the secret and prevent model-
ing attacks. The chip sets are handled by a trusted party before
distributing to end users. The trusted party performs modeling
on the PUF and disables the fuse before distribution. Anyone
with access to the IC afterwards will not be able to model the
PUF since the fuse is disabled. The trusted party can share the
PUF models with other authorized trusted parties that want to
authenticate the ICs.

The e-fuse mechanism is set up as follows. Before the
e-fuse is disabled, the inputs to the XOR logic of arbiter PUF
can be accessed from chip 1O pins. This way, the Verifier can
obtain as many CRPs as needed to build an accurate model of
the PUF. After the model is successfully trained, the trusted
party and/or the Verifier disables the e-fuse so that no one can
obtain the “raw’’ PUF output before the XOR-mixing stage.

V. ANALYSIS OF ATTACKS

In this section, we quantify the resistance of the proposed pro-
tocols against different attacks by a malicious party (Prover
or Verifier). Due to similarity of authentication and key
exchange protocols, similar attacks analysis apply to both of
them.

In the first subsection, we quantitatively analyze their
resiliency to machine learning attacks. Second, we proba-
bilistically investigate the odds of breaking the protocols
by random guessing. Third, we address the attack where a
dishonest Prover (Verifier) attempts to control the PUF chal-
lenge pattern. Lastly, the effects of non-idealities of PUFs and
PRNGs and their impact on protocol security are discussed.
Throughout our analysis in this section, we investigate the
impact of various parameters on security and reliability of
protocol operation. Table 1 lists these parameters.

TABLE 1. List of parameters.

[Parameter | Description
Ly Length of nonce
L Length of PUF response string
Lgup Length of PUF response substring
Lpw Length of padded substring
indy Index to the beginning of substring, 0 < ind; < L
inda Index at which the PUF substring is inserted
0 <ind2 < Lpw
Nhin Minimum number CRPs needed to train
the PUF model with a misclassification
rate of less than e
k Number of XORed PUF outputs
N Number of PUF switch stages
th Matching distance threshold
€ PUF modeling misclassification rate
Derr Probability of error in PUF responses

A. PUF MODELING ATTACK
In order to model a linear PUF with a given level of accuracy,
it is sufficient to obtain a minimum number (V) of direct

VOLUME 2, NO. X, XXX 2014

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

challenge response pairs (CRPs) from the PUE. N,;;;, depends
on the PUF type and also the learning strategy. Based on
theoretical considerations (dimension of the feature space,
Vapnik-Chervonenkis dimension), it is suggested in [9] that
the minimal number of CRPs, N,,;,,, that is necessary to model
a N-stage delay based linear PUF with a misclassification rate
of € is given by:

N

For example, a PUF model with 90% accuracy, has a
misclassification rate of € = 10%. In the proposed protocol,
the direct responses are not revealed and the attacker needs to
correctly guess the secret indices to be able to discover Lg,p
challenge response pairs. ind is a number between 0 and L—1
(L is the length of the original response string from which
the substring is obtained), and ind; is a number between 0 to
Lpw — 1 (Lpw is the length of the padded substring).

Assuming the attacker tries to randomly guess the indices,
he will be faced with L x Lpw choices. For each iter choice,
the attacker can build a PUF model (M;y,,) by training it on the
set of Lg,, challenge response pairs using machine learning
methods.

Now, the attacker could launch L x Lpw rounds of authen-
tication with the Verifier and each time use one of his trained
models instead of the actual PUF. If he correctly guesses
the indices and his model is accurate enough, one of his
models will pass authentication. To build an accurate model
as mentioned above, the attacker needs to obtain N,,;, correct
challenge response pairs. If Ly, > Ny, then attacker can
break the system with O(L x Lpw) number of attempts.
However if Lg,;, < Ny, then the attacker needs to launch
Nmin/Lsup rounds of authentication to obtain at least Ny,
challenge response pairs. Under this scenario, the number of
hypothetical PUF models will grow exponentially. Since for
each round of authentication there are L x Lpw models based
on the choice of indices value (ind; and ind>), for Ny,in/Lsup
rounds, the number of models will be of the following order:

Ninin
(L x Lpw) Lsw . 6))

From the above equation, it seems intuitive to choose small
values for Lg,; to make the exponent bigger. However, small
Ly, increases the success rate of random guessing attacks.
The implications of small Lg,;, will be discussed in more detail
in the next section.

The model that the attacker is building has to be only more
accurate than the specified threshold during the matching. For
example, if we allow a 10% tolerance during the substring
matching process, then it means that a PUF model that emu-
lates the actual PUF responses with more than 90% accuracy
will be able to pass authentication. Based on Eq. 4, if we
allow higher misclassification rate €, then a smaller number
of CRPs is needed to build an accurate enough model which
passes the authentication.

To improve the security while maintaining reliable per-
formance, N, must be increased for a fixed ¢ and N.

VOLUME 2, NO. X, XXX 2014

This requires a structural change to delay based PUF. In this
paper, we use the XOR PUF circuit shown in Fig. 2 for two
reasons. First, to satisfy the avalanche criterion for the PUF.
Second, to increase N, for a fixed €. Based on the results
reported in the experimental evaluation section, Ny, is an
order of magnitude larger for an XOR PUF than for a simple
delay based PUF.

B. RANDOM GUESSING ATTACK

A legitimate Prover should be able to generate a padded sub-
string of PUF responses that successfully match a substring
of the Verifier’s emulated response sequence. The legitimate
Prover must be authenticated by an honest Verifier with a very
high probability, even if the response substring contains some
errors. Therefore, the protocol allows some tolerance during
matching by setting a threshold on the Hamming distance of
the source and target substrings.

Simultaneously, the probability of authenticating a dis-
honest Prover should be extremely low. These conditions
can be fulfilled by carefully selecting the Hamming distance
threshold (#h), the substring length (Lg,p), the total length
of the padded substring (Lpw), and the original response
string length (L) by our protocol. A dishonest Prover without
access to the original PUF or its model, may resort to send-
ing a substring of random bits. In this case, the probability
of authentication by a randomly guessing attacker, denoted
Papv, would be:

Papv = (L L NGO L 6
apv = (L Lpw) >)@ aT©
i=Lgyp—th
where Lgp and th are the length of the substring and the
Hamming distance threshold, respectively. Eq. 6 is derived
with this assumption that the adversary has L - Lpw chances
to match the simulated PUF response, and in each match, the
probability of success is calculated using a binomial cumula-
tive distribution function.

For an honest Prover, the probability of being correctly
authenticated, denoted by Phonest 1S:

Lqub . i
< ™)(1 — Derr)' 'perrLSub ’ (7

i

Lgub
P Honest = Z
i=Lg,n—th
where per is the probability of an error in a response bit.
If Lgyp is chosen to be a sufficiently large number, Papy
will be close to zero and Phonest Will be close to one.

C. COMPROMISING THE RANDOM SEED
In the protocols, the Prover and the Verifier jointly gener-
ate the random PRNG seed by concatenating the outputs of
their individual nonces (generated by TRNGs); i.e., seed =
{Noncey || Noncep}. The stream of PRNG outputs after
applying the seed is then used as the PUF challenge set. This
way, neither the Prover nor the Verifier has full control over
generating the PUF challenge stream.

If one of the parties can fully control the seed and challenge
sequence, then the following attack scenario can happen.

7

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

An adversary that poses as a Verifier can manipulate an honest
Prover into revealing the secret information. If the same seed
is used over and over during authentication rounds, then the
generated response sequence (super-string) will always be
the same. The response substrings now come from the same
original response string. By collecting a large enough number
of substrings and putting the pieces together, the original
super-string can be reconstructed. Reconstruction will reveal
L CRPs. By repeating these steps more CRPs can be revealed
and the PUF can be ultimately modeled.

An imposter Prover (Verifier) may intentionally keep
his/her portion of the seed constant to reduce the entropy of
seed. This way, the attacker can exert more control over the
random challenges applied to the PUF. We argue that if the
seed length is long enough this strategy will not be successful.

This attack leaves only half of the bits in the generated Seed
changing. For a seed of length 2L,-bits (two concatenated
nonces of length L-bits), the chance that the same nonce
appears twice is 2+n). For example, for L, = |Noncey| =
|[Noncep| = 128, the probability of being able to fully con-
trol the seed will be negligibly small. Therefore, one could
effectively guard against any kind of random seed compro-
mise by increasing the nonce lengths. The only overhead
of this approach is a twofold increase in the runtime of
the TRNG.

D. SUBSTRING REPLAY ATTACK

A dishonest Prover may mount an attack by recording the
padded substrings associated with each used Seed. In this
attack, a malicious Prover records the response substrings
sent by an honest Prover to an honest Verifier for a specific
Seed. The recording may be performed by eavesdropping on
the communication channel between the legitimate Prover
and Verifier. A malicious party may even pre-record a set of
response substrings to various random Seeds by posing as a
legitimate Verifier and exchanging nonces with the authentic
Prover.

After recording a sufficiently large number of Seeds and
their corresponding response substrings, the malicious party
could attempt to impersonate an honest Prover. This may
be done by repeatedly contacting the legitimate Verifier for
authentication and then matching the generated Seeds to its
pre-recorded database. This attack could only happen if the
Seeds collide. Selecting a sufficiently long Seed that cannot
be controlled by one party (Subsection V-B) would hinder this
collision attack.

Passive eavesdropping is performed during the pre-
recording phase. The chances that the whole Seed collides
will be 1/2f and the worst-case scenario is when an adver-
sary impersonates a Verifier and controls half of the seed
which reduces the collision probability to 1/2L/2,

E. EXPLOITING NON-IDEALITIES OF PRNG AND PUF

Thus far, we assumed that the outputs of PRNG and PUF are
ideal and statistically unbiased. If this is not true, an attacker
may resort to exploiting the statistical bias in a non-ideal

8

PRNG or PUF to attack the system. Therefore, in this section
we emphasize the importance of the PUF avalanche criterion
for securing against this class of attacks.

If the PUF has poor statistical properties, then the attacker
can predict patterns in the generated responses. The attacker
can use these predicted patterns to guess a matching loca-
tion for the substring. In other words, statistical bias in the
responses will leak information about the values of secret
indices.

Recall that an ideal Strong PUF should have the strict
avalanche property [21]. This property states that if one bit
of the PUF’s input challenges is flipped, the PUF output
response should flip with a % probability. If this property
holds, the PUF output for two different challenges will be
uncorrelated. This probability can be almost achieved when at
least more than two independent PUF output bits are mixed by
an XOR. As more independent PUF response bits are mixed,
the probability of a bit flip in the output due a one bit change in
the input moves closer to the ideal case; however, this linearly
increases the probability of error in the mixed output. For
instance, for a single Strong PUF response bit error of 5%,
the probability of error for 4-XOR mixing is reported to be
19% in [21].

In our implementation, Linear feedback shift registers
(LFSRs) are used as a lightweight PRNG. An ideal LFSR
must have the maximum length sequence property [30].
This property ensures that the autocorrelation function of the
LFSR output stream is “impulsive”, i.e., it is one at lag zero
and is *Wl for all other lags, where N is the LFSR sequences
length. N should be a sufficiently large number, which renders
the lagged autocorrelations very close to zero [30]. Therefore,
if an LFSR generates a sequence of challenges to the PUF,
the challenges are uncorrelated. In other words, for an ideal
LESR, it is highly unlikely that an attacker can find two
challenges with a very small Hamming distance.

Even if the attacker finds two challenges with a small Ham-
ming distance in the sequence, the output of our proposed
PUF would be sufficiently uncorrelated to the Hamming dis-
tance of the input challenges. Therefore, a combination of
PRNG and PUF with strict avalanche criteria would make
this attack highly unlikely. It is worth noting that it is not
required by any means for the PRNG to be a cryptographi-
cally secure generator. The seed in the protocol is public and
the only purpose of the PRNG is to generate sequences of
independent random challenge vectors from the Prover and
Verifier nonces.

FE MAN-IN-THE-MIDDLE ATTACK ON KEY EXCHANGE
Asymmetric cryptographic algorithms, such as RSA and
Diffie-Hellman, are traditionally used to exchange secret
keys. These asymmetric algorithms are susceptible to man-
in-the-middle attacks [31]. Therefore, a certificate authority
is necessary for a secure implementation of these algorithms.
However, our proposed key exchange algorithm is not suscep-
tible to man-in-the-middle attack and no certificate authority
is required for implementation.

VOLUME 2, NO. X, XXX 2014

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

An attacker, who intercepts the padded PUF substring, does
not know the PUF response string. Therefore, he does not
know the value of secret indices and he cannot change the
padded PUF substring to forge a specific key. An attacker,
however, can possibly rotate the padded substring to add or
subtract from the secret value of ind,. Even in this case, the
attacker does not know the new value of ind, and cannot
act upon it to open a forged encrypted channel. Rotating the
padded substring will only result in a denial of service attack
which is already possible by jamming.

VI. TRADE-OFFS IN PROTOCOL PARAMETERS

In this section, the trade-offs in choosing the parameters of
the protocols are explored by analyzing the PUF measurement
data collected in the lab. False acceptance and false rejection
probabilities depend on PUF error rates. There have been
no comprehensive reports till this date on PUF response
error rates (caused by variations in temperature and power
supply conditions) nor any solid data on modeling error
rates measured on real PUF challenge response pairs. The
data reported in the related literature mainly come from syn-
thetic (emulated) PUF results rather than actual reliable PUF
measurements and tests.

A. EXPERIMENTAL SET UP
In this paper, we used the data we measured and collected
across 10 Xilinx Virtex 5 (LX110) FPGAs at 9 accurately con-
trolled operating condition (combination of different temper-
atures and power supply points). Each FPGA holds 16 PUFs
and each PUF is tested using 64,000 random challenges.
Ideal PUF responses are obtained by challenging the PUF
128 times at the nominal condition (temperature = 35°C and
Vpp = 1 V) and then taking a consensus of these responses.
The error rate is now defined as the percentage deviation
from the consensus response. For example if 10 bits from
the 128 bits are ones and the rest are zeros, the deviation
from the majority response, or the response error rate, is
(10/128)x 100 = 7.8%. Table 2 shows the average deviation
(taken over 64,000 challenge-response pairs) of these experi-
ments from the ideal response at the nominal condition. As it
can be seen from this table, the error rate is substantially
higher in non-nominal conditions. The worst case scenario
happens when the temperature is 5°C and the voltage is 0.95V.
The table shows that 30°C degree change in temperature
will have a bigger effect on the error rate than a 5% voltage
change.

TABLE 2. Average bit error rate of PUF in different voltage and
temperature conditions in comparison with the ideal PUF
output at nominal condition.

v Temperature s0C 350C 65°C
DD
095V 8.4% 6.2% 7.1%
1.00 V 6.8% 3.1% 6.4%
1.05V 7.2% 6.7% 7.9%

VOLUME 2, NO. X, XXX 2014

As mentioned earlier, the Verifier repeatedly tests the PUF
in the factory to obtain a consensus of the PUF responses
for an array of random challenges. The Verifier then uses
the reliable response bits to build a PUF Model for himself.
When the PUF is deployed in the field, the Prover challenges
its own PUF and send the responses to the Verifier. The
average error rate of the Prover response in different working
conditions against the Verifier model is listed in Table 3. The
listed errors are the compound of two types of error. The first
type is the error in PUF output due to noise of environment
as well as operating condition fluctuations. The second type
is the inevitable modeling error of the Verifier PUF model.
These error rates are tangibly higher than the error rates of
Table 2. The worst error rate is recorded at 5°C temperature
and voltage of 0.95V. This error rate is taken as the worst-
case error rate between an honest Verifier and an honest
Prover. We will use this error rate to estimate the false accep-
tance and false rejection probability of the authentication
protocol.

TABLE 3. Average bit error rate of the verifier PUF model against
the PUF outputs in different voltage and temperature
conditions. *: the worst-case scenario.

Temperature

v, 5°C 35°C 65°C
DD
095V 13.2% (*) | 10.5% 10.7%
1.00 V 8.9% 6.4% 8.9%
1.05V 9.3% 10.2% 11.8%

B. MODELING ATTACK COMPLEXITY AND PROTOCOL
PARAMETERS

As explained earlier, the attack complexity depends exponen-
tially on the minimum required number of challenge response
pairs (CRPs), i.e., Npyin, to reach a modeling error rate of
less than ’th’, the matching threshold in the protocol. The
matching threshold in the protocol is incorporated to create a
tolerance for errors in the responses caused by modeling error
as well as errors due to environment variations and noise.

By relaxing the tolerance for errors in the protocol (i.e.,
increasing ’th’), we basically increase the probability of
attack. In contrast, by lowering the tolerance for errors, the
rate at which the authentication of a genuine PUF fails due
to noisy responses increases. As a rule of thumb, the toler-
ance has to be set greater than the maximum response error
rate to achieve sensible false rejection and false acceptance
probabilities.

Once the tolerance level (¢h) is fixed to achieve the desired
false rejection and false acceptance probabilities, N,,; must
be increased to hinder modeling attacks. However, N, and
th are inter-related for a given PUF structure. In other words,
for a given fixed PUF structure, increasing th mandates that
a less accurate model can pass the authentication, and that
model can be trained with a smaller number of CRPs (smaller
Nmin)- The only way to achieve a higher N,,;, for a fixed th is
to change the PUF structure.

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

Earlier in the paper, we proposed using XOR PUFs instead
of a single arbiter-based PUF in order to increase N, for
a fixed th. As reported previously in the related literature,
XOR-ing the PUF outputs makes the machine learning more
difficult and requires a larger CRP set for model building.
The major problem with XORing the PUF outputs is error
accumulation. For example, if the outputs of two arbiter-
based PUFs are mixed with XORs, the XOR PUF response
error rate will be about the sum of each individual arbiter-
based PUF’s errors. This means the error tolerance has to be
doubled to have reliable operations. This observation of trade-
off between Ny, and th, led us to quantify this effect.

In order to quantify the trade-off between N, and th,
we first calculate the effective compound error rate of XOR-
mixed PUF outputs for different operating conditions and dif-
ferent numbers of PUF stages. Tables 4—6 show the effective
response error rate for 2-input, 3-input, 4-input XOR PUF
respectively.

TABLE 4. 2-input XOR.

Temperature s0C 350C 65°C
Vbp
0.95 V 24.71% 19.9% 20.3%
1.00 V 17.0% 12.4% 17.0%
1.05 V 17.7% 19.4% 22.2%
TABLE 5. 3-input XOR.
Temperature 50C 350C 65°C
Vbp
095V 34.6% 28.3% 28.8%
1.00 V 24.4% 18.0% 24.4%
1.05V 25.4% 27.6% 31.4%
TABLE 6. 4-input XOR.
Temperature 500 350C 65°C
Vbp
095V 43.2% 35.8% 36.4%
1.00 V 31.1% 23.2% 31.1%
1.05 V 32.3% 35.0% 39.6%

Adv. prediction error
0.5 * * * * * * *
o *
0.45r

0.4r

0351

+:One PUF
-=-Two XORed
#* Three XORed

0.3F

Error rate

0.25r

0.2 +
0.15F ,
4
0.1r
+
0.05- + "
. .
0 ‘ ‘ ‘ * tootoy
100 1000 2000 8000 16000 64000

Number of compromised CRPs

FIGURE 5. The modeling error rate for arbiter-based PUF, and
XOR PUFs with 2 and 3 outputs as a function of number of
train/test CRPs.

implementations. We measured the modeling accuracy as a
function of train/test set size for each PUF. The results in
Fig. 5 show the modeling error using evolutionary strategy
(ES) machine learning methods.

Based on the results in Fig. 5, the largest value of Ny, after
taking into account the error threshold (¢4) derived earlier, is
achieved by a 3 stages XORed-PUF. In other words, 64,000
CRPs must be collected to achieve a modeling error rate
of less than 34.6%. Therefore, N,,;, = 64,000 for 3-stage
XOR-ed PUF.

Table 7 shows the false rejection and false acceptance
error rate of our protocol with the length of PUF response
sequence and the length of additional pads fixed at 1028 and
512, respectively. False rejection rate is the rate in which the
service to the truthful Prover is disrupted, it is calculated using
Eq. 6:1— PADV-

TABLE 7. False rejection and acceptance error probabilities for
different protocol parameters.

According to the above tables, the maximum error rates
measured from the XOR PUF responses are 24.7%, 34.6%,
and 43.2% for 2-input, 3-input, 4-input XOR-ed PUF, respec-
tively. To guarantee reliable authentication at all operating
conditions, the error tolerance of protocol (th) must be set
above the maximum error rates. Now after deriving the PUF
error rate, we would like to know how many challenge
response pairs are required to train the PUF model and
reach a modeling error rate that falls below the tolerance
level. In other words, we need to know how many chal-
lenge/response pairs the adversary needs to collect in order
to pass the authentication and break the system.

To answer this question, we trained and tested the PUF
model on the data collected in the lab from real PUF

10

| Lou I 1250
Error threshold 487 477 | 467
False rejection 02% | 1% | 5%
False acceptance || 9e-10 0 0

The requirements on the false rejection rate are not usually
as stringent as the requirements on the false acceptance rate,
however, one should assume that a customer would deem
a product impractical if the false rejection rate is higher
than a threshold. In our protocol design, we tune the system
parameter to achieve a false negative rate of 1%, while mini-
mizing the false acceptance rate. Also, we take the worst-case
error rate as the basis of our calculation of false acceptance
and false rejection rates. The error rates that we report are
the upper bound of what can be observed in the field by
a customer/Prover.

VOLUME 2, NO. X, XXX 2014

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

TRNG based on arbiter metastability

Tunable PUF | 3| Counter Hy
x 7 Post
Processing
Feedback - Encoder

FIGURE 6. True random number generation architecture based
on flip-flop meta-stability.

Table 7 shows that the desired false rejection rate of 1%
with an acceptable false acceptance rate is achieved when
Ly = 1250 and the error threshold is 477/1250 = 38%.
In this scenario, an adversary needs to perform O((1300 -
5 12)(64000/ 12500y ~ 0(2988) machine learning attacks in order
to break this system which makes the system secure against
all computationally bounded adversaries.

At the end, it should be noted that the worst case bit
error rate of our PUF implementation (13.2% in Table 3) is
much higher than a recently reported bit error rate of arbiter
PUFs [32] (& 3 — 5%). The discrepancy might be explained
by the fact that their implementation is based on a 65nm
ASIC technology and ours is based on a Virtex 5 FPGA.
Therefore, the reported security performance of our protocol
has the potential to be further enhanced by a more custom
implementation with a lower bit error rate.

VIl. HARDWARE IMPLEMENTATION

In this section, we present an FPGA implementation of
the proposed protocol for the Prover side on Xilinx Virtex
5 XC5VLX110T FPGAs. Fig. 7 summarizes the required
resources on Prover and Verifier sides of the protocols. Since
there is a stricter power consumption requirement on the
lightweight Prover, we focus our evaluation on Prover imple-
mentation overhead. The computation on the Verifier side
can run solely in software, however, the computation on the
Verifier may also be carried out in hardware with negligible
overhead.

Prover Verifier
PUF FIFO TRNG
g - i PUF
= atching Model
<« odae
TRNG || PRNG || Algorithm

FIGURE 7. Resource usage on prover and verifier sides.

It is desirable to use a low overhead PUF implementation,
such as the one introduced in [33]. If an ASIC or analog
implementation of the PUF is required, the ultra-low power
architecture in [29] is suitable for this protocol. A very low-
power Verifier implemented by a microcontroller such as
TI MSP430 can easily challenge the PUF and run the sub-
sequent steps of the protocol.

We use the implementation of the arbiter-based PUF
in [34]. The arbiter-based PUF on FPGA is designed to have

VOLUME 2, NO. X, XXX 2014

64 input challenges. In total, 128 LUTs and one flip-flop are
used to generate one bit of response. To achieve a higher
throughput, multiple parallel PUFs can be implemented on
the same FPGA.

There are various existing implementations for TRNGs on
FPGAs [35], [36]. We use the architecture presented in [33]
to implement a true random number generator. One embod-
iment of the TRNG architecture is shown in Fig. 6. This
TRNG operates by enforcing a meta-stable state on flip-flops
through a closed loop feedback system. This TRNG has a
Tunable PUF as its core that consumes 128 LUTs that are
packed into 16 CLBs on Virtex 5. In fact, the PUF of the
TRNG is identical to the arbiter-based PUF except that the
switches act as tunable programmable delay lines. The core
is incorporated inside a closed-loop feedback system. The
core output is attached to a 12-bit counter (using 12 registers)
which monitors the arbiter’s meta-stability. If the arbiter oper-
ates in a purely meta-stable fashion, the output bits become
equally likely ones and zeros. The counter basically measures
and monitors deviations from this condition and generates a
difference feedback signal to guide the system to return back
to its meta-stable state. The counter output drives an encoding
table of depth 2!> where Each row of encoding table contains
a 128-bit word resulting in a 64KByte ROM. A table of size
212 % 8-bits (=4KByte) implemented by a RAM block is used
to gather and update statistics for online post processing.

The nonce size is set to 128 for both the Prover and Verifier.
Each 128-bit nonce is fed into a 128-bit LESR. The content
of the two LFSRs are XORed to form the challenges to the
PUF.

The propagation delay through the PUF and the TRNG
core is equal to 61.06ns. PUF outputs can be generated at a
maximum rate of 16Mbit/sec. Post-processing on the TRNG
output bits can lower the throughput from 16Mbit/sec to
2Mbit/sec. Since the TRNG is only used to generate the
nonce and the indices, we can run TRNG before the start
of the protocol and pre-record these values. Therefore, its
throughput does not affect the overall system performance.

TABLE 8. Implementation overhead on virtex 5 FPGA.

No. Type LUT | Registers | RAM ROM Clock
blocks | blocks | Cycles
4 PUF 128 1 0 0 1
1 TRNG 128 12 4KB 64KB 8
1 FIFO 0 1250 0 0 N/A
2 LFSR 2 128 0 0 N/A
1 Control 12 9 0 0 N/A
Total 652 1400 4KB 64KB N/A

The implementation overhead of our proposed authenti-
cation protocol is much less than traditional cryptographic
modules. For example, robust hashing implementation of
SHA-2 as implemented in [37] requires at least 1558 LUTs
of a Virtex-II FPGA and it takes 490 clock cycles to evaluate.
This overhead will occur on the top of the clock cycles
required for PUF evaluation.

1

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

The overhead of our key exchange protocol should be
compared against symmetric key-exchange algorithms not
asymmetric key-exchange ones, since our protocol assumes
that a secret PUF as a token has been pre-distributed between
the Provers. Our key exchange protocol achieves desired
level of security with minimal computational overhead. For
example, AES-128 as implemented in [38] requires at least
738 LUTs of a Virtex-V FPGA, which is higher than the
combined overhead of our authentication and key-exchange
as listed in Table 8.

VIIl. CONCLUSION

We have presented secure and low-overhead authentication
and key exchange protocols based on PUFs. In the authenti-
cation protocol, the Prover reveals only a random subset of
responses for authentication. The Verifier, which has access
to a compact model of the PUF, can search and match the
received substring with the estimated PUF response string.
The authentication is successful if a sufficiently close match
is found. Key-exchange protocol based on pattern match-
ing was also proposed in this work. We demonstrated that
carefully-designed protocols based on pattern-matching con-
cept provides a much higher level of resiliency against all
known machine learning attacks. The experimental results on
FPGAs showed a significantly lower area and speed overhead
compared to any protocol that potentially uses conventional
cryptographic modules such as hashing. An even smaller
footprint and power consumption can potentially be achieved
by using analog leakage based PUFs, analog TRNGs, and low
power micro-controllers.

ACKNOWLEDGMENT
The authors would also like to thank the anonymous reviewers
of this paper for their helpful comments and suggestions.

REFERENCES

[1]1 V. Boyko, P. MacKenzie, and S. Patel, “Provably secure password-
authenticated key exchange using Diffie-Hellman,” in Advances in Cryp-
tology. New York, NY, USA: Springer-Verlag, 2000, pp. 156-171.

[2] M. Bellare, D. Pointcheval, and P. Rogaway, ‘“‘Authenticated key exchange
secure against dictionary attacks,” in Proc. 19th Int. Conf. Theory Appl.
Cryptograph. Tech., 2000, pp. 139-155.

[3] P. S. Ravikanth, B. Recht, J. Taylor, and N. Gershenfeld, ‘‘Physical one-
way functions,” Science, vol. 297, nos. 5589, pp. 20262030, 2002.

[4] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proc. Comput. Commun. Security Conf., 2002,
pp. 148-160.

[5] U. Ruhrmair, S. Devadas, and F. Koushanfar, Security Based on Physical
Unclonability and Disorder. New York, NY, USA: Springer-Verlag, 2011.

[6] F. Armknecht, R. Maes, A. Sadeghi, F.-X. Standaert, and C. Wachsmann,
“A formalization of the security features of physical functions,” in Proc.
IEEE Symp. Security Privacy, May 2011, pp. 397-412.

[7] R.Maes andI. Verbauwhede, “‘Physically unclonable functions: A study on
the state of the art and future research directions,” in Towards Hardware-
Intrinsic Security, A.-R. Sadeghi and D. Naccache, Eds. New York, NY,
USA: Springer-Verlag, 2010.

[8] M. Rostami, J. B. Wendt, M. Potkonjak, and F. Koushanfar. (2014, Mar.).
“Quo vadis, PUE” in Design, Automation & Test in Europe, to be
published.

[9] U. Riihrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas,
and J. Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proc. 17th ACM Conf. Comput. Commun. Security, Oct. 2010,
pp. 237-249.

[10] Z.Paral and S. Devadas, “Reliable and efficient PUF-based key generation
using pattern matching,” in Proc. Int. Symp. Hardware-Oriented Security
Trust, 2011, pp. 128-133.

[11] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Slender PUF protocol: A lightweight, robust, and secure authentication
by substring matching,” in Proc. IEEE Symp. Security Privacy Workshops,
May 2012, pp. 33-44.

[12] F. Koushanfar, Hardware Metering: A Survey. New York, NY, USA:
Springer-Verlag, 2011.

[13] B.Gassend, D. Clarke, M. Van Dijk, and S. Devadas, ‘‘Delay-based circuit
authentication and applications,” in Proc. ACM Symp. Appl. Comput.,
2003, pp. 294-301.

[14] D. Lim, “Extracting secret keys from integrated circuits,” M.S. thesis,
Dept. Electr. Eng. Comput., Massachusetts Inst. Technol., Cambridge, MA,
USA, 2004.

[15] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing techniques for
hardware security,” in Proc. Int. Test Conf., 2008, pp. 1-10.

[16] G. Suh and S. Devadas, “‘Physical unclonable functions for device authen-

tication and secret key generation,” in Proc. 44th ACM/IEEE Des. Autom.

Conf., Jun. 2007, pp. 9-14.

B. Gassend, “Physical random functions,” M.S. thesis, Dept. Electr. Eng.

Comput., Massachusetts Inst. Technol., Cambridge, MA, USA, Jan. 2003.

E. Oztiirk, G. Hammouri, and B. Sunar, ‘“Towards robust low cost authenti-

cation for pervasive devices,” in Proc. 6th Annu. IEEE Int. Pervas. Comput.

Commun., Mar. 2008, pp. 170-178.

[19] U.Ruhrmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, et al.,
“PUF modeling attacks on simulated and silicon data,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 11, pp. 1876-1891, Nov. 2013.

[20] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUF,” in Proc. Int. Conf. Comput. Aided Des., 2008, pp. 670-673.

[21] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design
and implementation of secure reconfigurable PUFs,” ACM TRETS, vol. 2,
no. 1, pp. 1-33, 2009.

[22] A. Mahmoud, U. Ruhrmair, M. Majzoobi, and F. Koushanfar. (2013).
Combined Modeling and Side Channel Attacks on Strong PUFs [Online].
Available: https://eprint.iacr.org/2013/632

[23] J. Delvaux and I. Verbauwhede. (2013). Fault Injection Modeling Attacks

on 65 nm Arbiter and RO sum PUFs via Environmental Changes [Online].

Available: https://eprint.iacr.org/2013/619

C. Bosch, J. Guajardo, A. Sadeghi, J. Shokrollahi, and P. Tuyls, “Efficient

helper data key extractor on FPGAs,” in Proc. 10th Int. Workshop Crypto-

graph. Hardw. Embedded Syst., 2008, pp. 181-197.

[25] R.Maes, P. Tuyls, and I. Verbauwhede, “Low-overhead implementation of
a soft decision helper data algorithm for SRAM PUFs,” in Proc. 11th Int
Workshop Cryptograph. Hardw. Embedded Syst., 2009, pp. 332-347.

[26] M.-D. M. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Des. Test Comput., vol. 27, no. 1,
pp. 48-65, Jan./Feb. 2010.

[27] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in Proc. Adv. Int.
Theory Appl. Conf. Cryptol. Eurocrypt, Interlaken, Switzerland, 2004,
pp. 523-540.

[28] N. Beckmann and M. Potkonjak, ‘“Hardware-based public-key cryptogra-
phy with public physically unclonable functions,” in Information Hiding.
New York, NY, USA: Springer-Verlag, 2009, pp. 206-220.

[29] M. Majzoobi, G. Ghiaasi, F. Koushanfar, and S. Nassif, “Ultra-low
power current-based PUF,” in Proc. IEEE Int. Symp. Circuits Syst., 2011,
pp- 2071-2074.

[30] M. Baldi, F. Chiaraluce, N. Boujnah, and R. Garello, “On the autocorre-
lation properties of truncated maximum-length sequences and their effect
on the power spectrum,” IEEE Trans. Signal Process., vol. 58, no. 12,
pp. 6284-6297, Dec. 2010.

[31] C. Paar, J. Pelzl, and B. Preneel, Understanding Cryptography:
A Textbook for Students and Practitioners. New York, NY, USA:
Springer-Verlag, 2010.

[32] S. Katzenbeisser, U. Kocabasg, V. Rozi¢, A.-R. Sadeghi, I. Verbauwhede,
and C. Wachsmann, “PUFs: Myth, fact or busted? A security evaluation of
physically unclonable functions (PUFs) cast in silicon,” in Proc. 14th Int.
Conf. Cryptograph. Hardw. Embedded Syst., 2012, pp. 283-301.

[33] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA-based true ran-
dom number generation using circuit metastability with adaptive feedback
control,” in Proc. Int. Cryptograph. Hardware Embedded Syst., 2011,
pp. 17-32.

(17

[18

[24

VOLUME 2, NO. X, XXX 2014

Rostami et al.: Robust and Reverse-Engineering Resilient PUF Authentication and Key-Exchange

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

[34] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using pro-
grammable delay lines,” in Proc. IEEE Int. Workshop Inf. Forensics Secu-
rity, Dec. 2010, pp. 1-6.

[35] C. K. Koc, Cryptographic Engineering, 1st ed. New York, NY, USA:
Springer-Verlag, 2008.

[36] B. Sunar, W. Martin, and D. Stinson, “A provably secure true random
number generator with built-in tolerance to active attacks,” IEEE Trans.
Comput., vol. 56, no. 1, pp. 109-119, Jan. 2007.

[37] M. Kim, J. Ryou, and S. Jun, “Efficient hardware architecture of SHA-
256 algorithm for trusted mobile computing,” Information Security and
Cryptology, Berlin, Germany: Springer-Verlag, 2009, pp. 240-252.

[38] S. Drimer, T. Guneysu, and C. Paar, “DSPs, BRAMs, and a pinch of
logic: Extended recipes for AES on FPGAs,” ACM Trans. Reconfigurable
Technol. Syst., vol. 3, no. 1, pp. 1-3, 2010.

MASOUD ROSTAMI received the M.S. degree
in electrical engineering from Rice University in
2010, where he is currently pursuing the Ph.D.
degree in computer engineering. His research
interests include double gate devices, hard-
ware security, and security of implanted medical
devices.

MEHRDAD MAJZOOBI received the M.Sc. and
Ph.D. degrees in electrical and computer engineer-
ing from Rice University, Houston, TX, USA, in
2009 and 20013, respectively. He is currently a
Chief Executive Officer with Mesh Motion, Inc.,
on the social implications of access management.

VOLUME 2, NO. X, XXX 2014

FARINAZ KOUSHANFAR received the Ph.D.
degree in electrical engineering and computer
science and the M.A. degree in statistics from the
University of California Berkeley in 2005. She is
currently an Associate Professor with the Depart-
ment of Electrical and Computer Engineering,
Rice University, Houston, TX, USA. Her research
interests include adaptive and low power embed-
ded systems design, hardware security, and design
intellectual property protection. She is a recipient
of several awards and honors, including the Presidential Early Career Award
for Scientists and Engineers, the ACM SIGDA Outstanding New Faculty
Award, the NAS Kavli Foundation Fellowship, and the Young Faculty (or
CAREER) Awards from ARO, ONR, DARPA, and NSF.

DAN S. WALLACH is a Professor with the
Department of Computer Science and a Rice
Scholar with the Baker Institute for Public Policy,
Rice University. He is a member of the Board of
Directors of the USENIX Association.

SRINIVAS DEVADAS (F’99) is the Edwin Sibley Webster Professor of
electrical engineering and computer science with the Massachusetts Institute
of Technology, where has been on the faculty since 1988. He served as an
Associate Head with the Department of Electrical Engineering and Computer
Science from 2005 to 2011. His research interests include computer security,
computer architecture, and computer-aided design. He has written numerous
papers and books and received several best paper awards.

13

