
FASE: FPGA Acceleration of
Secure Function Evaluation

Siam U Hussain
University of California, San Diego

Email: siamumar@ucsd.edu

Farinaz Koushanfar
University of California, San Diego

Email: farinaz@ucsd.edu

Abstract—We present FASE, an FPGA accelerator for Se-
cure Function Evaluation (SFE) by employing the well-known
cryptographic protocol named Yao’s Garbled Circuit (GC). SFE
allows two parties to jointly compute a function on their private
data and learn the output without revealing their inputs to
each other. FASE is designed to allow cloud servers to provide
secure services to a large number of clients in parallel while
preserving the privacy of the data from both sides. Current SFE
accelerators either target specific applications, and therefore are
not amenable to generic use, or have low throughput due to
inefficient management of resources. In this work, we present a
pipelined architecture along with an efficient scheduling scheme
to ensure optimal usage of the available resources. The scheme is
built around a simulator of the hardware design that schedules
the workload and assigns the most suitable task to the encryption
cores at each cycle. This, coupled with optimal management of the
read and write cycles of the embedded memory on FPGA, results
in a minimum 2 orders of magnitude improvement in terms of
throughput per core for the reported benchmarks compared to
the most recent generic GC accelerator. Moreover, our encryption
core requires 17% less resource compared to the most recent
secure hardware realization of GC.

I. INTRODUCTION

Privacy is one of the most scrutinized topics of this decade.
With the increasing popularity of web services, especially
those based on machine learning (ML) models [1]–[5], main-
taining user data privacy has become a critical issue. Till
present, privacy is primarily based on trust, which clearly is
not acceptable as evident by several breaches in recent years.
We need to develop privacy-preserving frameworks based on
provably secure protocols, formally called the Secure Function
Evaluation (SFE) protocols [6], [7] that allows two parties
to compute a joint function without revealing their respective
inputs. Among a number of such protocols in use at present,
the most effective one has been Yao’s Garbled Circuit [8].
Upon its arrival in 1986, it was mostly considered to be a
theoretical concept until its first realization, Fairplay [9], in
2004. Over the last decade a number of enhancements, both
in theoretical aspects [10]–[13] and practical realizations [14]–
[18], has made real-life employment of the protocol into a
reality. However, its usage in large scale machine learning
and data mining applications still remains a challenge. As a
significant step towards addressing this challenge, we present
FASE: FPGA Acceleration of Secure Function Evaluation.

FASE is developed to facilitate the cloud servers to provide
secure services to a large number of clients in parallel. In

GC, the underlying function is represented as a Boolean
circuit, called a netlist. The truth-tables of that netlist is
encrypted, and the computation is performed on the encrypted
netlist. Generation and communication of these encrypted
tables between the server and the client cause large overhead
compared to the plain-text computation. For a cloud server
that is communicating simultaneously to a large number of
clients through parallel channels, efficient generation of the
encrypted tables becomes a challenge. As we show in this
paper, generating them on our FPGA accelerator brings down
the protocol execution time within the practical limit.

A number of recent works [19]–[21] have accelerated GC
with FPGAs. A secure MIPS processor is presented in Gar-
bledCPU [20], where the netlist is always the Boolean circuit
of the processor, upon which the binary of the secure function
is loaded. This allows the user the ease of programming in
any suitable language. However, it pays the price by having
to execute a large netlist. GarbledCPU provides three versions
with trade-off between speed and privacy, and even in the least
secure version, the overhead is too high for practical purposes.

MAXelerator [19] presented an FPGA accelerator for the
GC execution of a Multiply-Accumulate (MAC) for matrix-
multiplication, which is the basic building block of a large
number of ML models. While it achieves high throughput by
custom-designing this specific application, its usage is limited
in many scenarios. In one of their own case studies, when
applied to the privacy-preserving recommendation system pre-
sented in [22], an acceleration of the MAC operation by
∼50× results in only 1.5× acceleration of the overall process
since only 2/3rd of the operations involved MAC. Our GC
accelerator FASE, supporting any generic function, does not
achieve such a high improvement on one specific operation (in
this case MAC), however, for the same problem, the overall
process is accelerated by ∼12×.

A generic GC accelerator on FPGA is presented in [21].
However, this design was not able to utilize the full capability
of the underlying hardware for a couple of reasons. First, it
employs very simple scheduling of the Boolean gates that
may lead to a large number of encryption units being unused
for a significant time throughout the operation. Second, it
does not involve any pipeline and therefore incurs a large
time gap between consecutive inputs to the encryption units.
More importantly, it employs SHA-1 for encryption, which is
considered not to be secure anymore [23]–[25]. The authors

claim that it is adequate for preserving privacy in the context of
garbled circuits, where cryptography is applied at many levels.
However, such a statement without a formal security proof is
not acceptable and may lead to serious security breaches.

In FASE, we employ AES [26] for encryption similar to
all the recent GC realizations on either software or hardware,
especially after the appearance of the fixed key block cipher
optimization presented by JustGarble [11]. We also optimize
the realization of the AES core specifically for GC and achieve
around 17% reduction in resource usage per core compared
to MAXelerator or GarbledCPU, two of the most recent
secure realization of GC. Our pipelined architecture allows
the encryption cores to receive one gate each cycle. To ensure
the optimal usage of the cores, i.e., minimum idle cycles,
we design a scheduling algorithm built around a software
simulator for our FPGA accelerator. Moreover, we design a
memory management wrapper around the embedded memory
to ensure optimal use of the limited read/write ports. As a
result, FASE demonstrates minimum 2 orders of magnitude
improvement in terms of throughput per core over [21].
In brief, the contributions of this work are,
• We present a pipelined garbling framework that is able

to receive one gate every cycle. This allows us to garble
multiple gates in parallel using a single garbling core.

• We optimize the encryption core, AES, exclusively for the
GC protocol. This results in 17% reduction in resource usage
compared to the most recent secure FPGA realization of GC.

• We design an efficient scheduling scheme for our pipelined
architecture built around a simulator of the FPGA design. It
ensures near optimal use of the encryption cores under the
constraints of gate dependency and memory access collision.

• We achieve minimum 2 orders of magnitude improvement
in terms of throughput per core compared to the most recent
generic GC accelerator on FPGA.

The source code of FASE is available at [27].

II. PRELIMINARIES

A. Oblivious Transfer.

Oblivious Transfer (OT) [28] is a cryptographic protocol
between the sender Alice and the receiver Bob. In a 1-out-of-
2 OT protocol, Alice holds 2 messages (x0, x1) and Bob holds
a selection bit s ∈ {0, 1}. Bob receives xs without revealing
s to Alice and learns nothing about x1−s.

B. Garbled Circuit.

Yao’s Garbled Circuit (GC) [8] is a cryptographic protocol
that allows two parties Alice and Bob to jointly compute a
function y = f(a, b) on their private inputs: a from Alice and
b from Bob. Following are the steps of this protocol:
1) The function f is represented as a Boolean circuit, called

netlist, consisting of 2-input 1-output logic gates.
2) For each wire w in the netlist, Alice assigns two k-bit1

random keys X0
w and X1

w associated with the two possible
values 0 and 1, respectively.

1k is a security parameter, its value is set to 128 in recent works [11], [29]

3) For each gate, Alice generates the garbled table by en-
crypting the keys associated with the values in the output
row with respective input keys.

4) Alice then sends the garbled tables along with the keys
associated with the values of the bits of her input a.

5) Bob obtains the keys associated with the values of the bits
of his input b through 1-out-of-2 OT protocol.

6) Bob uses these keys to decrypt the garbled tables gate by
gate and learn the decryption keys of the subsequent gates.

7) Finally, after Bob obtains the keys corresponding to the
output y, Alice shares the mapping of keys to the Boolean
values, and Bob shares the decrypted keys, and together
learn the actual value of y.

Steps (2) and (3) together forms the Garbling operation and
Step (6) is the Evaluation operation.
Sequential Garbling [14]. If the Boolean circuit representing
f is sequential, as introduced in TinyGarble [14], steps (2)
to (7) is repeated for the number of cycles the circuit needs
to complete the computation. Before the start of every cycle
(before step (2)) an extra step is added where the input keys
of the Flip-Flops (FF) are copied to the output keys.

C. Garbled Circuit Optimizations

Point and Permute [30]. Alice appends a 1-bit random mask
to each key. The masked value of a wire is its actual value XOR
with the mask. Alice arranges the rows in the garbled table
according to the masked values. Bob learns the masked values
of the output wires. In step (7), Alice and Bob communicate
only the masked value and mask bit to learn the actual value
of the output.
Free XOR [12]. Alice generates a (k − 1)-bit key R known
only to her. For each wire w, she generates the key X0

w and
sets X1

w = X0
w ⊕ (R ‖ 1)(‖ denotes concatenation). With this

convention, the key for the output wire r of an XOR gates with
input wires p, q can be simply computed as Xr = Xp ⊕Xq .
Thus XOR, XNOR, and NOT gates do not need to be garbled.
Row Reduction [13]. Instead of generating the key for the
output wire of a gate randomly, it is computed as a function
of the keys of the inputs such that the first entry of the garbled
table are all 0s and no longer needs to be sent. Thus it reduces
the number of rows in the garbled table from four to three.
Half Gate [10]. This optimization breaks a non-XOR gate into
two half-gates for which one party knows one input. It employs
both free XOR and row reduction such that each half-gate can
be garbled with single encryption. As a result, the size of the
non-XOR gate truth table is reduced to two rows.
Garbling with a Fixed-key Block Cipher [11]. This method
allows to efficiently garble non-XOR gates using fixed-key
AES with a unique identifier for each gate. In this scheme,
the output key Xr is encrypted with the input keys Xp and
Xq according to following the function

E(Xr, Xp, T,Xq) = π(K)⊕K ⊕Xr, (1)

where, K = 2Xr ⊕ 4Xp ⊕ T , T is a unique gate identifier,
and π is a fixed-key block cipher (instantiated with AES).

III. GLOBAL FLOW

A. Security Model and Terminology

In accordance with most of the recent realization of the GC
protocol [14]–[18] we adopt the honest-but-curious security
model, which assumes that both parties follow the protocol
honestly yet may try to learn additional information from
the information at hand. We use the term XOR gates to refer
to XOR, XNOR and NOT gates, and the term non-XOR gates
to refer to all other gates (e.g., AND, OR, NAND, etc). In
addition to these gates, our GC framework supports D Flip-
Flops (DFFs) with inputs I , and D and output Q. At reset,
The value at input I passes to Q, otherwise, at each positive
edge of the clock, value at input D passes to Q. The Boolean
circuit representing the function f being executed through GC
is referred to as the netlist, and the circuit that we design
on FPGA to generate the garbled tables is referred to as the
circuit. The term netlist cycle is used to refer to the clock
cycles pertaining to the netlist, and the term cycle is used to
refer to the clock cycles pertaining to the circuit on FPGA.

B. Client-Server Model

FASE accelerates the generation of garbled tables on a
cloud server and is transparent to the clients acting as the
evaluators. Garbling and evaluation are similar tasks, and our
garbling engine can also act as the evaluator engine with
few tweaks. However, as outlined in [19], acceleration of the
computation is only beneficial to cloud servers since they are
communicating with a large number of clients in parallel. For
a client, communicating with only one server, the speedup of
the overall GC execution does not justify having a hardware
accelerator. The presence of FASE on the server side is
invisible to the clients except for the speed up in service.

C. Netlist Format

The netlist is the Boolean representation of the function
y = f(a, b), where a, and b are inputs from the server and
the client respectively. The netlist file holds information of the
number of netlist input bits (i.e., the total number of bits in
a and b), the numbers of FFs, XOR and non-XOR gates in the
netlist, and the indices of the gates generating the final output
y. It also holds information of the input and output indices,
and the Boolean logic of each gate. In addition, it may also
have stall entries indicating that the inputs of the next gate are
not ready in the current cycle.

JustGarble [11] introduced the SCD format to represent the
netlist. The SCD format employs efficient indexing of the gates
and wires that results in a compact file. However, it requires
access to multiple elements of the arrays at the same time
which is not amenable to the embedded memory used to store
the netlist on FPGA. FASE uses the indexing format of the
SCD file but stores the netlist in a new HSCD format shown
in Table I that supports reading the netlist in streaming style.
D, I , INPUT 0, and INPUT 1 are indices of the inputs to the
DFFs and gates respectively. LOGIC holds the 4 output bits
of the gate’s truth table where the inputs are in the order 00,
01, 10, 11. IS OUTPUT is a one-bit value that is set to 1 if

TABLE I
HSCD FORMAT TO STORE THE NETLIST

of Lines Content

4 Netlist parameters
(input and output bit lengths, number of dffs, gates etc)

of dffs D ‖ I ‖ 1111 ‖ IS OUTPUT
of gates INPUT 0 ‖ INPUT 1 ‖ LOGIC ‖ IS OUTPUT
of stalls - ‖ - ‖ 0000 ‖ 0

the DFF or gate’s output is connected to the netlist output y.
The index of the gate’s output wire is the index of the gate in
this list, thus does not need to be stored explicitly.

D. Execution Steps of FASE

Our implementation is distributed over two platforms: the
host CPU and FASE on the FPGA together act as the garbler.
The netlist is generated at the host CPU and transferred to
FASE. This step is performed only once per function, irre-
spective of the number of clients or the number of executions.
Then for each client, the following steps are performed.
1) FASE generates R (free-XOR, Sect II-C) and the AES key

(fixed-key block cipher, Sect II-C) and sends to the host.
2) FASE generates keys for constant values 0 and 1 and sends

them to the host. These keys are used if the initial values
of the DFFs are assigned to constants.

3) For each netlist cycle
a) For each DFF

i) If this is the first netlist cycle, the keys for the Q
input of the FFs are assigned either to a constant key
(corresponding to 0 or 1 depending on the value) or
to the key of input I . In the latter case, the input
keys are generated and sent to the host.

ii) For the rest of the netlist cycles, keys for the Q inputs
of the DFFs are copied from keys at the D inputs.

b) For each gate
i) If the inputs of the gate are connected to the netlist

inputs a or b, FASE generates the keys corresponding
to those inputs and sends them to the host.

ii) FASE generates the garbled table and output key and
sends the garbled table to the host.

iii) If the output of the gate is connected to the netlist
output y, the mask bit (Point and Permute, Sect II-C)
is stored to an internal register file.

c) At the end of each netlist cycle, all the mask bits are
transferred to the host.

4) The host CPU performs the communication with the client,
including OT, and jointly compute the output y.

Note that, generation of the garbled tables is independent
of the inputs a or b. Therefore, FASE does not need any
information from the host after the netlist is transferred. On
the other hand, the host CPU receives the garbled tables for
each non-XOR gate and the mask of each bit of the output
y. However, the key of the output of each gate is only used
internally inside FPGA to generate the garbled tables and
outputs of the subsequent gates and not sent to the host.

garbled
tables

address

Key Generator

Input Keys

Key Regsiter

Garbled Tables

Output Keys
D

is
tr

ib
ut

or

w
r_

en

ad
dr

es
s

ga
te

 id

ga
te

 in
fo

se
le

ct

keys

input
keys

input
keys

garbled
tables

output
keys

ad
dr

es
s

w
r_

en

se
le

ct

st
at

us

w
r_

en

ad
dr

es
s

st
at

us

st
at

e

tag

index

data

Netlist

Masks

C
ol

le
ct

or

Garbling Engine

Key Expansion

AES AES AES AES

FIFO

FIFO

output
keys

To
 th

e
ho

st
 C

PU

FSM

XOR

Fig. 1. Architecture of FASE

IV. ARCHITECTURE OF FASE

Fig 1 shows the different components of FASE. The heart
of the system is the pipelined garbling engine that is capable
of receiving one gate per cycle. Its inputs and outputs are
stored in six different memories: Netlist, Key Register, Input
Keys, Output Keys, Masks, and Garbled Tables. Three of them
are dedicated to storing the keys. The Key Register stores the
two most recently generated keys. The Input Keys memory
stores the keys associated with the netlist inputs a and b. The
rest of the keys, generated either by the garbling engine or
XOR is stored in the memory named Output Keys. Efficient
synchronous management of these memories is key to the
optimal usage of the encryption cores inside the garbling
engine. The garbling operation is executed by the control
logic, consisting of the Finite State Machine (FSM) and the
distributor, according to the steps described in Sect III-D.
The collector works in parallel to the control logic to collect
and transfer the generated data from FASE to the host CPU.
In addition, FASE incorporates a key generator which is the
source of the random keys associated with the netlist inputs.

A. Key Generator

The key generator consists of 2K True Random Number
Generators (TRNG), each of which generates 1 random bit
per cycle. The TRNGs are implemented with sets of ring
oscillators following the design presented in [31]. The clocks
to the TRNGs are controlled through two clock buffers each
connected to K TRNGs. Each set of TRNGs is only enabled
when new keys need to be generated as described in Sect III-D.

B. Garbling Engine

Given the two keys associated with the value 0 of the
two inputs and the Boolean logic of the gate, the garbling
engine generates the garbled table and the key associated
with the value 0 of the output. Note that according to the

free-XOR optimization, the key for the value 1 of a wire
is generated by XORing the key for value 0 with R. The
garbling engine incorporates both the row-reduction and half-
gate optimizations and thus the generated tables have two rows
per gate. No garbled tables are generated for the XOR gates.
Output keys of these gates are generated by the XOR block.

The garbling engine has four AES cores. They have a 10
stage pipelined architecture. Therefore, generating the garbled
table and output key of each non-XOR gate requires 10 cycles.
However, the garbling engine can accept one gate per cycle
due to the pipelined architecture. Even though it increases
the throughput by a large margin compared to the previous
accelerators, it also creates a dependency issue since the output
keys of the gate, gn sent to the garbling engine at the n-th cycle
is not ready until n+10-th cycle. Therefore, from cycles n+1
to n+ 9 only the gates that are independent of the output of
gn can be sent to the garbling engine. We solve this issue by
smart scheduling elaborated in Sect V.

As shown in Eq 1, the encrypted key is again XORed with
the input keys and the gate identifier. These keys are passed
through 10-stage FIFOs to be XORed with the AES output.

The AES encryption function accepts two inputs: the plain-
text, which is a function of the input keys, and the AES key.
According to the fixed key block cipher optimization [11],
the AES key is fixed for all the AES cores for one garbling
session. This allows us to instantiate only one common key
expansion module for all the four AES cores. As a result,
the resource utilization by the garbling engine is reduced by
around 17%. In our implementation, the key expansion module
has 5 pipeline stages. To ensure that the expanded key is
ready before the garbling of the first gate starts, we insert
idle states if necessary (i.e., if the number of DFFs in the
netlist is less than 4) between step (1) and (3-b) of the steps
described in Sect III-D.

C. Control Logic

The control logic consists of the FSM and the distributor.
The distributor controls the source of the input keys fed to the
garbling engine. The FSM performs the following tasks:
• Fetch the current gate from the netlist and determine the

source of its input keys.
• If the source is the Input Keys memory, and not already

generated, turn on the key generator.
• If the source is the Output Keys memory, and not already

computed, stall the operation.
• If both the input keys of the current gate is ready, increment

the gate index to fetch the next gate.
• Determine the source of the output keys for each gate based

on the gate logic (XOR or non-XOR).
• Control the storing of the masks based on the IS OUTPUT

value for the gate.
• Once all the garbled tables are computed, reset the gate

index and increment the netlist cycle.

D. Memory Management

Netlist. This is implemented on a BRAM that stores the netlist
in the HSCD format presented in Sect III-C. BRAMs have one
cycle latency from receiving the input address (gate index)
to providing the data (input indices and logic of the gate).
Before proceeding to the next gate, i.e. increasing the gate
index, the control logic needs to read the input indices of the
current gate for checking if the input keys are ready. This
would result in a latency of 2 cycles per gate. Note that the
previous GC accelerators did not need to deal with this issue.
MAXelerator [19] performed only one specific function and
the netlist of that function was embedded into its control logic.
The generic accelerator in [21] arranged the circuits in layers
of independent gates and only garbled gates of one layer at
one time. This approach results in FPGA resources being left
unused for a large part of the operation.

Fortunately, with the indexing format of SCD [11], the gates
are accessed sequentially. Therefore, the gate index is always
incremented by 1. We design a wrapper around the BRAM,
that always reads one address ahead of the given address
(gate index) and stores the data into a register. Whenever the
address is incremented, the data already stored in the register
is provided at the output and the next data is requested from
the BRAM. From the perspective of the control logic, this is
equivalent to reading from a register file or a distributed RAM,
that provides the read data immediately.
Key Register and Input Keys. The Input Keys is a dual-port
BRAM to store the keys associated with the netlist inputs a
and b. If the input of the current gate is connected to either of
these, a new K bit key is generated and stored in the memory,
if not already generated. Otherwise, the key is read from the
memory. To keep track of whether or not the key is already
generated, a register file of 1-bit flag registers with the same
depth as the BRAM is maintained. To avoid the possibility
of collisions through the read and write ports of the BRAM,
the most recent pair of keys are stored in the Key Register, a

register file with two K-bit registers. There is a write to the
Input Keys memory only if a new key is generated, and in
that case, the keys to the garbling engine are supplied from
the Key Register, eliminating the possibility of collision.

Output Keys. The keys associated with gate outputs generated
by the garbling engine or XOR are stored in a dual port BRAM.
These keys are also read later for subsequent gates that depend
on the current gate. Unlike the Input Keys, flag registers are
not required for the Output Keys since the readiness of the
required keys at a certain cycle is pre-computed offline for
each netlist, and encoded in the HSCD file. In [21], four cycles
are required per gate for BRAM access. Reducing this time
to two cycles is straight forward- using a dual port, instead
of single port BRAM. However, for each gate, two keys are
read from the memory and one key is written back. Therefore,
theoretically, it is possible to process each gate in 1.5 cycles.
To reduce the total memory access time we design a wrapper,
as shown in Fig 2, around the BRAM.

rd_data_0

rd_data_1

addr_0

addr_1

wr_data_0

wr_data_1

BRAM

wr_{req, data, addr}_0

Memory
Rules

wr_{req, data, addr}_1

rd_{req, data, addr}_0

rd_{req, data, addr}_1

wr_{req, data, addr}_q

stall_rd

Fig. 2. Wrapper module around the BRAM of Output Keys.

In addition to the external read and write request, address
and data for the two ports 0 and 1, it has an additional
output stall rd that directs the control logic to stall the
operation. Moreover, it has an internal queue that can hold
one write command. The read and write ports of the BRAM
are controlled according to the following rules.

• If there is no queued request,
– if the number of write requests is more than or equal to the

number of read requests, the write requests are performed
and the read requests are stalled.

– if the number of write requests is less than the number
of read requests, the read requests are performed and the
write request is queued.

• If there is a write command in the queue,
– the read commands are stalled irrespective of the number

of read requests.
– if the number of write requests is 2, the write command

at port 1 is queued and the queued write command is
performed through that port.

– if the number of write requests is 1, the queued write
command is performed through the free port.

A write request is never queued for more than one cycle.
Queuing of a write command is invisible to the control logic.

In addition to these, the garbled tables are stored in a dual
port BRAM. The 1-bit output masks are stored in a register
file so that all the mask bits can be transferred to the host
CPU in one or two cycles.

E. Collector

The collector performs the communication with the host
CPU. Four types of data are sent from FASE to the host:
(i) the R and AES keys, (ii) keys for the netlist inputs, (iii)
garbled tables for the non-XOR gates, and (iv) output masks
for the netlist outputs. At each cycle, the collector sends the
following three pieces of information to the host:
1) A tag indicating the type of the data being sent.
2) The index of the respective data.
3) The data.

The keys for the netlist inputs are assigned the highest
priority since only the most recent pair of keys are stored in
the Key Registers. The garbled tables are stored in a dual port
BRAM. One of the port is used to write the garbled tables.
The collector uses the other port to read them. Since the gates
are accessed sequentially, the garbled tables are also written
sequentially. Therefore, the read address being smaller than the
write address indicates that there are new garbled tables that
need to be transferred. After all the garbled tables are sent,
all the output masks are sent together in one or two cycles
depending on the bit length of the netlist output y.
Communication Bandwidth. Let us define the following
netlist parameters. The total input bit-width is M , the out-
put bit-width is N , the total number of gates is G, the
total number of XOR gates is X , and the netlist takes C
cycles to compute the operation Then the data transferred
from the FPGA to the host CPU to garble one netlist is
4K+((M+2(G−X))K+N)C bits. This is significantly less
compared to the accelerator presented in [21], which needs to
transfer (3G+3(G−X))K bits per netlist, the difference being
(3G + (G − X) −M)K − N . Note that [21] only supports
combinational circuit, therefore the number of netlist cycles C
is always 1, but the number of gates and the number of input
bits will be larger. Eventually, the product C × G will be of
the same order for both combinational and sequential netlists
of the same function. Moreover, [21] does not support half-
gate optimization, therefore the garbled table has three rows
instead of two.

V. SCHEDULING THE GATES

As explained in Sect IV-B, the garbling engine is able to
accept one new gate per cycle. However, since each gate takes
10 cycles to process, the gates sent to the garbling engine
at cycles n + 1 to n + 9 should be independent of the gate
gn sent at cycle n. If not properly scheduled, there may be
a large number of idle cycles, when the control logic waits
for the input keys of the current gate being computed. We
treat this problem as offline scheduling of a Directed Acyclic
Graph (DAG) to a Bounded Number of Processors (BNP)
with the number of processors set to the number of pipelined
stages [32]–[36]. The scheduling is performed in two steps:

g1

g2
g3

Fig. 3. Different types of gate dependencies.

1) The gates are ordered according to their priority.
2) From the ordered list, the gates are assigned one by one to

one of the free processors.

A. Setting the priority

In the majority of the work on DAG scheduling, one of the
three parameters are used as the measure of priority:
• t-level: length of the longest path (excluding the gate) from

the netlist input to the gate.
• b-level: length of the longest path (including the gate) from

the gate to netlist output.
• ALAP: length of the critical path - b-level.

The key difference between assigning tasks to parallel
processors and to a single pipelined processor is that in
the latter case the bottleneck is not the availability of the
processors rather the readiness of the inputs. Therefore, the last
two parameters are better than the t-level in this case since they
both prioritize the gates with a higher number of dependent
gates. However, they still do not result in the optimal ordering
of gates. This is illustrated by the small example netlist in
Fig 3. According to both b-level and ALAP, gates g1 and g2
have higher priority than g3, while scheduling g3 first will
free up more number of gates. In this work, we employ the
weighted fanout of a gate as a measure of its priority. The
fanout of a gate is the number of gates dependent on it. In
computing weighted fanout the weight of XOR gates are set
to 1, and the weights of the non-XOR gates are set to 10, the
number of cycles it takes to compute their output keys.

B. Adding Gates to the Queue

To add gates to the queue from the ordered list we follow
Algorithm 1. This is a simulator of the hardware architecture
presented in Sect IV. It includes all the constraints of the
hardware (e.g., the number of pipeline stages, processing one
gate per cycle, memory conflict, etc.) except one. That is at
every cycle, instead of reading only one gate, it reads all the
gates that have not been queued yet from the ordered list and
queue the first ready gate. A gate is ready when the keys
assigned to its inputs have been computed. If none of the
gates are ready, it inserts a stall.

The input to the algorithm is the ordered list of gates
GateList of size G. Every element of GateList is a gate
g(i0, i1, l), where i0, i1 ∈ WireList are the indices of the
two input wires and l is the Boolean logic of g. WireList is
the list of wires that are ordered according to the following
rules (introduced in SCD format [11]): (i) the first M indices
belong to the M input wires of the netlist, and (ii) the index
of the output wire of a gate is the sum of the gate’s index

Algorithm 1: Algorithm to assign gates to the queue
input : Ordered list of gates GateList
output : The queue of gates Q
parameters: number of input wires M

number of gates G
number of pipeline stages P

1 create arrays W0, W1, R0, R1 of 0s
2 create an array Ready of 0s
3 for k = 1 to M do
4 set Ready[k] to P
5 end
6 c = 0
7 while size of Q <G do
8 increment c
9 for k = 1 to M +G do

10 if Ready[k] is not 0 then
11 increment Ready[k]
12 end
13 end
14 stall rd =
15 mem rules(W0[c−1],W1[c−1], R0[c−1], R1[c−1])
16 if stall rd is true then
17 push stall into Q
18 continue
19 end
20 for k = 1 to G do
21 read g(i0, i1, l) from GateList[k]
22 if Ready[i0] >P and Ready[i1] >P then
23 push g into Q
24 set R0[c] to 1, set R1[c] to 1
25 if l is XOR then
26 set W0[c+ 1] to 1
27 set Ready[k] to P
28 else
29 set W1[c+ P + 1] to 1
30 set Ready[k] to 1
31 end
32 break
33 end
34 end
35 push stall into Q
36 end

in the GateList and M . The task mem rules at line 15 of
Algorithm 1 decides if there is a stall in the read operation
according to the rules outlined in Sect IV-D.

Note that scheduling instructions in a pipelined processor is
an active area of research [37]–[39]. However, these schemes
target real-time scheduling. Therefore, they primarily optimize
the speed of scheduling and deal within only a limited view of
the different sets of operations running in parallel. In the case
of GC, the gates are scheduled offline, only once per netlist,
and the scheduler has the complete view of the entire netlist.
Therefore, these schemes do not benefit this specific task.

VI. EVALUATION

A. Benchmark Functions
Table II shows the benchmark functions along with the

number of gates and XOR gates and the number of netlist
cycles to complete each function used to evaluate FASE.
These benchmarks, except the MACs, are the largest sequential
netlists provided in the TinyGarble [14] repository, one of
the most recent and efficient netlist synthesis tools for GC.
The netlists for multiplication performs the same functions as
those in [14], but we use different implementations that favor
parallelism. The MAC netlists perform the same function as
the custom GC accelerator of MAXelerator [19].

TABLE II
BENCHMARK FUNCTIONS

Benchmark Function Input
bits

Netlist
csycles # Gates # XORs

Mill 8 8 Millionaire’s 8 8 4 3
Add 8 1 Addition 8 1 37 30
Add 8 8 Addition 8 8 5 2
Hamm 32 1 Hamming dist. 32 1 188 157
Hamm 32 32 Hamming dist. 32 32 13 8
Hamm 512 512 Hamming dist. 512 512 21 12
Mult 256 512 Multiplication 256 512 1699 1186
Mult 1024 2048 Multiplication 1024 2048 6782 4735
MAC 8 1 MAC 8 1 397 231
MAC 16 1 MAC 16 1 1678 1077
MAC 32 1 MAC 32 1 7036 4805
CORDIC 32 31 Trigonometric 32 31 2464 1544
AES 128 11 AES 128 11 4662 3225

B. Resource Utilization
FASE is implemented on a Xilinx Virtex UltraScale

VCU108 (XCVU095) FPGA. The resource utilization on this
platform is shown in Table III. In this implementation, the
number of gates G = 213, the number of input bits M = 210,
and the number of output bits N = 28. These parameters are
selected such that FASE supports the largest of the benchmark
functions presented in Table II. The memory requirement
will increase with the increase in the values of G, M , or
N . However, the resource utilization by the garbling engine
and the key generator is independent of these parameters.
Therefore, we report the independent utilization by the latter
components separately in Table III. The maximum supported
clock frequency on this platform is 200MHz.

TABLE III
RESOURCE UTILIZATION OF FASE

Resource Total Garbling Engine Key generator

Num % Num % Num %
LUT 50035 9.31 31330 5.83 18202 3.39
FF 11416 1.06 5612 0.52 3917 0.36
LUTRAM 569 0.74 553 0.72 0 0.00
BRAM 68.5 3.96 0 0.00 0 0.00

We do not compare the resource utilization with previous
GC accelerators. MAXelerator [19] supports only one specific
function. The accelerator in [21] employs SHA1 for encryp-
tion, which is not considered secure anymore, and 80-bit keys
instead 128 bits used by the recent GC realizations. Therefore,
it is not possible to make a fair comparison.

C. Evaluation of Scheduling and Memory Management

The goal of these optimizations is to reduce the number of
cycles per gate. According to our evaluation, using weighed
fanout instead of ALAP results in 0 to 9% reduction in the
percentage of idle cycles. We choose to compare to ALAP as
it has been shown to be superior over other methods of offline
scheduling in a bounded number of processors [35].

To evaluate the performance improvement provided by the
memory management techniques presented in Sect IV-D, we
compare the average number of cycles per gate for different
benchmark functions over one netlist cycle without and with
the memory management in Table IV. The table shows that
memory management reduces the average number of cycles
per gate by up to 0.5. To put these values into context, the
theoretical minimum value of cycles per gate is 1.5.

TABLE IV
EVALUATION OF THE EFFECT OF THE MEMORY OPTIMIZATION

Benchmark Without optimization With optimization

Cycles Cycle/gate # Cycles Cycle/gate Improv.
Mill 8 8 19 4.75 17 4.25 0.50
Add 8 1 120 3.24 120 3.24 0.00
Add 8 8 17 3.40 17 3.40 0.00
Hamm 32 1 342 1.82 320 1.70 0.12
Hamm 32 32 65 5.00 65 5.00 0.00
Hamm 512 512 113 5.38 113 5.38 0.00
Mult 256 512 3123 1.84 2686 1.58 0.26
Mult 1024 2048 12492 1.84 10744 1.58 0.26
MAC 8 1 769 1.94 675 1.70 0.24
MAC 16 1 3160 1.88 2770 1.65 0.23
MAC 32 1 12746 1.81 11414 1.62 0.19
CORDIC 32 31 4554 1.85 4047 1.64 0.21
AES 128 11 9004 1.93 7697 1.65 0.28

D. Comparison with Previous Work

We now compare the performance of FASE with the two
most recent GC accelerators implemented on FPGA [19],
[21]. Both these works employ multiple cores while FASE
employs a single core with a pipelined architecture. Similar
to [19], we compare the performances on a per core basis.
Table V compares the throughput of these works with FASE
for the reported benchmark functions. Throughput is computed
as the number of garbled netlist per core per cycle. FASE
shows 110× to 310× improvement in throughput compared
to the generic accelerator [21]. Table V also shows that the
throughput of FASE is 3.65× to 4.98× smaller compared
to [19] for MAC operation. We would like to emphasize
that [19] is a customized architecture that can only perform this
one specific function while FASE is a generic GC accelerator
capable of executing any given netlist.

E. Improvement in Throughput over Software Approach

Finally, we evaluate the performance of FASE against the
software realization of GC presented in TinyGarble [20].
TinyGarble is built on the JustGarble [11] framework. With the
fixed key block cipher optimization, this is the fastest software
realization of GC at present. We run it on an Intel Xeon E5-
2600 processor @ 2.9GHz with 128 GB memory. Since there
is a large difference in the clock frequency of the FPGA and

TABLE V
COMPARISON OF FASE WITH PREVIOUS GC ACCELERATORS

Benchmark Previous
Work # cores # cycles # cycles

of FASE Improv.†

Millionaire (2) [21] 43 1.90E+02 6.70E+01 121.94
Addition (6) [21] 43 5.60E+02 9.90E+01 243.23
Hamming (10) [21] 43 1.20E+03 1.66E+02 310.84
Hamming (30) [21] 43 2.20E+03 3.38E+02 279.88
Hamming (50) [21] 43 2.80E+03 6.69E+02 179.97
A * B (8) [21] 43 4.40E+03 6.19E+02 305.65
A * B (32) [21] 43 3.60E+04 1.05E+04 147.78
A * B (64) [21] 43 1.10E+05 4.28E+04 110.51
MAC 8 1 [19] 8 2.40E+01 7.01E+02 1/3.65
MAC 16 1 [19] 14 4.80E+01 2.80E+03 1/4.17
MAC 32 1 [19] 24 9.60E+01 1.15E+04 1/4.98
†In terms of (number of netlists garbled per cycle per core)

the CPU, we compare the performance in terms of absolute
time in us, instead of the number of cycles. As shown in
Table VI, FASE is up to 19× faster than the fastest software
realization of GC.

As mentioned earlier, the customized GC accelerator for
MAC presented in [19] accelerates the privacy-preserving
recommendation system in [22] by only 1.5× even though
it accelerates the MAC operation, which is 2/3rd of all the
computations, by ∼50×. In that particular work, most of the
remaining operations involved trigonometric functions which
can be executed by the CORDIC function. FASE accelerates
MAC by ∼13× and CORDIC by ∼10×. Therefore, it is able
to accelerate the system in [22] by ∼12×.

TABLE VI
COMPARISON OF FASE ON FPGA WITH TINYGARBLE [14] ON CPU

Benchmark Garbling Time(cc) Garbling Time (µs)

FASE TG [14] FASE Improv.
Mill 8 8 2.59E+02 1.04E+01 1.30E+00 8.05
Add 8 1 1.75E+02 8.92E+00 8.75E-01 10.19
Add 8 8 1.38E+02 1.34E+01 6.90E-01 19.37
Hamm 32 1 3.38E+02 2.98E+01 1.69E+00 17.64
Hamm 32 32 2.72E+03 1.09E+02 1.36E+01 8.00
Hamm 512 512 7.01E+04 1.98E+03 3.51E+02 5.65
Mult 256 512 1.64E+06 8.27E+04 8.19E+03 10.10
Mult 1024 2048 5.61E+07 1.25E+06 2.81E+05 4.46
MAC 8 1 7.01E+02 3.82E+01 3.51E+00 10.90
MAC 16 1 2.80E+03 1.63E+02 1.40E+01 11.62
MAC 32 1 1.15E+04 7.38E+02 5.73E+01 12.87
CORDIC 32 31 1.29E+05 6.82E+03 6.44E+02 10.60
AES 128 11 8.77E+04 5.07E+03 4.38E+02 11.57

VII. CONCLUSION

We have presented FASE, an FPGA accelerator for Secure
Function Evaluation (SFE) by employing the Yao’s GC pro-
tocol. FASE employs a pipelined garbling engine, efficient
assignment of gates to the engine to reduce idle cycles, and
optimized memory management to increase the number of
gates garbled per cycle. As a result, it achieves at least 2 orders
of magnitude improvement in throughput per core compared to
the most recent generic GC accelerator on FPGA. FASE also
outperforms the customized GC accelerators when applied to
problems requiring diverse computations.

Acknowledgments. This work was supported in parts by the
NSF(CNS-1619261), SRC(2016-TS-2690), MURI(FA9550-
14-1-0351), and ONR (N00014-17-1-2500) grants.

REFERENCES

[1] F. Sebastiani, “Machine learning in automated text categorization,” ACM
computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[2] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[3] H. Aradhye, W. Hua, and R.-S. Lin, “Native machine learning service
for user adaptation on a mobile platform,” Apr. 23 2013, uS Patent
8,429,103.

[4] J. Kirk, “Ibm join forces to build a brain-like computer,” http://www.
pcworld.com/article/2051501/, 2016.

[5] N. Jones et al., “The learning machines,” Nature, vol. 505, no. 7482,
2014.

[6] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS, 2012.

[7] Brenner, Perl, and Smith, “hcrypt SFE project,” https://hcrypt.com/sfe/.
[8] A. Yao, “How to generate and exchange secrets,” in Foundations of

Computer Science, 1986., 27th Annual Symposium on, 1986.
[9] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay – a secure two-

party computation system,” in USENIX Security. ACM, 2004.
[10] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole:

Reducing data transfer in garbled circuits using half gates,” Cryptology
ePrint Archive, 2014, http://eprint.iacr.org/2014/756.

[11] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
garbling from a fixed-key blockcipher,” in Security and Privacy (SP),
2013 IEEE Symposium on. IEEE, 2013.

[12] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in International Colloquium on Automata,
Languages, and Programming. Springer, 2008.

[13] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in Conference on Electronic Commerce, 1999.

[14] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly compressed and scalable sequential
garbled circuits,” in IEEE S&P, 2015.

[15] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor, “Frigate: A
validated, extensible, and efficient compiler and interpreter for secure
computation,” in Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on. IEEE, 2016, pp. 112–127.

[16] B. Kreuter, A. Shelat, B. Mood, and K. Butler, “PCF: A portable circuit
format for scalable two-party secure computation.” in USENIX Security,
2013.

[17] A. Rastogi, M. A. Hammer, and M. Hicks, “WYSTERIA: A program-
ming language for generic, mixed-mode multiparty computations,” in
S&P. IEEE, 2014.

[18] N. Büscher, M. Franz, A. Holzer, H. Veith, and S. Katzenbeisser, “On
compiling boolean circuits optimized for secure multi-party computa-
tion,” Formal Methods in System Design, vol. 51, no. 2, pp. 308–331,
2017.

[19] S. U. Hussain, B. D. Rouhani, M. Ghasemzadeh, and F. Koushanfar,
“MAXelerator: FPGA Accelerator for Privacy Preserving Multiply-
Accumulate (MAC) on Cloud Servers,” in DAC. ACM, 2018.

[20] E. M. Songhori, S. Zeitouni, G. Dessouky, T. Schneider, A.-R. Sadeghi,
and F. Koushanfar, “Garbledcpu: a mips processor for secure computa-
tion in hardware,” in DAC. ACM, 2016.

[21] X. Fang, S. Ioannidis, and M. Leeser, “Secure function evaluation using
an fpga overlay architecture.” in FPGA, 2017.

[22] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in Conference on
Computer & communications security. ACM, 2013.

[23] S. Manuel, “Classification and generation of disturbance vectors for
collision attacks against sha-1,” Designs, Codes and Cryptography,
vol. 59, no. 1-3, pp. 247–263, 2011.

[24] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,” in
Annual international cryptology conference. Springer, 2005, pp. 17–36.

[25] A. Satoh, “Hardware architecture and cost estimates for breaking sha-1,”
in International Conference on Information Security. Springer, 2005,
pp. 259–273.

[26] N. F. Pub, “197: Advanced encryption standard (aes),” Federal informa-
tion processing standards publication, vol. 197, no. 441, 2001.

[27] S. U. Hussain. FASE: FPGA Acceleration of Secure Function
Evaluation. [Online]. Available: https://github.com/siamumar/FASE

[28] M. Naor and B. Pinkas, “Computationally secure oblivious transfer,”
Journal of Cryptology, vol. 18, no. 1, 2005.

[29] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” in CCS. ACM,
2017.

[30] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Symposium on Theory of computing. ACM, 1990.

[31] K. Wold and C. H. Tan, “Analysis and enhancement of random number
generator in fpga based on oscillator rings,” International Journal of
Reconfigurable Computing, vol. 2009, 2009.

[32] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer,
2016.

[33] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in 2010 31st IEEE Real-Time
Systems Symposium. IEEE, 2010, pp. 259–268.

[34] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications. Springer Science & Business Media,
2011, vol. 24.

[35] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the
task graph scheduling algorithms,” Journal of Parallel and Distributed
Computing, vol. 59, no. 3, pp. 381–422, 1999.

[36] W. Bożejko, A new class of parallel scheduling algorithms. Oficyna
wydawn. Politechniki Wrosłwskiej, 2010.

[37] J. R. Goodman and W.-C. Hsu, “Code scheduling and register allocation
in large basic blocks,” in ACM International Conference on Supercom-
puting 25th Anniversary Volume. ACM, 2014, pp. 88–98.

[38] J. P. Shen and M. H. Lipasti, Modern processor design: fundamentals
of superscalar processors. Waveland Press, 2013.

[39] A. Benoit, Ü. V. Çatalyürek, Y. Robert, and E. Saule, “A survey of
pipelined workflow scheduling: Models and algorithms,” ACM Comput-
ing Surveys (CSUR), vol. 45, no. 4, p. 50, 2013.

