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ABSTRACT
In Near-Neighbor Search (NNS), a new client queries a database
(held by a server) for the most similar data (near-neighbors)
given a certain similarity metric. The Privacy-Preserving
variant (PP-NNS) requires that neither server nor the client
shall learn information about the other party’s data except
what can be inferred from the outcome of NNS. The over-
whelming growth in the size of current datasets and the lack
of a truly secure server in the online world render the existing
solutions impractical; either due to their high computational
requirements or non-realistic assumptions which potentially
compromise privacy. PP-NNS having query time sub-linear
in the size of the database has been suggested as an open
research direction by Li et al. (CCSW’15). In this paper,
we provide the first such algorithm, called Secure Local-
ity Sensitive Indexing (SLSI) which has a sub-linear query
time and the ability to handle honest-but-curious parties.
At the heart of our proposal lies a secure binary embedding
scheme generated from a novel probabilistic transformation
over locality sensitive hashing family. We provide informa-
tion theoretic bound for the privacy guarantees and support
our theoretical claims using substantial empirical evidence
on real-world datasets.

1. INTRODUCTION
Near-Neighbor Search (NNS) is one of the most funda-

mental and frequent tasks in large-scale data processing sys-
tems. In NNS problem, a server holds a collection of users’
data; a new user’s objective is to find all similar data to

∗Indicates equal contribution of the first two authors.

her query given a certain similarity metric. NNS is used in
personal recommendations (of friends, events, movies, etc.)
especially based on neighborhood models [61], online classi-
fication based on K-NN search, face recognition [50], secure
biometric authentication [3, 5], privacy-preserving speech
recognition [42], etc. The demand for privacy in big-data
systems has led to an increasing interest in the problem
of Privacy-Preserving Near-Neighbor Search (PP-NNS). In
PP-NNS, all of the clients’ data must remain private to their
respective owners. This implies that not only server(s), but
also a new client who queries the database, should not learn
information about other clients’ data except the NNS result.

The above setting is natural and ubiquitous in the on-
line world where matching and recommendations are com-
mon [43]. For example, on dating websites, a client is in-
terested in finding similar profiles (near neighbors) without
revealing her attributes to anyone. Note that, it is prob-
lematic to assume any trusted server in real settings. For
instance, privacy breaches where the data servers have been
compromised for a significant blocks of data are common in
recent times. A well-publicized recent example is Yahoo’s
massive leak, which compromised 500 million user accounts
including private information such as phone number, date
of birth, or even answers to security questions [1]. It is,
therefore, desirable that the protocol does not rely on the
complete security of participating servers and even if data
from the server is compromised, the user’s information must
remain secure.

Keeping in mind both big-data and modern security chal-
lenges, four main requirements have to be satisfied: (i) one
shall not assume any trusted server, (ii) data owners (clients)
are not trusted, (iii) modern datasets are very high dimen-
sional, and (iv) the query time must be sub-linear (near con-
stant) in the number of clients (or database size) in order
to handle web-scale datasets. Finding sub-linear privacy-
preserving solution without any trusted party is currently
considered to be a critical, yet open, research direction as
stated in a recent article [36].

Due to the importance of the PP-NNS problem, there
have been many attempts to create a practical solution. In
theory, any function (e.g., NNS) with inputs from different



parties can be evaluated securely without revealing the in-
put of each party to another using Secure Function Evalua-
tion (SFE) protocols such as Garbled Circuit (GC) protocol.
While the SFE protocols have been continually improving
in efficiency, they still suffer from huge execution times and
massive communication between executive servers. In ad-
dition, realizing NNS with any of the SFE protocols faces
the scalability issue. These protocols scale (at best) linearly
with respect to the size of the database [47], undermining
requirement four. As we describe later, we only utilize the
GC protocol for a small part of the computation.

Supporting NNS on encrypted data is an active area of
recent research [65, 28, 67, 19]. Unfortunately, available
crypto-based solutions fail to support high dimensional data
and they usually require multiple rounds of communication
between user and the server. Mylar [45] is a system for web
applications that works on top of encrypted data which is
proved to be insecure by Grubbs et al. [25]. One of the most
adopted solutions is Asymmetric Scalar-Product-preserving
Encryption (ASPE) [65]. However, not only this scheme has
linear query complexity in terms of the size of the database,
it has been proven to be insecure against chosen plaintext
attack by Yao et al. [67]. More generally, they have proved
that secure NNS is at least as hard as Order Preserving En-
cryption (OPE). Since it has been proven that it is impossi-
ble to have secure OPE under standard security models [6,
7], it is not feasible to have a Secure NNS under standard
security models such as Ciphertext Indistinguishability un-
der chosen Plaintext Attack (IND-CPA). In this paper, we
define ε-security and show that our solution limits the infor-
mation leakage (for any arbitrary upper bound) while having
a practical sub-linear PP-NNS.

We propose Secure Locality Sensitive Indexing (SLSI) as
a practical solution for the sub-linear PP-NNS on high di-
mensional datasets. Performing NNS on a very high dimen-
sional database is a non-trivial task even when data privacy
is not considered a constraint. For example, NNS algorithms
based on k-d trees are marginally better than exhaustive
search [24]. Our solution has two main components: (i)
a novel probabilistic transformation over locality sensitive
hashing family (Section 5) and a (ii) secure black-box hash
computation method based on the GC protocol (Section 6).

Locality Sensitive Hashing (LSH) is the only line of work
which guarantees sub-linear query time approximate near-
neighbor search for high-dimensional datasets [29]. One fun-
damental property of LSH-based binary embedding is that
it preserves all pairwise distances with little distortion [31],
eliminating the need for sharing original attributes. How-
ever, the bits of the binary embeddings have enough in-
formation to estimate any pairwise distance (or similarity)
between any two users [4], which makes them unsuitable in
settings with no trusted party. We argue that the ability to
estimate all pairwise distances is sufficient but not necessary
for the task of near-neighbor search. In fact, we show for the
first time, that the ability to estimate distances compromises
the security of LSH-based embedding; rendering them sus-
ceptible to “triangulation” attack (see Section 5.1). In this
work, we eliminate the vulnerability of LSH with minimal
modification while not affecting the sub-linear property.

The hash computation process of SLSI takes as input ran-
dom seeds. These seeds should be consistent among different
users’ profiles. However, if they are made public, it can be
used by an attacker to reconstruct the users’ data from the

hashes. Therefore, we utilize the GC protocol to mask the
hash computation process from both servers and the users
as we detail in Section 6. Please note that the GC pro-
tocol execution is a one-time process for each store and/or
search operation and is performed independently of all other
profiles in the database. Therefore, it requires a negligible
query time.

Contributions. Our main contributions are as follows:
• We propose the first algorithm for PP-NNS with query

time sub-linear in the number of clients. No trusted
party or server is needed for handling sensitive data.
• We introduce the first generic transformation which

makes any given LSH scheme secure for public release
in honest-but-curious adversary setting. Our trans-
formation prevents the estimation of all pairwise dis-
tances which is unnecessary for the task of near-neighbor
search. This advantage comes at no additional cost,
and we retain all the properties of LSH required for
the sub-linear search.
• We give information theoretic guarantees on the secu-

rity of the proposed approach. Our proposed transfor-
mation, analysis, and the information theoretic bounds
are of independent theoretical interest.
• We provide a practical implementation of triangulation

attack for compromising the security of LSH signatures
in high dimensions. Our attack is based on alternating
projections. The proposed attack reveals the vulnera-
bility and unnecessary information leakage by the LSH
embeddings. In general, we experimentally verify that
the ability to estimate all pairwise distances is suffi-
cient for recovering original attributes.
• We support our theoretical claims using substantial

empirical evidence on real-world datasets. We fur-
ther provide the first thorough evaluation of accuracy-
privacy trade-off and its comparison with noise-based
privacy. Our scheme can process queries against a
database of size 3 Billion entries in real time on a typ-
ical PC. Performing the same task with the state-of-
the-art Yao’s Garbled Circuit SFE protocol requires
an estimated time of 1.5 × 108 seconds and 1.2 × 107

GBytes of communication (see Section 8.3).

2. PRELIMINARIES AND BACKGROUND
In this section, we briefly review our notation. Then, we

discuss our threat model followed by a background on LSH.
Finally, we explain how LSH is currently used for large-scale
near-neighbor search when the server is trusted. Please refer
to [29, 30] for more specific details.

2.1 Key Notations and Terms
A server holds a giant collection C of clients (or data own-

ers), each represented by some D dimensional attribute vec-
tors, i.e., C ⊂ RD. We are interested in finding the answers
to queries. The objective is

arg max
x∈C

Sim(x, q),

where Sim(., .) is a desired similarity measure. However,
the process should prevent any given (possibly dishonest)
client from inferring the attributes of other clients, except
for the information that can be inferred from the answer of
the NNS queries.



We interchangeably use the terms clients, users, data own-
ers, vectors, and attributes. They all refer to the vectors in
the collection C. Unless otherwise stated, the hash functions
h will produce a 1-bit output, i.e., h(x) ∈ {0, 1}. All the
hash functions are probabilistic, and in particular, there is
an underlying family (class) of hash functions H and h is
drawn uniformly from this family. The draw can be conve-
niently fixed using random seeds. Our protocol will require
some l-bits embedding and each of these l-bits will be formed
by concatenating l independent draws hi i ∈ {1, 2, ..., l} from
some family of hash functions. Similarity search and the
near-neighbor search will mean the same thing. Similarity
and distances can be converted into each other using the for-
mula distance = 1 - similarity. For any hash function h, the
event h(x) = h(y), for given pair x and y, will be referred
to as the collision of hashes.

2.2 Threat Model
There are two types of parties involved in our model:

servers and clients (data owners). The models in previous
works, for example [36], usually consider trusted servers. In
many practical scenarios, such as medical records, this is a
problematic assumption since the clients often do not de-
sire to share any personal information due to the potential
threats common in the online environment. In this paper,
we assume Honest-but-Curious (HbC) adversary model for
both data owners and servers. In this threat model, each
part is assumed to follow the protocol but is curious to ex-
tract as much information as possible about other party’s
secret data. While we do not trust any server, we assume
that the servers do not collude with each other. Please note
that this is the exact security model of the prior art [19]. We
want to emphasize that the assumption of two non-colluding
HbC servers is feasible since two servers can represent two
different companies, e.g. Amazon and Microsoft. Due to the
business reasons and the fact that any collusion will signif-
icantly damage their reputation, it would be very unlikely
that two companies will collude since it would be against
their interests.

The solutions based on the GC protocol, Fully Homo-
morphic Encryption (FHE), and Oblivious RAM (ORAM)
do not leak any information about the database and the
query [39] other than what can be inferred from the answer
of NNS. All other solutions leak some information either in
the setup phase (creating the database) or the query phase.
Unfortunately, GC, FHE, and ORAM solutions are compu-
tationally too expensive to be employed in real-world [65].
In this paper we compare the performance of our proposed
solution (SLSI) with GC. In addition, we formalize ε-security
and prove that the information leakage in our scheme can
be made as small as required by tuning a privacy parameter
in the protocol. We also compare our solution to the noise
addition-based techniques and illustrate, both experimen-
tally and theoretically, that our solution has significantly
higher precision/recall for the same security limits.

Note that the answer to NNS may reveal some information
about the query and/or the database, regardless of imple-
mentation details and security guarantees of any protocol.
For example, if client i and j are very close w.r.t similarity
measure (near identical), then the near-neighbor query of
client i should return j as the correct answer (with a high
probability). A correct answer automatically reveals infor-
mation that j’s attributes are likely to be very similar to

i’s attributes (with a high probability) even without having
knowledge of the other client’s attributes. This kind of infor-
mation leak cannot be avoided by any algorithm answering
the near-neighbor query with a reasonable accuracy. In ad-
dition, the privacy guarantees in the near-neighbor setting
all rely on the inherent assumption on bounded computa-
tions. Given unbounded computations, the adversary can
enumerate the whole space of every possible vector and use
near-neighbor query until the generated vector returns the
target client as the neighbor. In high dimensions, this pro-
cess will require exponential computations due to the curse
of dimensionality, which turns out to be a boon for the pri-
vacy of NNS.

2.3 Locality Sensitive Hashing
A popular technique for approximate near-neighbor search

uses the underlying theory of Locality Sensitive Hashing [29].
LSH is a family of functions with the property that similar
input objects in the domain of these functions have a higher
probability of colliding in the range space than non-similar
ones. In formal terms, consider H a family of hash functions
mapping RD to some set S.

definition 2.1 (LSH Family). A family H is called
(S0, cS0, p1, p2)-sensitive if for any two points x, y ∈ RD and
h chosen uniformly from H satisfies the following:
• if Sim(x, y) ≥ S0 then Pr(h(x) = h(y)) ≥ p1
• if Sim(x, y) ≤ cS0 then Pr(h(x) = h(y)) ≤ p2

For approximate nearest neighbor search typically, p1 >
p2 and c < 1 is needed. An LSH allows us to construct
data structures that give provably efficient query time algo-
rithms for the approximate near-neighbor problem with the
associated similarity measure.

One sufficient condition for a hash family H to be a LSH
family is that the collision probability PrH(h(x) = h(y))
is monotonically increasing function of the similarity, i.e.

PrH(h(x) = h(y)) = f(Sim(x, y)), (1)

where f is a monotonically increasing function. In fact most
of the popular known LSH families, such as MinHash (Sec-
tion 2.4) and SimHash (Section 2.5), actually satisfy this
stronger property. It can be noted that Equation 1 au-
tomatically guarantees the two required conditions in the
Definition 2.1 for any S0 and c < 1.

It was shown [29] that having an LSH family for a given
similarity measure is sufficient for efficiently solving near-
neighbor search in sub-linear time:

definition 2.2. Given a family of (S0, cS0, p1, p2)-sensitive
hash functions, one can construct a data structure for c-
NN with O(nρ logn) query time and space O(n1+ρ), where
ρ = log p1

log p2
< 1.

2.4 Popular LSH 1: Minwise Hashing (Min-
Hash) and Resemblance Similarity

One of the most popular measures of similarity between
web documents is resemblance (or Jaccard similarity)R [10].
This similarity measure is only defined over sets which can
be equivalently thought of as binary vectors over the uni-
verse, with non-zeros indicating the elements belonging to
the given set.

The resemblance similarity between two given sets x, y ⊆
Ω = {1, 2, ..., |Ω|} is defined as



R =
|x ∩ y|
|x ∪ y| =

a

f1 + f2 − a
, (2)

where f1 = |x|, f2 = |y|, and a = |x ∩ y|.
Minwise hashing [11] is the LSH for resemblance similar-

ity. The minwise hashing family applies a random permu-
tation π : Ω → Ω, on the given set x, and stores only the
minimum value after the permutation mapping. Formally
MinHash and its collision probability is given by

hminπ (x) = min(π(x)); Pr(hminπ (x) = hminπ (y)) = R. (3)

2.5 Popular LSH 2: Signed Random Projec-
tions (SimHash) and Cosine Similarity

SimHash is another popular LSH for the cosine similarity
measure, which originates from the concept of Signed Ran-
dom Projections (SRP) [14, 46, 27]. Given a vector x, SRP
utilizes a random w vector with each component generated
from i.i.d. normal distribution, i.e., wi ∼ N(0, 1), and only
stores the sign of the projection. Formally SimHash is given
by

hsignw (x) = sign(wTx). (4)

It was shown in the seminal work [23] that collision under
SRP satisfies the following equation:

Pr(hsignw (x) = hsignw (y)) = 1− θ

π
, (5)

where θ = cos−1
(

xT y
||x||2·||y||2

)
. The term xT y

||x||2·||y||2
, is the

cosine similarity. There is a variant of SimHash where, in-
stead of wi ∼ N(0, 1), we choose each wi independently as
either +1 or -1 with probability 1

2
. It is known that this

variant performs similar to the one with w ∼ N(0, 1) [46].
Since 1 − θ

π
is monotonic with respect to cosine similarity

S, SimHash is a valid LSH.

2.6 Mapping LSH to 1-bit
LSH, such as MinHash, in general, generates an integer

value, which is expensive from the storage perspective. It
would gain a lot of benefits from having a single bit hash-
ing schemes, or binary locality sensitive bits. It is also not
difficult to obtain 1-bit LSH. The idea is to apply a random
universal hash function to the LSH and map it to 1-bit.

A commonly used universal scheme is given by

h1bit(x) = a× x mod 2, (6)

where a is an odd random number, see [12] for more details.
With this 1-bit mapping, any hashing output h(x) can be
converted to 1-bit by applying universal 1-bit hash function
h1bit(.). Collision probability of this new transformed 1-bit
hashing scheme is given by

Pr(h1bit(h(x)) = h1bit(h(y))) =
Pr(h(x) = h(y)) + 1

2
. (7)

It is not difficult to show that h1bit(h(x)) is also a valid
LSH familiy for the same similarity measure associated with
h(.) [14, 51]. Another convenient (and efficient) 1-bit re-
hashing is to use the parity, or the most significant bit, of
hminπ (x) as 1-bit hash [51].

2.7 PP-NNS in Sub-linear Time with a Trusted
Server

In the trusted server settings, LSH-based protocols are
well-known for privacy-preserving near-neighbor search [30].
The protocol with sub-linear query time search involves the
following two major steps.

1. Hash Function Generation and Computation
(Pre-processing): The trusted server fixes random
seeds for hash functions. Every client x ∈ C sends
its attributes to the server. The server computes the
l-bit binary embedding E(x), using appropriate (pre-
chosen) LSH schemes hi(x)s. Computing l bits in-
volves generating multiple 1-bit hashes using indepen-
dent randomization and concatenating them E(x) =
[h1(x);h2(x); ...;hl(x)], where hi(x) is an independent
hashing scheme. The server also generates hash tables,
as a part of preprocessing for sub-linear time search.
New clients can be dynamically inserted into the ta-
bles.

2. Sub-linear Searching with Hamming Distance
(Querying): To find near-neighbors of any given query
point q, the trusted server computes the l-bit embed-
ding of q, E(q), using the pre-decided function E(.).
Due to the LSH property of E, it suffices to find points
y ∈ C such that E(q) and E(y) are close in Hamming
distance. Searching for close Hamming distance can be
done very efficiently in sub-linear time by only probing
few buckets in the pre-constructed hash tables [30].

The above protocol requires a trusted server which han-
dles all the data. The security relies on the fact that no
client is allowed to see any part of the computation pro-
cess. The sub-linearity of the search is due to the classical
sub-linear LSH algorithm for Hamming distance search [46].

3. CHALLENGES WITH UNTRUSTED SERVER
AND TYPES OF ATTACKS

For obtaining sub-linear solutions, we do not have many
choices. LSH-based techniques are the only known meth-
ods that guarantee efficient sub-linear query time algorithms
even in high dimensions [22]. Thus, one cannot hope to de-
viate from the philosophy of generating a binary embedding
for data vectors x, given by E(x), which preserves original
near-neighbors in the obtained Hamming space.

Conceptually, there can be three types of attacks when the
server is untrusted: (i) querying the database and brute-
forcing the space of inputs (ii) extracting the original at-
tribute vector from the hashes using compressive sensing
theory, and (iii) analyzing the combination of hashes and
measuring their mutual correlation to estimate the original
attribute of a user.

Brute-force/Probing Attacks. An attacker can ask
for the hash embedding of a random attribute vector and
check whether it is equal to another user’s hash (if the
database is compromised). However, exploring the entire
input space is computationally infeasible. If each element
of the attribute vector is represented as a 32-bit number,
we have (232)D possible unique inputs. National Institute
of Standards and Technology (NIST) states that any at-
tack that requires 2128 operations is computationally in-
feasible [62]. For example, for the two datasets that are



User(s) Servers

- server 1 generates random seeds1 (off-line)
- server 2 generates random seeds2 (off-line)

for all xis in 𝐶, each data owner 
computes random pad 𝑣i

and Enc𝑣i(xi)

𝑣i to server 1 - two servers jointly perform black-box computation of S(xi): 
server 1 inputs: seeds1 and 𝑣i, server 2 inputs: seeds2 and Enc𝑣i(xi) 

à output: S(xi)
- server 1 adds the new S(xi) to the hash tables

2. Constructing the Database 
(Hash Tables)

1. Generating Random Seeds

new user with query q 
computes random pad 𝑣q

and Enc𝑣q(q) 

3. Searching 
(Querying)

NNS(q)

Phases

Enc𝑣i(xi) to server 2

𝑣q to server 1
Enc𝑣q(q) to server 2

- two servers jointly perform black-box computation of S(q): 
server 1 inputs: seeds1 and 𝑣q, server 2 inputs: seeds2 and Enc𝑣q(q)

à output: S(q)
- server 1 searches the hash tables using S(q) and finds NNS(q)

Figure 1: The SLSI scheme consists of three phases: (i) generating random seeds, (ii) constructing the database, and (iii)
searching phase. The internal mechanism of S(.) is explained in Seciton 5. Black-box hash computation of S(x) is described
in Section 6 which is based on the GC protocol and takes as input Encv(x) (encryption of x) and the pad v.

considered in this paper, D > 186. Thus, there are 25952

possible inputs which are far beyond the security standards.
Note that each element of attribute vector might not have
uniform distribution, e.g., the value for age is typically a
number between 0 and 100. Therefore, each number may
not have maximum randomness (entropy). However, even if
each number has minimum randomness (1-bit entropy), for
any input vector with D > 128, the attack is not possible.

Compressive Sensing/Reconstruction Attacks. The
theory of compressed sensing makes it possible to approxi-
mately recover x from the hash embedding E(x) given the
random seeds used in E(.). Thus, we need to ensure that
neither users nor the server have any information about the
random seeds used in the computation of E(.). Every em-
bedding E(x)|x ∈ C, however, should be created using iden-
tical random seeds. We show that using secure function
evaluation protocols, it is possible to create secure binary
embeddings using the same set of random seeds while no-
one knows the seeds used in the hashing function. We de-
scribe the solution in Section 6. Since the generation of the
hash embedding is a one-time operation, it is allowed to be
costlier as it is independent of other query processes.

Multilateration/Correlation/Triangulation Attacks.
Although, recovering x from E(x) is not possible without
knowing the random seeds inside hi ∀i, it is still possible
to recover x from E(x) by combining a “few” calls to the
function E(.) over few known inputs y′is (similar to chosen-
plaintext attack). The LSH property allows the estimation
of any pairwise distance. Such estimations open room for
“triangulation” attack which is hard to prevent. We explain
the problem and the solution in Section 5. This information
leakage with LSH is one of the major reasons why sub-linear
search with semi-honest clients and absence of trusted party
is an open research direction.

We use a novel probabilistic transformation to show that
converting the bits generated from LSH family into secure
bits is suitable for public release in the semi-honest model
since it is secure against triangulation attack. Our secure
bits preserve only the near-neighbors in Hamming space,
unlike LSH, do not allow estimation of all possible distances.
Our final l-bit embedding functions will be denoted by S(x)
instead of E(.) to signify the secure nature of S(.). Our
solutions for making LSH secure is the main contributions
of this paper, which makes sub-linear time PP-NNS possible
in the semi-honest setting with no trusted party. In the
process, we fundamentally leverage the theory of LSH from
the privacy perspective.

Before we describe the technical details of our solution in
Sections 5 and 6 respectively, we briefly give an overview of

our final protocol.

4. PROPOSED SLSI PROTOCOL FOR SUB-
LINEAR QUERY TIME PP-NNS

The security of the final protocol is based on the pro-
posed secure LSH (described in Section 5). Utilizing Se-
cure LSH, we can generate l-bit embeddings, for some l,
S(.), such S(x) is safe for public release. Assuming that we
know such embedding S(.), our final protocol for sub-linear
query time PP-NNS works in three phases. The first phase is
the one-time random seeds generation (off-line). Next phase
accounts for one-time pre-processing stage and making the
database (hash tables). The third phase is the online query
phase. More precisely:

1. Generating Random Seeds of S(.): This process
needs to be performed only once and does not require any
communication between servers (off-line). Two servers gen-
erate random seeds that are required in the black-box hash
computation of S(.) (in phase two and three). The final
internal random seeds of S(.) is not known to anyone and
is secure. The mathematical detail of secure LSH embed-
ding, S(.), are described in Section 5 while the details on its
black-box computation are described in Section 6.

2. Constructing the Database (Hash Tables): Ev-
ery client x computes his/her l-bit secure binary embedding
S(x) using black-box hash computation by communicating
to the servers. This l-bit signature S(x) serves as the se-
cure public identifier for client x. Server #1 which possesses
all S(x)s, pre-processes the collection of l-bit binary strings
{S(x) : x ∈ C} to create hash tables using the classical al-
gorithm for sub-linear time search with Hamming distance.

3. Searching in Sub-Linear Time (Query Phase):
To find near-neighbors of point x, it suffices to find points
y such that the corresponding secure embeddings, S(x) and
S(y), are near-neighbors in Hamming distance. Searching
for close Hamming distance can be done very efficiently in
sub-linear time using the well-known algorithms [46].

It should be noted that other than the set SC = {S(x) :
x ∈ C}, no information is transfered between clients. Hence
if SC is not sufficient to recover any of the client’s infor-
mation, the protocol is secure. For better readability we
summarize the end-to-end protocol in Figure 1.

5. THE KEY INGREDIENT: LSH TRANS-
FORMATION

We explain why traditional LSH (or any scheme) which
allows for estimation of any pairwise distance is not secure in



the HbC adversary model. We describe the attack followed
by its solution. We later formalize the privacy budget.

5.1 “Triangulation” Attack
To give more insight into the situation, we describe trian-

gulation attack which leads to an accurate estimation of any
target client’s attribute q. For illustration, we focus on two
dimensions, but the arguments naturally extend in higher
dimensions. Assume that we are given the LSH embedding
E(q) of the target point q (instead of secure embedding S(.)).
An attacker, who wants to know the attributes of q, can cre-
ate three random data (points) in the space A, B, and C.
Creating few random points is not hard, e.g., fake online
profiles with random attributes. The protocol allows com-
putation of their LSH embeddings E(A), E(B), and E(C)
via the publicly available function E(.).

Given the random pointsA, B, C, and their corresponding
hashes E(A), E(B), and E(C), the attacker can compute the
number of matches between the hash values of E(A), E(B),
and E(C) with the target hash, E(q). Using these number
of matches, the distances of q with A, B, and C, denoted
by dA, dB and dC , can be accurately estimated from their
corresponding binary embeddings [4].

Estimation of Distances from LSH Embeddings:
Let us focus on estimating dA from l-bit binary LSH em-
bedding E(A) and E(q). For illustrations let l be equal to
5 and E(A) = 11010 and E(q) = 10110. Let m be the
measured number of bit matches between E(A) and E(q)
out of l. For our case, we have m = 3, because bit num-
bered 1, 4 and 5 of E(A) and E(q) are equal. Since every
bit comes from an independent 1-bit LSH scheme, we have
E[nmatch] = l×Pr(hi(q) = hi(A)) = m, where nmatch is the
number of bit matches between two LSH embeddings and
E[.] denotes the expected value of a random variable.

Thus we can estimate, in an unbiased way, the collision
probability Pr(h(A) = h(q)) by the expression m

l
, the mean

number of bit matches. As we discussed in Section 2, the
collision probability is usually a monotonic function of the
distance (or similarity) Pr(h(A) = h(q)) = f(dist(A, q))
where f is the monotonic function. Every monotonic func-
tion has an inverse, thus

dist(A, q) = f−1(m
l

)
,

is an accurate estimator of the distance or similarity [51,
37, 38]. See Section 9 for details where we describe the
implementation of triangulation attack.

After estimating the distances dA, dB and dC , the at-
tributes of q can be inferred using triangulation. Figure 2
shows a two-dimensional illustration of our setup.

q

dA

dB

dC
A

B

C

Figure 2: The user q can be located using random points A,
B, and C along with the distances dA, dB , and dC which
are estimated from the available hashes.

It should be noted that even if the distance estimation is
not very accurate, generating many distance estimates from

different random points would be sufficient to achieve a very
good accuracy in locating any target point.

The above illustration only shows two dimensions. For
higher dimensions, we show an efficient iterative process,
using the idea of alternating projections [9], to infer the at-
tributes even for high-dimensional vectors. In Section 9, we
describe the process in details. Our inference process shows
the power of simple iterative machine learning in breaking
the security, which itself can be of independent interest. The
ease of triangulation-based inference of attributes further
emphasizes the need for more secure hashing schemes which
we propose in the next section.

5.2 Probabilistic Transformations for Gener-
ating Secure LSH

Our proposal is a generic framework for making any given
LSH privacy-preserving. In particular, we prevent LSH from
leaking the distance information without compromising on
the accuracy of the near-neighbor search.

We illustrate the main idea using 1-bit MinHash and later
we formally introduce the methodology. The collision prob-
ability, for any two given data points x and y, under 1-bit

MinHash is given by R(x,y)+1
2

(Equation 7). This quantity
varies linearly, between 1 to 0.5 as R(x, y) varies from 1 to
0, with a constant gradient of 1

2
. Thus, even when R(x, y) is

small, the variation of the collision probability with distance
keeps changing and gets reflected in the Hamming distance
between the public l-bit hash strings. This property allows
us to estimate the distances accurately by counting the num-
ber of bit matches out of the l-bits which are public. For
example if 65% of bits matches, then a good estimate of sim-
ilarity between x and y is 0.65× 2− 1 = 0.3 (Equation 7).

To make LSH privacy-preserving without losing the accu-
racy in near-neighbor search tasks, it is necessary to have
the flat collision probability with no gradient if the similar-
ity between the pair x and y is below the satisfactory level.
Thus, for any pair of random points x and y, the Hamming
distance between the publicly available l-bit hash codes is
around l/2 (due to the 0.5 probability of agreement), which
prohibits the estimation of distances between x and y.

Until now, we have realized that we need to transform
the collision probability. The primary challenge is to find
the precise expression for the curve which has the desired
behavior and at the same time represents the collision prob-
ability of some 1-bit hashing scheme. It should be noted that
not every curve is a collision probability curve [14], there-
fore, it is not even known if such a mathematical expression
exists.

We show that the expression given by R(x,y)k+1
2

, for some
large enough k, has the required “sweet” property. In partic-
ular, we construct a new 1-bit secure MinHash with collision

probability R(x,y)k+1
2

for any positive integer k, instead of
R(x,y)+1

2
. The observation is that since R ≤ 1, Rk for rea-

sonably large k quickly falls to zero as R(x, y) goes away

from 1. Therefore, the quantity R(x,y)k+1
2

will be very close

to 1
2

for even moderately high similarity. Furthermore, we
can control the decay of the probability curve by choosing

k appropriately. The function R(x,y)k+1
2

follows the desired
trend of collision probability and is secure from information
theoretic perspective.

The key mathematical observation is that we can gener-

ate 1-bit hash functions with collision probability R(x,y)k+1
2



by combining k independent MinHashes. Note that, given
x and y, the probability of agreement of an independent
MinHash value is R(x, y). Therefore, the probability of
agreement of all k independent MinHashes will be R(x, y)k,
see [52] for details. Also, to generate a 1-bit hash value from
k integers, we need a universal hash function that takes a
vector of k MinHashes and maps it uniformly to 1-bit. The
final collision probability of this new 1-bit scheme is precisely
R(x,y)k+1

2
, as required. The overall idea is quite general and

applicable to any LSH. We formalize it in the next section.

5.3 Formalization
As we argued in the previous section, we need a universal

hashing scheme, huniv : Nk 7→ {0, 1}, which maps a vector
of k integers uniformly to 0 or 1. There are many ways to
achieve this and a common candidate is

huniv(x1, x2, ..., xk) = (rk+1 +

k∑
i=1

rixi) mod p, mod 2,

where ri are fixed randomly generated integers.
Given a hash function h, uniformly sampled from any

given locality sensitive family H, let us denote the prob-
ability of agreement (collision) of hash values of x and y by
Pc,

Pcollision ≡ Pc ≡ PrH(h(x) = h(y)). (8)

definition 5.1 (Secure LSH). Our proposed secure 1-
bit LSH, hsec, parameterized by k, for any point x is given
by

hsec(x) = huniv(h1(x), h2(x), ..., hk(x)), (9)

where his, i ∈ {1, 2, ..., k} are k independent hash functions
sampled uniformly from the LSH family of interest H.

It is not difficult to show the following:

Theorem 5.1. For any vectors x and y, under the ran-
domization of hsec and ri we have

P secc = PrH,r (hsec(x) = hsec(y)) =
P kc + 1

2
(10)

Proof. It should be noted that hsec(x) = hsec(y) can
happen due to the random bit collision with probability 1

2
.

Otherwise the two are equal if and only if

(h1(x), h2(x), ..., hk(x)) = (h1(y), h2(y), ..., hk(y)),

which happens with probability P kc , because each hi is inde-
pendent and Pr(hi(x) = hi(y)) = Pc. Therefore, the total
probability is 1

2
+ 1

2
P kc leading to the desired expression.

We illustrate the usefulness of the framework proposed
above in deriving secure 1-bit hash for two most popular
similarity measures: 1) Secure MinHash for Jaccard sim-
ilarity and 2) Secure SimHash for Cosine similarity. The
idea is applicable to any general LSH including ALSH for
Maximum Inner Product Search (MIPS) [53, 56, 57].

5.3.1 Making Minwise Hashing Secure (Secure Min-
Hash)

As an immediate consequence of Theorem 5.1, we can
obtain secure 1-bit MinHash in order to search based on the
Resemblance similarity,

hminsec (x) = huniv(hminπ1
(x), hminπ2

(x), ..., hminπk (x)), (11)

with the following Corollary:
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Figure 3: Left: The probability of collision of Secure Min-
Hash as a function of R (resemblance) for different values of
k. Right: The probability of collision of Secure SimHash
as a function of θ (Cosine Similarity) for different values of
k. Increasing k makes the collision probability drop to the
constant 0.5 rapidly.

Corollary 1. For MinHash we have:

P secc = Pr
(
hminsec (x) = hminsec (y)

)
=
Rk + 1

2
(12)

Figure 3 shows that the nature of new collision probability
follows the desired trend. The parameter k gives us the knob
to tune the probability curve. In section 5.4, we discuss how
to tune this knob.

To generate our final l-bit binary embedding S(x), we sim-
ply generate l independent hminsec , by using independent per-
mutations for MinHashes and independent random numbers
for the universal hashing. Therefore, S(x) is the concatena-
tion of l different hminsec .

In Section 5.3.3, we formally show that our transformed
bits are more secure than LSH. In particular, we prove that
the mutual information between the two secure 1-bit Min-
Hashes, hminsec (x) and hminsec (y) decays sharply (exponentially
with k) to zero as the similarity between x and y (i.e. R) de-
creases. Thus, there is negligible mutual information about
x in the embedding of some random (non-neighbor) y.

5.3.2 Making Signed Random Projections Secure (Se-
cure SimHash)

Analogous to MinHash, we can make SimHash secure with
the same properties.

hsignsec (x) = huniv(hsignw1
(x), hsignw2

(x), ..., hsignwk (x)), (13)

where wis for all i are independently chosen. Figure 3 (right)
summarizes the collision probability as a function of simi-
larity for different values of k.

Corollary 2. For Secure SimHash we have:

P secc = Pr
(
hsignsec (x) = hsignsec (y)

)
=

(1− θ
π

)k + 1

2
(14)

5.3.3 Info. Theoretic Bound as a Function of k
We provide the theoretical property of our transformation

by quantifying the mutual information between two l-bit
secure embeddings. The similarity of x and y (Sim(x, y)) is
denoted as Sx,y.

Theorem 5.2. For any two data points x and y, with
Sx,y being the similarity between them, the mutual informa-
tion between hsec(x) and hsec(y) is bounded by

I(hsec(x);hsec(y)|Sx,y) < l · (2P secc − 1)log(
P secc

1− P secc

) (15)



Proof. For simplicity let us call the ith bit of hsec(x), ui
and ith bit of hsec(y), u′i. and derive the mutual information
between these two bits conditioned on Sx,y as follows:

I(ui;u
′
i|Sx,y) ≡ ∑

ui,u
′
i∈{0,1}

P (ui, u
′
i|Sx,y)log

P (ui, u
′
i|Sx,y)

P (ui|Sx,y)P (u′i|Sx,y)

= P secc log(2P secc ) + (1− P secc )log(2(1− P secc ))

< (2P secc − 1)log(
P secc

1− P secc

)

Since every bits of the binary embeddings are generated in-
dependently, the mutual information between l-bit embed-
dings is multiplied by l.

Substituting P secc from Equation 12 and Equation 14, the
mutual information can be expressed as a function of Re-
semblance and Cosine similarities, respectively.

Corollary 3. For secure MinHash we have:

I(hminsec (x);hminsec (y)|R) < Rklog(
1 +Rk

1−Rk ) (16)

and for Secure SimHash:

I(hsignsec (x);hsignsec (y)|θ) < (1− θ

π
)klog(

1 + (1− θ
π

)k

1− (1− θ
π

)k
) (17)

As can be seen from Equations 16 and 17, the mutual in-
formation drops rapidly (exponentially with k) to zero for
x and y that have small similarity. Thus, for any two non-
neighbor points (small Sim(x, y)) the generated bits behave
like random bits revealing no information about each other.
Obviously, k = 1, which is the traditional choice for LSH,
is not secure, as the bits contain significant mutual infor-
mation. The choice of k controls the decay of the mutual
information and hence is the privacy knob (see Section 5.4
for details on how to tune this knob).

5.4 Formalism of Privacy Budget
Suppose, the application at hand considers any pair of

points x and y with Sim(x, y) < s0 as non-neighbors, for
some problem-dependent choice of s0. The application also
specifies an ε such that the collision probability of any two
non-neighbors should not exceed 1

2
+ ε (be very close to half

(random)). Forcing this condition ensures that whenever
Sim(x, y) < s0, the released bits cannot distinguish x and
y with any randomly chosen pair. Formally,

definition 5.2 ( ε-Secure Hash at Threshold s0).
For any x and y with Sim(x, y) ≤ s0, we call a 1-bit hash-
ing scheme hsec secure at threshold s0 if the probability of
bit-matches satisfies:

1

2
≤ Pr(hsec(x) = hsec(y)) ≤ 1

2
+ ε.

Note that the expression of ε-secure hash is not symmetric
since the probability of collision is always greater than or
equal to 1

2
(see Equation 10).

We show that for any ε-secure hash function, the mutual
information in the bits of non-neighbor pairs is bounded.

Theorem 5.3 (Information Bound). For any 1-bit
ε-secure hash function at threshold s0, the mutual informa-
tion between h(x) and h(y), for any pair with Sim(x, y) ≤
s0, is bounded as

I(h(x);h(y)) ≤ 2ε log
1 + 2ε

1− 2ε
(18)

Proof. Follows from Theorem 5.2 and Definition 5.2.

In triangulation attack, we have access tom attributes yis:
Y = y1, y2, ..., ym, and their corresponding hashes h(yi)s.
Assuming yis are independent, we can bound the mutual
information about any target x conditional on knowing yi’s
and his as follows:

Theorem 5.4. For any 1-bit ε-secure hash function at
threshold s0, the mutual information between h(x) and
{h(y1), h(y2)...h(ym)}, for any pair with Sim(x, yi) ≤ s0
and any pair of yi, yj are independent, is bounded as

I(h(x);h(y1)h(y2)...h(ym)) ≤ 2mε log
1 + 2ε

1− 2ε
(19)

Proof. Define subsets T ⊆ V, where V = n.

I(h(x);h(y1)h(y2)...h(ym)) =I(h(y1)h(y2)...h(ym);h(x))

=
∑

T⊆2,...,n

(−1)|T |I(T ;h(x))

≤2mε log
1 + 2ε

1− 2ε
(20)

Note that the mutual information of any yi, yj pair is 0 be-
cause they are independent.

Thus, for small enough ε, it is impossible to get enough
information about any non-neighbor x via triangulation. We
verify this observation empirically in the experiments. Next,
we show that Secure LSH can always be made ε-secure hash
function for any ε using an appropriate choice of k.

Theorem 5.5. Any Secure LSH, hsec, is also an ε-secure
hash function at any given threshold s0, for all

k ≥
⌈

log 2ε

log
(
Pr(h(x) = h(y)|Sim(x, y) = s0)

)⌉, (21)

where d.e is the ceiling operation. Here, h(x) is the original
hash function from which the hsec is derived.

Proof. Follows from the definition of ε-secure hashing
added with fact that h(x) satisfies Definition 2.1.

In order to obtain ε-secure MinHash, we need k =

⌈
log 2ε
log s0

⌉
.

For secure SimHash, we need to choose k =

⌈
log 2ε

log
(
1− cos

−1(s0)
π

)⌉.

To get a sense of quantification, if we consider s0 = 0.75
(high similarity) and ε = 0.05, then we have k = 8 (Min-
Hash) and k = 12 (SimHash).

5.5 Utility-Privacy Trade-off of Secure LSH
As mentioned in Section 2.3, the querying time and space

for approximate Near-Neighbor search are directly quanti-
fied by ρ = log p1

log p2
< 1. The space complexity grows as n1+ρ,

while the query time grows as nρ, where n is the size of the



dataset. Thus, smaller ρ indicates better theoretical per-
formance. The collision probability of our secured LSH is

P secc =
Pkc +1

2
. The new ρ′ for Secure LSH would be

log
Pk1 +1

2

log
Pk2 +1

2

.

Theorem 5.6. ρ′ is monotonically increasing with k.

dρ′

dk
=

pk1 ln (p1)

ln
(
pk2+1

2

) (
pk1 + 1

) − ln
(
pk1+1

2

)
pk2 ln (p2)

ln2
(
pk2+1

2

) (
pk2 + 1

) > 0 (22)

Therefore, when we increase k, we get the privacy at the
cost of reduced space and query time. The quantification of

this tradeoff is given as
log

Pk1 +1

2

log
Pk2 +1

2

6. HIDING THE MECHANISM OF S(.)
We are now ready to describe the final piece of our pro-

tocol. We describe in detail how we can reasonably hide
the random seeds inside of S(.) from the users in addition
to both servers. To compute the hash of the client’s input,
we need random seeds (e.g., for MinHash, random seeds are
the random permutations and for SimHash, they are ran-
dom vectors used in the projection step). Since these ran-
dom seeds should be equal for all clients, we cannot let each
client generate her seeds independently. Seeds should be
chosen in a consistent fashion. However, seeds should not
be revealed to any server, otherwise, they might be used to
reconstruction the secret attributes. As a result, we need
to design a mechanism such that no party knows the seeds,
which is an important and yet difficult task. To compute
S(x) securely without revealing the actual random seeds to
any party, at least two different (non-colluding) servers need
to be deployed. While we do not trust either server, we re-
quire that two servers do not collude.

Seeds2 RNG

RNG

x

v

Garbled 
Circuit (GC) 

Protocol S1(x)User

RNG

Server #1

S(x)

Server #2

Secure
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Figure 4: Global flow of black-box hash computation. RNG
stands for Random Number Generator.

In the initial phase, each server generates its own version
of the seeds randomly. Whenever a client wants to compute
a secure hash, S(x), she generates a random D dimensional
vector v (same dimensionality as her input value) and then
XORs this vector with x (resulting in x ⊕ v). She then
sends v to server #1 and x ⊕ v to server #2. The term
x ⊕ v is One-Time Pad (OTP) encryption of x using v as
the pad and we denote it as Encv(x). Given this informa-
tion and the two initial random seeds, then both servers
engage in a two-party secure computation. Here, we utilize
Garbled Circuit (GC) protocol in order to compute S(x).
The GC protocol is one of the generic secure function eval-
uation protocols that allows two parties to jointly compute

a function on their inputs while keeping each input private
to their respective owners. In this protocol, the function
that is evaluated securely has to be described as a Boolean
circuit. The computation and communication complexity of
this algorithm is proportional to the number of non-XOR
gates in the circuit.

The global flow of our approach is illustrated in Figure 4.
Server #1 inputs v and server #2 inputs Encv(x) (x ⊕ v)
to the GC protocol. In addition, each server inputs her
random seeds to the GC protocol. Actual seeds used for
generating the hash of x are based on the two random seeds
from two servers and are generated using the Boolean cir-
cuit that is used inside the GC protocol. In our case, the
Boolean circuit is the secure hash computation suggested in
Section 5. For this reason, we have designed the correspond-
ing Boolean circuits for securely computing secure MinHash
and SimHash. After two servers run the GC protocol, they
both acquire secret shared values of the hash (S1(x) and
S2(x)) and server #1 needs to XOR the two values to get
the real hash (S(x)). RNG stands for Random Number Gen-
erator. We utilize the recent advances which make hashing
algorithmically faster [54, 55].

The above procedure is called XOR-sharing technique and
is secure in HbC attack model because: (i) server #1 receives
nothing but a true random number which contains no infor-
mation about x and (ii) server #2 receives the encryption of
the message x using v as the encryption pad and is perfectly
secure [40]. Since both servers are assumed to not collude,
they cannot infer any information about the user’s input
x. The theory behind the GC protocol guarantees that nei-
ther of the parties that execute the protocol can infer any
information about the intermediate values [66]. Since the
actual random seeds used to compute S(x) is created by the
GC protocol as an intermediate value, none of the servers
nor the users know the value of true seeds and hence our
protocol is secure.

7. NOISE ADDITION METHODS AND THEIR
POOR UTILITY-PRIVACY TRADE-OFF

Obfuscating information by adding noise is one of the
most popular techniques for achieving privacy. By adding
sufficient noise to the hashes, one can construct ε-secure
scheme satisfying Definition 5.2. However, any protocol
based on adding a noise will obfuscate the information uni-
formly in every bit, which will significantly affect the util-
ity of near-neighbor search. We elaborate this poor utility-
privacy trade-off. This is not the first time when such poor
utility-privacy trade-off is being observed by adding a noise [21].

Following popular noise addition mechanism [34], in order
to achieve the requirement in Definition 5.2, we can choose
to corrupt 1-bit LSH h(x) with a random bit, with proba-
bility f . Formally, the generated hash function is

hcorr(x) =

{
random bit, with probability f

h(x), with probability 1-f

Theorem 7.1. The new collision probability after this cor-
ruption, for any x and y, is given by:

P (hcorr(x) = hcorr(y))

= (1− f)(Pr(h1bit(x) = h1bit(y)) +
f

2
. (23)

Let us define P (s) = Pr(h1bit(x) = h1bit(y)|Sim(x, y) = s).
Using this quantity, it is not difficult to show:



Theorem 7.2. hcorr is ε-secure at threshold s0, iff

(1− f)P (s0) + 0.5f ≤ 0.5 + ε; f ≥ 1− ε(
P (s0)− 1

2

) .
For 1-bit MinHash with corruption, the collision probability

boils down to R(1−f)+1
2

. Thus, f only changes the slope
of collision probability curve. To ensure ε-secure hash at
similarity s0 threshold, we must have

f ≥ 1− 2ε

s0
. (24)

To understand its implication, consider, an example with
s0 = 0.75 (high similarity) and ε = 0.05. This combina-
tion requires f ≥ 0.86. Such high f implies that most bits
(86%) are randomly chosen, and hence they are uninforma-
tive. Even for very similar (almost identical) x and y, the
collision probability is close to random. This degrades the
usefulness of LSH scheme significantly. In contrast, for the
same threshold s0 = 0.75 and same epsilon ε = 0.05, secure
LSH needs k = 8 which leads to the collision probability

expression R8+1
2

. For x = y, i.e. R = 1, this expression
is always 1. For x and y with similarity 0.95, the collision
probability is greater than 0.83, significantly higher than
0.56 obtained using noise addition (very close to the ran-
dom probability 0.5).

8. EVALUATIONS

8.1 Utility-Privacy Tradeoff
In this section, we provide thorough evaluations of the ac-

curacy and privacy trade-off in our framework. Our aim is
two-fold: (i) We want to evaluate the benefits of our proposal
compared to traditional LSH in preventing triangulation at-
tack and simultaneously evaluate the effect of our proposal
on the utility of near-neighbor search. (ii) We also want to
understand the utility-privacy of noise addition techniques
in practice and further quantify it with the trade-offs of our
approach. It is important to have such evaluations, as pure
noise addition may be a good heuristic on real datasets that
prevents the triangulation attack without hurting accuracy.

Datasets: We use the IWPC [15] and Speed Dating
datasets [20]. They belong to different domains but both
contain private and sensitive attributes of the concerned in-
dividuals. The IWPC is a medical dataset which consists
of 186 demographic, phenotypic, and genotypic features like
race, medicines taken, and Cyp2C9 genotypes of 5700 pa-
tients. We split the records to 80% for creating hash tables
and 20% for querying. The dataset is publicly available
for research purposes. The type of data contained in the
IWPC dataset is equivalent to that of other private medical
datasets that have not been released publicly [21]. Speed-
Dating dataset has 8378 text survey samples, each has 190
features representing geometric features or answers to de-
signed questions for the volunteered subjects.

We focus on the cosine similarity search, therefore, our
underlying LSH scheme is SimHash (or Signed Random Pro-
jections). The gold standard neighbors for every query were
chosen to be the points with cosine similarity greater than or
equal to 0.95. Please note that LSH is threshold-based [29].
Hence, we chose a reasonable high similarity threshold.

Baselines: We chose the following three baselines for our
comparisons. 1. LSH: This is the standard SimHash-based

embedding. 2. Secure LSH: As described in Section 5,
we use our proposed transformation to make LSH secure.
To study the utility-privacy trade-off, a range for privacy
parameter k = 2, 4, 6, 8, 12 is chosen. Note, k = 1 is vanilla
SimHash. 3. Noise-based LSH: [34] shows a way to re-
lease user information in a privacy-preserving way for near-
neighbor search. The paper showed that adding Gaussian
noise N(0, σ2) after the random projection preserves differ-
ential privacy. To compute the private variant of SimHash,
we used the sign of the differentially random private vector
(generated by perturbed random projections) as suggested
in [34]. To understand the trade-off the noise levels are var-
ied over a fine grid σ = 0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0.

We generated 32-bit hashes for IWPC and 64-bit hashes
for Speed-Dating using each of the competing candidate
hashing schemes. For each query data, we ranked points in
training data based on the Hamming distance of the compet-
ing hash codes. We then computed the precision and recall
of the Hamming-based ranking on the gold standard neigh-
bors. We summarized the complete precision-recall curves
for both the datasets and all the competing scheme in Fig-
ure 5. This is a standard evaluation for hashing algorithms
in the literature [64]. Higher precision-recall under a given
ranking indicates a better correlation of binary Hamming
distance with the actual similarity measure. A better cor-
relation directly translates into a faster algorithm for sub-
linear near neighbor search [46] with Hamming distance.

In Figure 5, the first and third plots from the left-hand
side show the retrieval precision and recall curve using vari-
ous σ in noise-based LSH. The Vanilla LSH line, which is the
performance of LSH k = 1 or σ = 0 serves as the reference
in the plots. By increasing σ, the accuracy of noise-based
hashing drops dramatically. Adding noise as argued in Sec-
tion 7 leads to poor collision probability for similar neigh-
bors which in turn leads to a significant drop in accuracy
compared to LSH as evident from the plots. As the privacy
budget is increased, by adding more noise, the performance
drops significantly. In contrast, the second and fourth plots
from the left-hand side show the precision and recall curve
using different ks with Secure SimHash.

By increasing privacy budget k, the accuracy does not
drop and even gets better than vanilla LSH. This improve-
ment is not surprising and can be attributed to the enhanced
gap between the collision probability of near-neighbor and
any random pair (Figure 3). It is known that with hashing-
based techniques, such enhanced gap leads to a better ac-
curacy [29]. The plots show a consistent trend across the
datasets and clearly signify the superiority of our proposed
transformation over both LSH and noise addition based meth-
ods in terms of retrieving near-neighbors. The result clearly
establishes the importance of studying problem-specific pri-
vacy before resorting to obfuscation based on noise.

8.2 Effectiveness Against Triangulation Attack
We showed that irrespective of the privacy budget, our

proposal is significantly more accurate than LSH and Noise-
based LSH. Our theoretical results suggest that the proposal
is also secure against triangulation attack, whereas, vanilla
LSH is not. We validate this claim in this section. Further-
more, we also study the effectiveness of noise addition in
preventing the attack.

To evaluate the privacy, we implemented the “triangu-
lation attack” and inferred its accuracy on real datasets,
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Figure 5: Utility-Privacy Tradeoff: The plots represent the precession recall curves (higher is better) based on noise
addition (first and third from the left) and secure cosine similarity (second and fourth from the left) for both datasets. The
dotted red line is the vanilla LSH. We can clearly see that adding noise loses utility while the proposed approach is significantly
better.
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Figure 6: Effectiveness Against Triangulation Attack: Plots show the error (mean and error bars) in the triangulation-
attack-based inference of attributes (higher is more secure, random is holy grail). We can see that both adding noise (first
and third form the left) and increasing k with secure hashing (second and fourth form the left) lead to increased security.
Contrasting this with Figure 5 clearly shows the superiority of our proposal in retaining utility for the same level of privacy.

IWPC, and Speed-Dating. The task was to infer sensitive
attributes of a given target query vector by triangulating it
with respect to randomly chosen points as explained in Sec-
tion 5.1. For IWPC, we selected some sensitive attributes
for inference like cancer or not, set of medicines taken, or
Cyp2C9 genotypes to form the attack data points. For
Speed-Dating, we randomly chose the attributes for infer-
ring. To scale-up the implementation for higher dimensions,
we use a novel iterative projection algorithm which succes-
sively approaches the target. The procedure is described
separately in Section 9, which could be of separate interest.

We used the same privacy budget, i.e., k = 1, 2, 4, 6, 8, 12
for Secure SimHash and σ = 0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0,
for noise-based SimHash. Again, k = 1 and σ = 0 corre-
sponded to the vanilla LSH method which will serve as our
reference point. We computed the error of the estimated
target using triangulation attack with the actual target. We
then calculated the mean and standard deviations of the er-
rors over 100 independent triangulation attacks. The errors
for varying k for our proposed secure LSH and varying σ
for noise-based LSH were summarized in Figure 6. We also
plotted the accuracy of random guess which will serve as
our holy grail for privacy. The attack accuracy for k = 1
(σ = 0) is substantially better than the random guess which
clearly indicates the vanilla LSH is not secure. The decrease
in attack accuracy with an increase in k clearly shows the
high security level of our solution.

As indicated by our theoretical results, the accuracy of
the triangulation attack decreases and slowly approaches the
random level (holy grail for privacy) as the privacy budget
increases. We can conclude that both noise addition and our
proposal effectively prevent triangulation attack. Increasing
noise, as expected, preserves privacy but at a significant loss
in utility. However, the retrieval experiments show that our
proposal provides privacy without loss in accuracy. For all σ,

there always exists some k which could achieve significantly
better performance for the same level of security.

8.3 Computational Cost Comparison with SFE
Protocols

In this section, we compare the performance of our pro-
tocol with the GC protocol, one of the most promising and
efficient Secure Function Evaluation (SFE) protocols. In
our scheme, we have integrated the GC protocol only for our
black-box hash computation step that is computed indepen-
dently and only once for each client. We will compare the
performance of our protocol with the pure execution of NNS
in GC to show the shortcomings of this approach. While GC
protocol can compute NNS without any computational error
(compare to Figure 5), it has rather limited practical usage
and scalability. The recent work of [59] has implemented
the K-Near-Neighbor (KNN) search using TinyGarble [60]
framework, one of the most efficient GC frameworks. Based
on their performance results, they report execution time of
6.7s for N = 128, 000 when processing 31-bit data. Ac-
cording to their cost functions (which scales linearly with
N and input bit length), for N = 3 Billion and input size
of 1280-bit (same as ours), the execution time exceeds 74
days. In contrast, our protocol requires 0.415 second for
black-box hash computation and 0.887 second to search the
hash-tables, resulting in an overall 1.3 s execution time on
the same machine. We have also modified their solution
and synthesized the circuit for NNS based on the Cosine
similarity. For the exact same problem and parameters as
ours, their solution requires an estimated processing time of
1.5 × 108 seconds and communication of 1.2 × 107 GBytes.
This clearly illustrates the superiority of our novel scheme
over GC.



9. ALTERNATING PROJECTIONS FOR TRI-
ANGULATION ATTACK

We provide the details of our implementation for the trian-
gulation attack over SimHash with cosine similarity (angles)
as the measure. We start with all normalized vectors. Given
the target point q, we generate D+ 1 random points Xis in
the space.

q ∈ RD, Xi ∈ RD, ‖Xi‖2 = ‖q‖2 = 1, (25)

∀i ∈ {1, 2, ..., (D + 1)}.

The distance between every Xi and q,

di = ‖Xi − q‖2, ∀i ∈ {1, 2, ..., (D + 1)} (26)

is estimated as described in Section 5.1, first we estimate
the angle θ using hash matches between H(Xi) and H(q):
Then, we can get the distance di, from θ easily as the data
is normalized.

After finding all of the distances, we use Alternating Pro-
jection Method [26] to find the possible intersection of D+1
D-dimensional spheres, S1, ..., SD+1, each with central point
Xi and radius ‖Xi − q‖2. Any point in the intersection will
likely be very close to the target point. The procedure for
computing the point in the intersection is summarized in Al-
gorithm 1. t0 is initialized to a random vector (representing
the estimated location for the target point q) and is itera-
tively updated. PSi(tk) denotes the projection of point tk
on sphere Si. We generate the sequence of projections:

tk+1 = PSN
(
PSN−1(...PS1(tk))

)
,

Algorithm 1: POCS Algorithm

1: Initialize the maximum number of iteration Imax

2: t0 = rand(1, D) //D-dimensional random vector
3: counter = 0
4: repeat
5: for j = 1 to D + 1 do
6: tj = PSj (tj−1) //P is projection

//of tj−1 on Sj
7: end for
8: counter + +
9: until Convergence == true or counter == Imax

10. PRIOR ART
PP-NNS is a heavily studied problem. However, existing

solutions are limited with respect to at least one of the three
requirements outlined in Section 1. In addition to PP-NNS
approaches discussed in Section 1, we briefly discuss most
relevant prior works. Several PP-NNS solutions are built
upon the principals of cryptographically secure computa-
tion with the ability to compute on encrypted data [19].
The security of this approach, like cryptographic tools, is
based on the hardness of certain problems in number theory
(e.g. factorization of large numbers). Since every single bit
in the computation is encrypted, distance calculations are
computationally demanding and slow.

Another popular approach is to use information-theoretic
secure multi-party computations, which guarantees that even
with unlimited computational power no adversary can com-
promise the data. This method is based on secret-shared

information to perform the secure computation and requires
three or more servers. Securely computing pairwise dis-
tances needs “comparison” which cannot be carried out us-
ing secret-sharing alone and needs additional cryptographic
blocks which limit the overall scalability [35, 16]. These
algorithms work by first computing all possible distances
securely, before they find the near-neighbors based on min-
imum distance values. Irrespective of the underlying tech-
nique, calculating all distance pairs incurs O(N) complexity.
Thus, the sub-linear time requirement cannot be satisfied by
this class of techniques, rendering it unscalable and imprac-
tical to modern massive datasets.

There has been successful advances in the area of Differ-
ential Privacy (DP) [18]. However, their security model and
use cases of DP is different than ours. DP usually assumes
a trusted server and aims to bound the information leakage
when answering each query. In a very high level, a certain
noise is added to the data stored on the database such that
the statistical information of the database is preserved but
an attacker cannot infer significant information about single
entry in the database.

Order Preserving Encryption (OPE) [6, 44] allows to carry
out the comparison on encrypted version of data instead of
the raw version. Wang et al. [63] have proposed a solution
based on OPE and R-tree for faster than linear PP-NNS.
However, Naveed et al. [39] introduced several attacks that
can recover original users’ data from an encrypted database
that are based on OPE or Deterministic Encryption (DTE).
They have illustrated that the encrypted databases based
on OPE or DTE are insecure. Another line of research is
based on the searchable encryption [58, 17, 33, 32, 41, 13, 49]
which allows a user to store the encrypted data on the cloud
server while being able to perform secure search. However,
these solutions are limited to exact keyword search and are
not compatible with NNS algorithms.

LSH is the algorithm of choice for sub-linear near-neighbor
search in high dimensions [29]. LSH techniques rely on
randomized binary embeddings (or representations) [48, 30,
2, 8]. These embeddings act as a probabilistic encryption
which does not reveal direct information about the original
attributes [30, 8]. Due to the celebrated Jonson-Lindenstrauss [31]
or LSH property, it is possible to compare the generated em-
bedding for a potential match.

11. CONCLUSION
This paper addresses the important problem of privacy-

preserving near-neighbor search for multiple data owners
while the query time is sub-linear in the number of clients.
We show that the generic method of Locally Sensitive Hash-
ing (LSH) for sub-linear query search is vulnerable to the tri-
angulation attack. To secure LSH, a novel transformation is
suggested based on the secure probabilistic embedding over
LSH family. We theoretically demonstrate that our trans-
formation preserves the near-neighbor embedding of LSH
while it makes distance estimation mathematically impossi-
ble for non-neighbor points. By combining our transforma-
tion with Yao’s Garbled Circuit protocol, we devise the first
practical privacy-preserving near-neighbor algorithm, called
Secure Locality Sensitive Indexing (SLSI) that is scalable to
the massive datasets without relying on trusted servers. The
paper provides substantial empirical evidence on real data
from medical records of patients to online dating profiles to
support its theoretical claims.
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