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ABSTRACT
This paper presents MAXelerator, the first hardware accelerator
for privacy-preserving machine learning (ML) on cloud servers.
Cloud-based ML is being increasingly employed in various data
sensitive scenarios. While it enhances both efficiency and quality
of the service, it also raises concern about privacy of the users’ data.
We create a practical privacy-preserving solution for matrix-based
ML on cloud servers. We show that for the majority of the ML ap-
plications, the privacy-sensitive computation boils down to either
matrix multiplication, which is a repetition of Multiply-Accumulate
(MAC) or the MAC itself. We design an FPGA architecture for
privacy-preserving MAC to accelerate the ML computation based
on the well known Secure Function Evaluation protocol named
Yao’s Garbled Circuit. MAXelerator demonstrates up to 57× im-
provement in throughput per core compared to the fastest existing
GC framework. We corroborate the effectiveness of the accelerator
with real-world case studies in privacy-sensitive scenarios.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Hardware
security implementation;

KEYWORDS
Garbled Circuit, Privacy-preserving computation, Data mining, Se-
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1 INTRODUCTION
Machine Learning (ML) models are increasingly integrated into the
cloud services in order to improve the functionality of the under-
lying application [1–3]. The use of ML models as a cloud service
has raised serious questions regarding the information privacy of
clients who wants to take advantage of such services. On the one
hand, clients do not want to reveal their potentially private in-
put data (e.g., medical records, financial data, or location) to cloud
servers. On the other hand, cloud servers should keep their model
confidential to preserve the competitive advantage and ensure re-
ceiving continuous query requests. As such, it is highly required to
devise privacy-preserving frameworks in which, ML models can be
executed without disclosing the inputs of each party to one another.
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The seminal work [4] by Yao presents the Secure Function Eval-
uation (SFE) protocol named Garbled Circuit (GC) that allows any
two-party function to be computed efficiently without revealing
their respective inputs. In GC protocol, the underlying function is
represented as a Boolean circuit, called a netlist. The truth tables of
the netlist are encrypted to ensure privacy. In recent years, with
the emergence of optimized solutions to the GC protocol, there
has been increasing interest in employing GC to ensure the pri-
vacy of both the cloud and users in large-scale machine learning
and data mining applications [5–7]. While significant algorithmic
progress towards efficient privacy-preserving ML has been made,
their usage in practical scenarios is still limited by the overhead
of SFE operations. Modern ML algorithms including kernel-based
data analytics [8, 9] as well as deep learning models [10] rely on
iterative matrix multiplication for their execution. Matrix-based
ML algorithms are key enablers for devising various contemporary
data-driven applications. For instance, the well-known work by
Nikolaenko et al. [6] presents a movie recommendation system
with private reviews based on GC. Their system takes few hours
to operate on a matrix with 10K reviews on a hardware platform
with 16 cores. In this paper, we demonstrate how we can effectively
reduce this computational time by around 65%. Similar to the work
in [6], the bottleneck of the privacy-sensitive computation in the
majority of ML applications is matrix multiplication. Real-world ap-
plications can be found in various domains such as personal finance
(e.g., portfolio analysis [11]), and medical research (e.g., genome
analysis [12]). For example, in portfolio analysis [11] the stock cor-
relation data obtained by the financial institution is represented
as a matrix and the stock portfolio of the client is represented as
a vector and the risk to return ratio is the result of a multistage
multiplication between these two inputs.

In this work, we present an FPGA accelerator to perform GC-
based Multiply-Accumulate (MAC), which is the building block of
the matrix multiplication operation. Our approach enables novel
and significantly more practicable privacy preserving ML. A num-
ber of recent works [13, 14] have presented GC implementation
on FPGA. However, their primary focus is on the versatility of the
framework rather than computational efficiency. In [13], the under-
lying netlist is always that of a MIPS processor where the secure
function is loaded as a set of instructions. The work in [14], which
targets privacy-preserving data mining applications, presents an
FPGA overlay architecture[15] where an overlay circuit contains im-
plementations of garbled components (logic gates) upon which the
netlist of the secure function is loaded. Both these approaches incur
large overhead due to the indirect execution of the GC operation.
For example, overlay architectures in general require 40× to 100×
more LUTs compared to the conventional design approach [15].
As explained above, in the majority of the ML computations the
privacy-sensitive segment of the operation boils down to a MAC.
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Therefore we design a concise customized architecture on FPGA to
accelerate its GC computation.

Our GC architecture embraces two recent approaches: (1) the
TinyGarble [16] framework introduces sequential GC where the
same netlist is garbled for multiple rounds with updated encryption
keys, (2) the work in [5] perform static analysis on the function
(given the control path is independent of the data path) to deter-
mine the most optimized netlist to garble in every round. In our
design, there are an outer loop and inner loops. The outer loop
garbles the netlist of a MAC in every round similar to [16]. The
inner loop breaks the operation of the MAC into components such
that in every clock cycle we can ensure full utilization of the im-
plemented encryption units. Unlike the conventional GC approach,
the underlying netlist is embedded in a finite state machine (FSM)
that controls the transfer of the keys between gates. This allows us
to employ a parallel architecture for the multiplication operation
as we can precisely control the garbling operation in every clock
cycle and ensure accurate synchronization among the gates that
are garbled in parallel. Unlike a parallelization in software, our ap-
proach does not incur any synchronization overhead. Thus we can
ensure the minimal idle cycle of the encryption units. As a result,
we are able to achieve respectively 57× and 985× improvement in
throughput per core compared to [16], which is the fastest software
implementation, and the FPGA implementation of [14].
The explicit contributions of this work are the following
• Designing MAXelerator, the first hardware accelerator for
privacy-preserving ML on cloud servers. The accelerator is a
standalone unit that enables automated integration into recon-
figurable cloud architectures.

• Presenting the first GC architecture with precise gate level con-
trol per clock cycle. Instead of conventional netlist based GC
execution, we design our custom hardware accelerator as an FSM
that controls the operation and communication among parallel
GC cores, ensuring minimal (highest 2) idle cycles.

• Providing up to 57× improvement in garbling operation com-
pared to the state-of-the-art software GC framework. This trans-
lates to the capability of the cloud to support 57× more clients
simultaneously.

• Corroborating the effectiveness of the proposed accelerator with
real-world case studies in privacy-sensitive scenarios.

2 PRELIMINARIES
2.1 Contemporary ML Practice
Kernel-based machine learning. The optimization objective of
many ML applications can be summarized as:

Min f (x) s .t .,Ax = y, (1)
where y is an observation vector and x is the vector of interest
to be found. Examples of the desired minimization function f (.)
includes but is not limited to L1 and L2 norm of the desired vector x
or the geometry of the result. For large matrix sizes, computing the
solution of Eq. 1 requires multiple rounds of matrix multiplications:

xt+1 = xt − µ(ATAxt −ATy). (2)
µ is a learning rate used in gradient descent based algorithms [8, 17].
Deep learning algorithms. Deep learning is an emerging ML ap-
proach that consists of several processing layers stacked on top of
one the other. To perform data inference, the raw values of data
features are fed into the first layer of the DL network known as the

input layer. These raw features are graduallymapped to higher-level
abstractions through performing multiple matrix multiplications
interleaved by several non-linear operations. The acquired data
abstractions are then used to predict the label in the last layer of
the DL network. Common DL computations including the convolu-
tional layers can be effectively represented as matrix multiplication
as shown in [10, 18].

2.2 Cryptographic Protocols
Oblivious Transfer. Oblivious Transfer (OT)[19] is a crypto-
graphic protocol executed between a sender S and a receiver T ,
where T selects one from a pair of messages provided by S without
revealing her selection. In a 1-out-of-2 OT protocol, (OT21), S holds
a pair of messages (m0, m1); T holds a selection bit t ∈ 0, 1 and
obtainsmt without revealing t to S and learns nothing aboutm1−t .
Yao’s Garbled Circuit. Yao’s Garbled Circuit (GC) [4] is a crypto-
graphic protocol where two parties Alice and Bob jointly compute
a function z = F (a,b) on their private inputs a, from Alice and b,
from Bob. In the end, the output z is revealed to one or both of them.
The function F is represented as a Boolean circuit, called netlist,
consisting of 2-input 1-output logic gates. Alice, called the garbler,
garbles the circuit as follows. She assigns each wirew in the netlist
with two k-bit1 random keys X 0

w and X 1
w corresponding to the

values 0 and 1, respectively. These keys are called labels. For each
gate, a garbled truth table is constructed by encrypting the output
labels with corresponding input labels. She then sends the garbled
tables along with the labels corresponding to her input values to
Bob, called the evaluator. Bob obtains the labels corresponding to
his input values obliviously through OT21. He uses these input labels
to evaluate the garbled tables gate by gate. Finally, Alice and Bob
share their output maps to learn the output z.
Optimizations of GC. MAXelerator incorporates the following
state-of-the art optimizations of the GC protocol
(i) Free XOR [20]. In thismethod, Alice generates a random (k − 1)-bit
value R which is known only to her. For each wirew , she generates
the label X 0

w and sets X 1
w = X 0

w ⊕ (R ∥ 1). With this convention,
the label for the output wire r of an XOR gates with input wires p,
q can be simply computed as Xr = Xp ⊕ Xq .
(ii) Row Reduction [21]. This optimization reduces the size of the
garbled tables for non-XOR gates by 25%. Instead of generating the
label for the output wire of a gate randomly, it is computed as a
function of the labels of the inputs such that the first entry of the
garbled table becomes all 0s and no longer needs to be sent.
(iii) Half Gate [22]. This optimization breaks a non-XOR gate into
two half-gates for which one party knows one input. It employs
both free XOR and row reduction such that each half-gate can
be garbled with a single encryption. As a result, the size of the
non-XOR gate truth table is reduced by 50%.
(iv) Garbling With a Fixed-key Block Cipher [23]. This method allows
to efficiently garble and evaluate non-XOR gates using fixed-key
AES with a unique identifier for each gate.

3 SYSTEM CONFIGURATION
We adopt a cloud server architecture with multiple channels to
communicate with the clients as displayed in Figure 1. Along with

1k is a security parameter, its value is chosen as 128 in recent works
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Figure 1: System configuration of MAXelerator framework.

the Central Processing Unit (CPU), the server includesMAXelerator,
our FPGA-based accelerator to perform the garbling operation.
The MAXelerator creates the garbled tables and sends them to the
host CPU that later performs the communication with the client
including OT.
MAXelerator consists of the following components (detail descrip-
tion in Section 5):
• Parallel garbling cores to generate the garbled tables. Each core
incorporates a GC engine along with a memory block to store
the garbled tables.

• Label generator to create the labels necessary for the garbling
operation. It includes a hardware Random Number Generator
(RNG) to generate the random bit stream.

• An FSM to sync among the garbling cores. The FSM replaces the
netlist in the conventional GC. This approach allows us to pre-
cisely control the garbling operation customized for the matrix-
vector multiplication. Note that the netlist is embedded in the
FSM. Therefore, the hardware acceleration is transparent to the
evaluator (client) except for the speedup in service.

• A PCIe Bus to transfer the generated garbled tables.
In our proposed setting the cloud server acts as the garbler and

the client acts as the evaluator. In general the server possesses the
ML model parameters (stored in the form of a set of matrices) and
the client holds the input data (in the form of a single vector). Since
the evaluator receives his inputs through OT, it is more efficient
to have the client, who has less private data, as the evaluator. It is
possible to send all the inputs at once through OT extension[24],
however, the evaluator may not have enough memory to store
all the labels together. With the recent development of sequential
GC [16], it is feasible to perform OT every round and store only
the labels required for that round; making our approach amenable
to memory-constrained clients.

Another motivation behind this setting is that the garbling oper-
ation does not require any input from any party. It is only during
evaluation that the inputs are required. MAXelerator keeps gen-
erating the garbled tables independently and sends them to the
host CPU along with the generated labels for the input wires of the
netlist. The host in the meantime dynamically updates her model
if required, and when requested by the client simply performs the
garbling with one of the stored garbled circuits. Note that even
if the model does not change, new labels are required for every
garbling operation to ensure security.
Security Model. Consistent with most work on GC frameworks,
we assume an honest-but-curious attack model[16, 23], where the
participating parties follow the agreed upon protocol, but may
want to deduce more from the information at hand. Our hardware

realization does not alter the protocol execution and thus is as
secure as any software realization.
Motivation behind hardware acceleration. There are several
advantages of an FPGA accelerator over a processor with multiple
cores. In a processor, the threads communicate among themselves
through shared memory resources. To ensure that the threads do
not read stale variables or there are no race conditions we need to
create barriers both before and after a thread accessing that memory.
The time overhead of the barrier is much higher than the time of
generating one garbling table. As a result, parallelizing the GC
operation do not result in improvement in timing. Parallelization of
garbling operation on GPU is presented in [25, 26], but these works
precede the row reduction optimization described in Section 2.2.
Therefore, they do not manage the dependency among gates. In
FPGA, however, we can precisely control the operation in sync with
the clock. Our FSM precisely schedules the garbling operations in
the parallel cores to make sure that all the variables (in this case the
labels) are written and read in order without the use of a barrier.

4 MAXelerator ARCHITECTURE
The control flow of the MAXelerator architecture comprises two
nested loops. The product YN×P of two matrices AN×M XM×P is

Y [i, j] =
M−1∑
l=0

A[i, l]X [l , j] =
M−1∑
l=0

a[i]x[j], (3)

where a and x are l-th row of A and l-th column of X , respectively.
As such, the smallest unit of the matrix multiplication operation
consists of a multiplier followed by an accumulator, i.e., a MAC.
Following the methodology presented in [16], we design the MAC
unit and garble (and evaluate) this unit sequentially forM rounds to
compute one element of Y . This forms the outer loop of the control
flow. Multiple parallel garbling cores are employed to generate the
garbled tables. The number of cores depends on the input bit-width
and available resources on the FPGA platform. In the inner loop, we
breakdown the operation of the MAC unit such that (1) there is only
one non-XOR operation per core per clock cycle, (2) at each cycle,
no core is idle due to dependency issues. Note that the cores also
contain 1 to 4 XOR gates at every cycle. However, due to the free
XOR optimization they do not need costly encryption operations.

We utilize the GC optimized implementation of addition opera-
tion with the minimum number of non-XOR gates (one AND gate
per input bit) provided in [16]. However, the implementation of
the multiplication operation in [16] follows a serial nature that
does not allow parallelism. We leverage a tree-based structure for
multiplication to maximize parallelism. Figure 2 shows the multi-
plication operation of two unsigned numbers with bit-width b = 8.
The operation for signed numbers is discussed later in this section.
The bits of x (as well as their corresponding labels in GC operation)
are constant over time for one multiplication, and the bits of a (as
well as their corresponding labels) are input to the system serially.
The addition operations represents one bit full adder where the
carry is transferred internally for the next cycle. In the following,
we describe the operations of the two segments marked in Figure 2:
MUX_ADD and TREE.

4.1 Segment 1: MUX_ADD
The configuration of the parallel GC cores in segment 1 is displayed
in Figure 3. One row in the figure represents a GC core on the FPGA,
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Figure 2: Schematic of the tree-base multiplication.

while one column represents the logic operations performed by that
core in every three clock cycles. Henceforth, we refer to every three
clock cycles as one stage. Each GC core in this segment handles
two AND gates and one adder. The adder itself contains one AND
and four XOR gates. The logic operations performed in one core
per stage is displayed in the inset of Figure 3. The garbling engine
of MAXelerator, as described later in Section 5.1, can generate one
garbled table per clock cycle. Thus generating the three garbled
tables requires three clock cycles, i.e., one stage.

Each core is supplied with a core id m. Core m receives the
labels for the two corresponding bits of x : x[m] and x[m+ 1]. These
labels remain unchanged for the entire operation. All the cores then
receive the labels of two bits of a: a[n] and a[n + 1] at each stage n.
However, since the garbled table for one gate is generated every
clock cycle, each core needs to import only one label per cycle,
thus one k-bit input port is sufficient. The label for one bit of a is
required for two consecutive stages; thereby at each stage after the
first, one label is ported and the other one is shifted internally.

4.2 Segment 2: TREE
At each stage n, a single GC core in segment 1 generates the labels
for one bit of the sums: s0[n], .. sb/2−1[n]. At the next stage, these
sums are added up in segment 2 according to the tree structure.
Since all the cores in segment 1 perform in parallel, the shift op-
erations in Figure 2 translate to delay operations. A d stage delay
is realized via d stage k-bit shift register. The number of additions
performed in this segment per stage is b/2+ 1. For synchronization
with segment 1, the GC cores in this segment is designed to per-
form three additions per core (three garbled tables, one per each
addition). Thus it consists of ⌈((b/2 − 1)/3)⌉ GC cores.

4.3 Accumulator and Support for Signed Inputs
The final step of the MAC is the accumulator which requires one
addition per stage. To support signed inputs, two multiplexer-2’s
complement pairs are placed at both input and output of the multi-
plier. Each pair incorporates two AND gates. MAXelerator operates
in a pipelined fashion, allowing integration of these nine AND
operations into segment 2. This approach results in an increased
number of the shift registers. However, it ensures the minimum
number of idle cycles for the GC cores. Since, the bottleneck of the

resources is the number or LUTs or LUTRAMs, not the number of
registers, our approach results in the most optimized design.
Performance Analysis. For bit-width b, MAXelerator requires
b/2 + ⌈(b/2 + 8)/3⌉ cores. Thus the maximum number of idle cores
is 2. The complete operation takes b + loд(b) + 2 stages. However,
since the operations are pipelined, the throughput is 1 MAC per
b stages. The final throughput for the multiplication of an M × N
matrix and an N × P matrix is 1 product per MNPb stages or 1
product per 3MNPb cycles.

5 HARDWARE SETTING AND RESULTS
We implement MAXelerator on a Virtex UltraSCALE VCU108
(XCVU095) FPGA. A system with Ubuntu 16.04, 128 GB memory,
and Intel Xeon E5-2600 CPU @ 2.2GHz is employed as the host
CPU, as well the software platform for performance comparison.
We leverage PCIe library provided by [27] to interconnect the host
and FPGA platforms.

5.1 GC Engine
Each GC core incorporates one GC engine that generates one gar-
bled table per clock cycle. It adopts all the optimizations described
in Section 2.2 The GC engine takes the labels for the two input
wires of the AND gate as its input and outputs the corresponding
garbled tables. Our implementation involves only two gates: AND
and XOR. Due to free XOR optimization, XOR gates just require
XORing the two input labels and are handle outside while the GC
engine is designed to generate garbled tables only for the AND
gates. This approach ensures that there is no mismatch in the tim-
ing for executing different gates as in [13] and therefore no stalling
due to dependency issues. According to the methodology presented
in [23], the encryption is performed by fixed-key block cipher in-
stantiated with AES. We employ a single stage AES implementation.
The s-boxes inside the AES algorithm are implemented efficiently
by utilizing the LUTRAMs on the Virtex UltraSCALE FPGA. The
unique gate identifier T is generated by concatenating i , j (see Eq.
3), core id, stage index and and gate id (see Figure 3).

The on-chip memory on the FPGA is divided into blocks with
one input port per block and one output port for the entire memory.
The output port is used by the PCIe Bus to transfer the generated
input labels and garbled tables to the general purpose processor
hosting the FPGA. Since each core has its own block in the memory
with an individual input port, logically it can be visualized as each
core having its own memory block.

5.2 Label Generator
To generate the wire labels for GC we implement on-chip hardware
Random Number Generators (RNG). We adopt the Ring Oscillator
(RO) based RNG suggested by Wold et al. in [28]. One RNG XORs
the output of 16 ROs each containing 3 inverters. The entropy of
the implemented RNG on our evaluation platform is thoroughly
evaluated by NIST battery of randomness tests. In the worst-case
scenario, the GC accelerator requires k × (b/2) random bits/cycle.
However, for a large portion of the operation, it requires only k
bits/cycle on average. The label generator incorporates k × (b/2)
RNGs such that it can support the worst-case setting. The FSM that
synchronize the garbling operation fully or partially turns off the
operation of the RNGs to conserve energy, when possible.
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5.3 Resource Usage
The FPGA resource usage of one MAC unit is shown in Table 1
for different bit-widths b. It can be seen from the table that the
underlying resource utilization of our design increases linearly with
b. The maximum clock frequency supported by this implementation
is 200MHz on the Virtex UltraSCALE. We do not compare the
resource usage with the prior-art GC implementation on FPGA [14]
for two reasons: (i) [14] being a generic GC implementation, it is
difficult to estimate the resource it would require only to perform
the MAC operation in similar number of clock cycles as this work,
(ii) it employs SHA-1 for encryption (the most resource consuming
part of the implementation), while we employ AES. SHA-1 is not
considered secure anymore and all the current GC implementations
in both software and hardware employ AES.

Table 1: Resource usage of one MAC unit
Bit-width (b) 8 16 32
LUT 2.95E+04 5.91E+04 1.11E+05
LUTRAM 1.28E+02 3.84E+02 6.40E+02
Flip-Flop 2.44E+04 4.88E+04 8.40E+04

5.4 Comparison with the Prior-art
To the best of our knowledge, MAXelerator is the first custom FPGA
implementation of privacy-preserving MAC. Table 2 compares the
physical performance of MAXelerator against the fastest available
software GC framework TinyGarble [16] and the FPGA GC solu-
tion presented in [14]. Both MAXelerator and [14] employ parallel
GC cores to accelerate the operation. In our work, the maximum
number of parallel cores depends on the available resources in the
FPGA while in [14] it depends on the latency of garbling one AND
gate and available BRAMs. Taking all these into account we believe
that reporting the overall throughput would be ambiguous and
somewhat unfair to the software framework [16]. Therefore, we
report the performances of all the frameworks per core.

As shown Table 2 MAXelerator accelerates the garbling oper-
ation by up to 57× compared to [16] and at least 985× compared
to [14]. Another recent work, GarbledCPU [13] do not report evalua-
tion results for multiplication and addition. However, they report 2×
improvement in throughput compared to JustGarbled [23] (which
is the back-end of [16]) on an Intel Core i7-2600 CPU@ 3.4GHz. We

estimate at least 37× improvement over [13] in throughput per core
(this work does not attempt parallelization). The throughput of [16]
will go down while garbling a complete netlist due to pipeline stalls
caused by dependency issues.

To be fair, we should state that a major factor behind the lower
throughput of [14, 16] is due to their focus on general purpose
GC computing while MAXelerator is custom made for performing
matrix multiplication only. However, the large improvement in
throughput establishes the practicality of the custom solution. We
bolster this further through case studies in the next section.

6 CASE STUDIES
In this section, we analyze a number of well-knownML applications
to asses the speedup provided by the custom FPGA realization of a
GC based MAC.We assume a 32 bit fixed point systemwith 24 cores
on MAXelerator. Note that the throughput can be increased linearly
by adding more GC cores to the FPGA. For example, 25 times more
GC cores can fit in our current implementation platform.
Recommendation System: The work in [6] yields an efficient
implementation of matrix factorization with application in movie
recommender system which has been widely adopted by many
other works such as [29, 30]. As authors mentioned in [6], more
than 2/3 of the execution time is spent on vector multiplication
for gradient computations. The complexity of the proposed matrix
factorization is O(Mloд2M) whereM is the total number of ratings
while the complexity of the pertinent MAC operations in each oper-
ation isO(Sd) where S is summation of total number of ratings and
total number of movies, and d is the dimension of user/item profile.
On the MovieLens dataset each iteration of [6] takes 2.9hr. Incor-
porating our hardware accelerated MAC into the approach of [6]
significantly reduces the gradient computation time, decreasing the
total runtime per iteration from 2.9hr to 1hr (69% improvement).
Ridge Regression: This method is used to find the best-fit linear
curve through input data points. The work in [7] combines both
homomorphic encryption and Yao garbled circuits to efficiently
perform private ridge regression. The approach proposed in [7]
hasO(d3)MACs,O(d) square roots, andO(d2) divisions in the first
phase and O(d2) MAC operations in the second phase. As such,
accelerating the MAC operations would significantly improve the
runtime as shown in Table 3 for selected datasets of [7]. n and d
are number of samples and feature size respectively.



Table 2: Throughput Comparison of MAXelerator with state-of-the-art GC frameworks

TinyGarble [16] on CPU FPGA Overlay Architecture [14] MAXelerator on FPGA
Bit-width 8 16 32 8 16 32 8 16 32
Clock Cycle per MAC 1.44E+05 5.45E+05 2.24E+06 4.40E+03 1.20E+04 3.60E+04 24 48 96
Time per MAC (µs) 42.29 160.35 657.65 22.00 60.00 180.00 0.12 0.24 0.48
Throughput (MAC per sec) 2.36E+04 6.24E+03 1.52E+03 4.55E+04 1.67E+04 5.56E+03 8.33E+06 4.17E+06 2.08E+06
No of cores 1 1 1 43 43 43 8 14 24
Throughput per core (MAC per sec) 2.36E+04 6.24E+03 1.52E+03 1.06E+03 3.88E+02 1.29E+02 1.04E+06 2.98E+05 8.68E+04
× Throughput of MAXelerator per core 1/44 1/48 1/57 1/985 1/768 1/672 - - -
*Interpolated from the results provided in [14] for 8, 32 and 64 bits.

Table 3: Ridge Regression Runtime Improvement

Name n d
Time (s)
([7])

Time (s)
(Ours)

Runtime
Impr.

communities11.IV 2215 20 314 7.8 39.8 ×
automobile.I 205 14 100 3.5 28.4 ×
forestFires 517 12 46 1.8 24.5 ×
winequality-red 1599 11 39 1.7 22.6 ×
autompg 398 9 21 1.1 18.7 ×
concreteStrength 1030 8 17 1.0 16.8 ×

Portfolio Analysis: To calculate the current risk to return ratio
based on the stock portfolio of the investor, the client stock weight
vectorw (which contains relative weight of stocks in the investor’s
portfolio) and the financial institution stock covariance matrix cov
(which is the result of financial institution’s research on the market)
are required. The risk to return ratio is then obtained by performing
w×cov×w ′ wherew ′ is the transpose ofw [11]. In [31], the authors
reported 20µs to perform 252 rounds of risk to return analysis for a
portfolio of size 2 on Nvidia-k80 GPU. According to our evaluation,
the same computation with privacy-preserving would take 1.33
seconds using TinyGarble and 15.23ms using MAXelerator.

In the above analysis we assumed that the cloud server has suffi-
cient communication channels. However, after certain threshold,
communication capability of the server may become the bottleneck
of the operation.

7 CONCLUSION
We present MAXelerator, an efficient FPGA implementation of GC
based MAC to accelerate privacy-preserving machine learning on
cloud servers. MAXelerator achieves up to 57× improvement in
throughput per core compared to the fastest GC framework. Our
acceleration focus is on matrix multiplication which is the most
costly component in several key ML applications. Acceleration of
this process can bring down the operational time in the privacy-
sensitive scenario to practical limits, as verified by our case studies.
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