
DeepMarks: A Digital Fingerprinting Framework
for Deep Neural Networks
Huili Chen, Bita Darvish Rohani, and Farinaz Koushanfar

University of California, San Diego
huc044@ucsd.edu, bita@ucsd.edu farinaz@ucsd.edu

Abstract—This paper proposes DeepMarks, a novel end-to-end
framework for systematic fingerprinting in the context of Deep
Learning (DL). Remarkable progress has been made in the area
of deep learning. Sharing the trained DL models has become a
trend that is ubiquitous in various fields ranging from biomedical
diagnosis to stock prediction. As the availability and popularity
of pretrained models are increasing, it is critical to protect
the Intellectual Property (IP) of the model owner. DeepMarks
introduces the first fingerprinting methodology that enables the
model owner to embed unique fingerprints within the parameters
(weights) of her model and later identify undesired usages of
her distributed models. The proposed framework embeds the
fingerprints in the Probability Density Function (pdf) of trainable
weights by leveraging the extra capacity available in contem-
porary DL models. DeepMarks is robust against fingerprints
collusion as well as network transformation attacks, including
model compression and model fine-tuning. Extensive proof-of-
concept evaluations on MNIST and CIFAR10 datasets, as well
as a wide variety of deep neural networks architectures such
as Wide Residual Networks (WRNs) and Convolutional Neural
Networks (CNNs), corroborate the effectiveness and robustness
of DeepMarks framework.

Index Terms—Fingerprinting, Deep Neural Networks, Intellec-
tual Property Protection

I. INTRODUCTION

The recent advance in deep learning and neural networks
has provided a paradigm shift in various scientific fields. In
particular, numerous deep neuron networks (DNNs) such as
GoogLeNet [1], AlexNet [2], Residual Network [3], and Neu-
ral Architecture Search networks [4] have become prevalent
standards for applications including autonomous transporta-
tion, automated manufacturing, natural language processing,
intelligent warfare and smart health [5], [6], [7]. Meanwhile,
open-sourced deep learning frameworks have enabled users
to develop customized machine learning systems based on
the existing models. PyTorch [8], Tensorflow [9], Keras [10],
MXNet [11], and Caffe [12] are examples of such tools.

The distribution of pre-trained neural networks is a promis-
ing trend and makes the utilization of DNNs easier. For
instance, Caffe provides Model Zoo that includes built neural
networks and pre-trained weights for various applications [13].
As the accessibility of models increases, a practical concern
is the IP protection and Digital Right Management (DRM)
of the distributed models. On the one hand, DL models
are usually trained by allocating significant computational
resources to process massive training data. The built models
are therefore considered as the owner’s IP and need to be

protected to preserve the competitive advantages. On the other
hand, malicious attackers may take advantage of the models
for illegal usages. The potential problems need to be taken
into account during the design and training of the DL models
before the owners make their models publicly available.

Previous works have identified the importance of IP protec-
tion in DL domain and propose watermarking methodologies
for DNNs. The authors of [14], [15] present a new approach
for watermarking DNNs by embedding the IP information in
the weights. The embedded watermark can be extracted by
the owner assuming the details of the models are available
to the owner (‘white-box’ setting). To provide IP protection
for a remote neural network where the model is exposed
as a service (‘black-box’ setting), the paper [16] proposes a
zero-bit watermarking methodology by tweaking the decision
boundary. To the best of our knowledge, there is no prior work
that has targeted fingerprinting for deep neural networks.

This paper proposes DeepMarks, a novel end-to-end frame-
work that enables coherent integration of robust digital finger-
printing in contemporary deep learning models. DeepMarks,
for the first time, introduces a generic functional fingerprint-
ing methodology for DNNs. The proposed methodology is
simultaneously user and model dependent. DeepMarks works
by assigning a unique binary code-vector (a.k.a., fingerprint)
to each user and embedding the fingerprint information in
the probabilistic distribution of the weights while preserving
the accuracy. We demonstrate the robustness of our proposed
framework against collusion and transformation attacks includ-
ing model compression/pruning, and model fine-tuning. The
explicit technical contributions of this paper are as follows:

• Proposing DeepMarks, the first end-to-end framework
for systematic deep learning IP protection and digital
right management. A novel fingerprinting methodology
is introduced to encode the pdf of the DL models and
effectively trace the IP ownership as well as the usage of
each distributed model.

• Introducing a comprehensive set of qualitative and quan-
titative metrics to assess the performance of a finger-
printing methodology for (deep) neural networks. Such
metrics provide new perspectives for model designers and
enable coherent comparison of current and pending DL
IP protection techniques.

• Performing extensive proof-of-concept evaluation on var-
ious benchmarks including commonly used MNIST, CI-
FAR10 datasets. Our evaluations corroborate the effec-



tiveness of DeepMarks to detect IP ownership and track
the individual culprits/colluders who use the model for
unintended purposes.

II. PROBLEM FORMULATION

Fingerprinting is defined as the task of embedding a v-
bit binary code-vector cj ∈ {0, 1}v in the weights of a
host neural network. Here, j = 1, ..., n denotes the index
for each distributed user where n is the number of total
users. The fingerprint information can be either embedded
in one or multiple layers of the DNN model. The objective
of fingerprinting is two-fold: (i) claiming the ownership of a
specific neural network, and (ii) tracing the unintended usage
of the model by distributed users. In the following sections,
we formulate the requirements for digital fingerprinting in the
context of DL and discuss possible attacks that might render
the embedded fingerprints ineffective.

A. Requirements

Table I summarizes the requirement for an effective fin-
gerprints in the deep neural network domain. In addition to
fidelity, efficiency, security, capacity, reliability, integrity, and
robustness requirements that are shared between fingerprinting
and watermarking, a successful fingerprinting methodology
should also satisfy the uniqueness, scalability, and collusion
resilience criteria.

On the one hand, uniqueness is the intrinsic property of
fingerprints. Since the model owner aims to track the usage
of the model distributed to each specific user, the uniqueness
of fingerprints is essential to ensure correct identification
of the target user. On the other hand, as the number of
participants involved in the distribution of neural networks
increases, scalability is another key factor to perform IP
protection and digital right management in large-scale settings.
Particularly, the fingerprinting methodology should be able to
accommodate a large number of distributed users.

Collusion attacks can result in the attenuation of the fin-
gerprint from each colluder and have been identified as cost-
effective attacks in the multi-media domain. In a traditional
collusion attack, multiple users work together to produce an
unmarked content using differently marked versions of the
same content [17]. In the domain of DL, a group of users who
have the same host neural network but different fingerprints
may work collaboratively to construct a model where no
fingerprints can be detected by the owner. Considering the
practicality of such attacks, We include collusion resilience
in the robustness requirement for DNN fingerprinting.

B. Attack Models

Corresponding to the robustness requirements listed in Ta-
ble I, we discuss three types of DL domain-specific attacks that
the fingerprinting methodology should be resistant to: model
fine-tuning, model compression, and collusion attacks.
Model Fine-tuning. Fine-tuning the pre-trained neural net-
works for transfer learning is a common practice since training
a DL model from scratch is computationally expensive [18].

For this reason, model fine-tuning can be an unintentional
model transformation conducted by honest users or an inten-
tional attack performed by malicious users. The parameters of
the model are changed during fine-tuning, therefore the em-
bedded fingerprints should be robust against this modification.

Model Compression. Compressing the DNN models by pa-
rameter pruning is a typical technique to reduce the computa-
tional overhead of executing a neural network [19]. Genuine
users may leverage parameter pruning to make their models
compressed while adversaries may apply pruning to remove
the fingerprints embedded by the owner. Since pruning alters
the model parameters that carry the fingerprints information,
an effective fingerprinting methodology shall be resistant to
parameter pruning.

Collusion Attack. Multiple attackers who have the same
host neural network with different embedded fingerprints may
perform collusion attacks to produce an unmarked model. We
consider fingerprints averaging attack which is a common
collusion attack and demonstrate how DeepMarks is robust
against such attacks.

III. FINGERPRINT EMBEDDING

The global flow of DeepMarks is illustrated in Figure 1.
In order to trace the models that are distributed to individual
users, the owner first assigns a specific code-vector to each
user. Given the code-vector and an orthonormal basis matrix,
a unique fingerprint is constructed to identify each user. The
designed fingerprint is then embedded in the weights distribu-
tion for each user by fine-tuning the model with an additive
embedding loss. To identify a specific user, the owner assesses
the weights of the marked layers in her model and extracts
the corresponding code-vector. The decoded code-vector thus
uniquely identifies the inquired user. In addition, DeepMarks
enables the owner to detect colluders who work collaboratively
and try to generate a model where no fingerprints can be
detected by the owner.

There are two types of fingerprint modulation mechanisms
in the multi-media domain: (i) orthogonal modulation, and
(ii) coded modulation [17]. In the rest of this section, we
discuss how DeepMarks framework adopts these two finger-
printing methods to provide a generic solution for DNNs.

A. Orthogonal Fingerprinting

As discussed in Section II-A, uniqueness is an essen-
tial requirement for fingerprinting to track individual users.
Orthogonal modulation is a technique that uses orthogonal
signals to represent different information [20]. By using mu-
tually orthogonal watermarks as fingerprints, the separability
between users can be maximized. Given an orthogonal matrix
Uv×v = [u1, ...,uv], the unique fingerprint for user j can be
constructed by assigning each column to a user:

fj = uj, (1)

where uj is the jth column of the matrix U, j = 1, ...v. Here,
v orthogonal signals deliver B = log2v bits information and



TABLE I: Requirements for an effective fingerprinting methodology of deep neural networks.

Requirements Description
Fidelity The functionality (e.g., accuracy) of the host neural network shall not be degraded as a result of fingerprints embedding.
Uniqueness The fingerprint need to be unique for each user, which enables the owner to trace the unintended usage of the distributed

model conducted by any specific user.
Capacity The fingerprinting methodology shall be capable of embedding a large amount of information in the host neural network.
Efficiency The overhead of fingerprints embedding and extraction shall be negligible.
Security The fingerprint shall leave no tangible footprint in the host neural network; thus, an unauthorized individual cannot detect

the presence of a fingerprint in the model.
Robustness The fingerprinting methodology shall be resilient against model modifications such as compression/pruning, fine-tuning.

Furthermore, the fingerprints shall be resistant to collusion attacks where the adversaries try to produce an unmarked
neural network using multiple marked models.

Reliability The fingerprinting methodology should yield minimal false negatives, suggesting that the embedded fingerprint should be
detected with high probability.

Integrity The fingerprinting methodology should yield minimal false alarm (a.k.a., false positive). This means that the probability
of an innocent user being accused as a colluder should be very low.

Scalability The fingerprinting methodology should be able to support a large number of users because of the nature of the model
distribution and sharing.

Generality The fingerprinting methodology should be applicable to various neural network architectures and datasets.

Fig. 1: DeepMarks Global Flow: DeepMarks performs fingerprinting on DL models by embedding the designated fingerprinting information
in the distribution of weights for selected layers. To enable IP protection and digital right management, DeepMarks allows the model owner
to extract the embedded fingerprints for user identification as well as colluder detection after distributing the models.

can be recovered from v correlators. The orthogonal matrix can
be generated from element-wise Gaussian distribution [17].

The constructed fingerprint is then embedded in the target
layers of the host model by adding the following term to the
loss function conventionally used for training/fine-tuning deep
neural networks:

L = L0 + γ MSE(fj −Xw). (2)

Here, L0 is the conventional loss function (e.g. cross-entropy
loss), MSE is the mean square error function, γ is the
embedding strength that controls the trade-off between the two

loss terms, X is the secret random projection matrix generated
by the owner. w is the flattened averaged weights of the target
layers for embedding the pertinent fingerprint.

As a proof-of-concept analysis, we embed the fingerprint
fj in the convolutional layer of the host neural network, thus
the weight W is a 4D tensor W ∈ RD×D×F×H where D is
the input depth, F is the kernel size, and H is the number
of channels in the convolutional layer. The ordering of filter
channels does not change the output of the neural network if
the parameters in the consecutive layers are rearranged corre-
spondingly [14]. As such, we take the average of W over all



channels and stretch the resulting tensor into a vector w ∈ RN ,
where N = D ×D × F . The rearranged weight vector w is
then multiplied with a secret random matrix X ∈ Rv×N and
compared with the fingerprint fj. The additional embedding
loss term MSE(fj − Xw) inserts the fingerprint fj in the
distribution of the target layer weights by enforcing the model
to minimize the embedding loss together with the conventional
loss during the training/fine-tuning of the DNN model.

Since each user corresponds to a column vector in the
orthogonal basis matrix, the maximum number of users is
equal to the dimension of the fingerprint (which is also the
number of orthogonal bases): n = v. Thus, the amount of
customers that the same neural network can be distributed to is
limited by the fingerprints dimension. Orthogonal fingerprints
are developed based on spread spectrum watermarking [21].
The straightforward concept and simplicity of implementation
make orthogonal fingerprinting attractive to identification ap-
plications where only a small group of users are involved.
Although orthogonality helps to distinguish individual users,
the independent nature of orthogonal fingerprints makes it
vulnerable to collusion attacks [17].

B. Coded Fingerprinting

To support a large group of users and improve the collision
resilience of the fingerprints, coded modulation is leveraged to
introduce correlation between fingerprints [22], [23]. Similar
ideas have been discussed in Antipodal CDMA-type water-
marking where the correlation contributions only decrease
at the locations where the watermarks code-bits are differ-
ent [24]. Correlation not only allows the system to support a
larger number of fingerprints than the dimensionality of the
orthogonal basis vectors, but also alleviates the attenuation
of fingerprints due to collusion attacks. The challenge for
coded fingerprinting is to design code-vectors such that (i)
the correlations are introduced in a strategical way, and (ii)
the correct identification of the users involved in a collusion
attack is facilitated.

Anti-collusion codes (ACC) is proposed in [17] for coded
fingerprinting and have the property that the composition of
any subset of K or fewer code-vectors is unique. This property
allows the owner to identify a group of K or fewer colluders
accurately. A K-resilient AND-ACC is a codebook where
the element-wise composition is logic-AND and allows for
the accurate identification of K unique colluders from their
composition. Previous works in the multi-media domain have
shown that Balanced Incomplete Block Design (BIBD) can be
used to generate ACCs of binary values [25]. A (v, k, λ)-BIBD
is a pair (X ,A) where A is the collection of k-element subsets
(blocks) of a v-dimension set X such that each pair of elements
of X appear together exactly λ times in the subsets [22],
[26]. The (v, k, λ)-BIBD has b = λ(v2 − v)/(k2 − k) blocks (k
is the block size) and can be represented by its corresponding
incidence matrix Cv×b. The elements in the incidence matrix

have binary values where:

cij =

{
1, if ith value occurs in jth block
0, otherwise.

By setting the number of concurrent occurrence to one
(λ = 1) and assigning the bit complement of columns of
the incidence matrix Cv×b as the code-vectors, the resulting
(v, k, 1)-BIBD code is (k − 1)-resilient and supports up to
n = b users [22]. The theory of BIBD shows that the
parameters satisfy the relationship b > v [26], which means
the number of users (or fingerprints) is larger than the di-
mension of the orthogonal basis vectors. More specifically,
the BIBD-ACC construction only requires O(

√
n) basis vec-

tors to accommodate n users instead of O(n) in orthogonal
fingerprinting scheme. Systematic approaches for constructing
infinite families of BIBDs have been developed [27], which
provides a vast supply of ACCs.

Given the designed incidence matrix Cv×b, the coefficient
matrix Bv×b for fingerprints embedding can be computed from
the linear mapping bij = 2cij−1, thus bij ∈ {±1} corresponds
to the antipolar form [28]. The fingerprint for jth user is
then constructed from the orthogonal matrix Uv×v and the
coefficient matrix Bv×b as follows:

fj =

v∑
i=1

bijuj, (3)

where bj ∈ {±1}v is the coefficient vector associated with
user j. Finally, The designed fingerprint fj is embedded in the
weights of the target model by adding the embedding loss to
the conventional loss as shown in Equation 2.

Comparing the orthogonal fingerprinting in Equation 1 with
the coded fingerprinting in Equation 3, one can see that
orthogonal fingerprinting can be implemented by coded fin-
gerprinting if an identity matrix is used as the ACC codebook
C = I. This, in turn, means that the code-vector assigned to
each user only has one element that equals to 1 and all the
others are zeros. Therefore, orthogonal fingerprinting can be
considered as a special case of coded fingerprinting.

IV. FINGERPRINT EXTRACTION

For the purpose of fingerprints inquiry and colluder detec-
tion, the model owner assesses the weights of the marked
layers, recovers the code-vector assigned to the user, and
uses correlation statistics (orthogonal fingerprinting method)
or BIBD ACC codebook (coded fingerprinting method) to
identify colluders. Note that in the multi-media domain, there
are two types of detection schemes for spread spectrum
fingerprinting: blind or non-blind detection, depending on
whether the original host signal is available in the detection
stage or not. Non-blind detection has higher confidence in
detection while blind detection is applicable in distributed
detection settings [17], [29]. DeepMarks leverages blind detec-
tion scheme and does not require the knowledge of the original
content; thus content registration and storage resources are



not needed. We discuss the workflow of extracting the code-
vector from the marked weights and detecting participants in
fingerprints collusion attacks for both fingerprinting methods
in the following sections.

A. Orthogonal Fingerprinting

Code-vector extraction. As discussed in Section II, one
objective of embedding fingerprints in the DNNs is to uniquely
identify individual users. Since the fingerprint is determined by
the corresponding code-vector, we formulate the problem of
user identification as code-vector extraction from the marked
weighs in each distributed model.

The embedding methodology of orthogonal fingerprinting
is described in Section III-A. In the inquiry stage, DeepMarks
first acquires the weights tensor W̃j of the pertinent marked
layers for the target user j and computes the flattened averaged
version w̃j. The fingerprint is recovered from the multipli-
cation f̃j = Xw̃j where X is the random projection matrix
specified by the owner. For simplicity, we use orthonormal
columns to construct the basis matrix U, thus the correlation
score vector (which is also the coefficient vector) can be
computed as follows:

b̃j = f̃j
T
U = [f̃j

T
u1, ..., f̃j

T
uv]. (4)

Since the fingerprints are orthogonal, only jth component in
the correlation scores b̃j will have large magnitude while all
the other elements will be nearly zeros. Finally, the code-
vector c̃j ∈ {0, 1}v assigned to jth user is extracted by
element-wise hard-thresholding of the correlation vector b̃j.

Colluder detection. Recall that the second objective of the
owner for leveraging fingerprinting is to trace illegal redistri-
bution or unintended usages of the models. Here we consider
a typical linear collusion attack where K colluders average
their fingerprints and collaboratively generate a new model
where the fingerprint is not detectable. To detect participants
in the collusion attack, the owner first computes the correlation
scores between the colluded fingerprint and each basis vector
as shown in Equation 4. Element-wise hard-thresholding is
then performed on the correlation vector where the positions
of “1”s correspond to the indices of the colluders. According
to Equation 4, the magnitude of averaged fingerprints is
attenuated by 1

K assuming there are K colluders participating
in the attack. As shown in [17], O(

√
v/logv) colluders are

sufficient to defeat the fingerprinting system, where v is the
dimension of the fingerprint.

B. Coded Fingerprinting

Code-vector extraction. Similar to the extraction of or-
thogonal fingerprints, the owner acquires the weights in the
marked layers W̃j and computes its averaged flattened version
w̃j, then extracts the colluders’ fingerprint f̃j = Xw̃j. The
extracted fingerprint is then multiplied with the basis matrix
to compute the correlation score vector b̃j = f̃j

T
U. Finally,

the ACC code-vector c̃j assigned to the jth user is decoded
from b̃j by hard-thresholding.

To illustrate the workflow of code-vector extraction for
coded fingerprinting, let us consider a (7, 3, 1)-BIBD code-
book given in Equation 5. The coefficient vector of each
fingerprint is constructed by mapping each column of the
codebook C to the antipodal form {±1}. The fingerprints for
all users are shown in Equation 6:

C =



0 0 0 1 1 1 1
0 1 1 1 0 1 1
1 0 1 0 1 0 1
0 1 1 1 1 0 0
1 1 0 0 1 1 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


, (5)


f1 = −u1 − u2 + u3 − u4 + u5 + u6 + u7,

· · ·
f6 = +u1 + u2 − u3 − u4 + u5 + u6 − u7,

f7 = +u1 + u2 + u3 − u4 − u5 − u6 + u7,

(6)

where ui (i = 1, ..., 7) are orthogonal columns of the matrix
U. For user 1, her coefficient vector can be recovered by
computing the correlation scores:

b̃1 = f1
T [u1, ...,u7] = [−1,−1,+1,−1,+1,+1,+1].

The corresponding code-vector is then extracted by the inverse
linear mapping cij = 1

2 (bij + 1). The resulting code-vector is
c̃1 = [0, 0, 1, 0, 1, 1, 1], which is exactly the same as the first
column of C. The consistency shows that BIBD AND-ACC
codebooks can be leveraged to identify individual users.

Colluder detection. Recall that in Section III-B, we discuss
the property of BIBD and its application for constructing anti-
collusion codes. Here, we describe how to use the intrinsic
asset of AND-ACC for colluder detection in fingerprints
averaging attack. Assuming the positions of the marked layer
are known to the colluders, they can perform element-wise
average on their weight tensors in the pertinent layers and
generate Wavg as the response to the owner’s inquiry. The
owner then computes the correlation vector bavg as follows:

favg = Xwavg, (7)

bavg = (favg)TU. (8)

The problem of identifying colluders based on the correla-
tion statistics has been well addressed in conventional finger-
printing that is based on spread spectrum watermarking [21],
[30]. There are three main schemes: hard-thresholding de-
tector, adaptive sorting detector, and sequential detector [17].
Hard-thresholding detector works by comparing each element
in the correlation score vector b with a threshold τ to decide
the corresponding bit (“0” or “1”) in the ACC code-vector.
Adaptive sorting detector sorts the correlation scores in a
descending order and iteratively narrow down the set of
suspected users until the corresponding likelihood estimation



of the colluder set stops increasing. Sequential detector directly
estimates the colluder set from the pdf of the correlation statis-
tics without decoding the ACC code-vector. For details about
each detection method, we refer readers to the paper [17].

DeepMarks deploys hard-thresholding detector for colluders
identification. The ACC code-vector is decoded from the
correlation vector bavg = [bavg1 , ..., bavgv ] by comparing each
component with the threshold τ :

cavgi =

{
1, if bavgi > τ,

0, otherwise.
(9)

Given the ACC code-vector of the colluders cavg, the re-
maining problem is to find the subsets of columns from the
codebook C such that their logic-AND composition is equal
to cavg. For a (v, k, 1)-BIBD-ACC, at most (k− 1) colluders
can be uniquely identified.

As an example, we demonstrate the colluder detection
scheme of DeepMarks using the (7, 3, 1)-BIBD codebook
given in Equation 5. Assuming user 6 and user 7 collectively
generate the averaged fingerprint:

favg =
1

2
(f6 + f7),

=
1

2
(2u1 + 2u2 − 2u4).

The owner assesses the averaged fingerprint and computes the
correlation scores as the following:

bavg = (favg)TU = [1, 1, 0,−1, 0, 0, 0].

The colluders’ code-vector is then extracted according to
decision rule in Equation 9:

cavg = [1, 1, 0, 0, 0, 0, 0].

It can be observed that the logic-AND of column 6 and
column 7 in the codebook C is exactly equal to cavg, while
all the other compositions cannot produce the same result.
This example shows that the two colluders can be uniquely
identified using the designed BIBD AND-ACC codebook.

V. EVALUATION

We evaluate the performance of DeepMarks on MNIST [31]
and CIFAR10 [32] datasets and two different neural network
architectures: convolutional neural networks and wide residual
networks. The topologies of these two models are summa-
rized in Table II. The fingerprints are embedded in the first
convolutional layer of the underlying neural network. Since
orthogonal fingerprinting can be considered as a sub-category
of coded fingerprinting, we focus on the comprehensive eval-
uation of latter one. Both MNIST-CNN and CIFAR10-WRN
benchmarks are used to assess the performance of coded
fingerprinting while only MNIST-CNN benchmark is used to
demonstrate the workflow of orthogonal fingerprinting.

A. Coded Fingerprinting Evaluation

In the evaluations of coded fingerprinting, we use a
(31, 6, 1)-BIBD AND-ACC codebook (C) and assign each
column as a code-vector for individual users. The codebook
can accommodate n = v(v−1)

k(k−1) = 31 users and is resilient to
at most (k − 1) = 5 colluders, theoretically. The embedding
strength in Equation 2 is set to γ = 0.1 and the pre-trained host
neural network is fine-tuned with the additional embedding
loss for 20 epochs in order to embed the fingerprints. The
threshold for extracting the code-vector is set to τ = 0.85 in
all experiments. We perform a comprehensive examination of
the DeepMarks’ performance in the rest of this paper.

Fidelity. To show that the insertion of fingerprints does not
impair the original task, we compare the test accuracy of the
baseline (host neural network without fine-tuning), the fine-
tuned model without embedding fingerprints, and the fine-
tuned model with fingerprints embedded. The comparison of
results are summarized in Table III. It can be observed from
the table that embedding fingerprints in the (deep) neural
network does not induce any accuracy drop and can even
slightly improve the accuracy of the fine-tuned model. Thus,
DeepMarks meets the fidelity requirement listed in Table I.

Uniqueness. The uniqueness of code modulated fingerprinting
originates from the (v, k.1)-BIBD ACC codebook. Since the
code-vector assigned to each user is the bit complement of
columns of the incidence matrix [17] which has no repeated
columns, individual users are uniquely identified by the asso-
ciated ACC code-vectors.

Scalability. Due to the intrinsic requirement of model dis-
tribution and sharing, the fingerprinting methodology should
be capable of accommodating a large number of users. For a
(v, k, 1)-BIBD ACC codebook, the maximum number of users
is decided by the code length v and the block size k:

n =
v(v − 1)

k(k − 1)
.

Systematic approaches to design various families of BIBDs
have been well studied in previous literature [27], [34]. For
instance, Steiner triple systems are families of (v, 3, 1)-BIBD
systems and are shown to exist if and only if v ≡ 1 or
3 (mod 6) [34]. An alternative method to design BIBDs is
to use projective and affine geometry in d−dimension over
Zp, where p is of prime power. (p

d+1−1
p−1 , p + 1, 1)-BIBDs

and (pd, p, 1)-BIBDs can be constructed from projective and
affine geometry [27], [35]. By choosing a large dimension
of fingerprints in Steiner triple systems, or using projective
geometry in a high dimensional space, the number of users
allowed in our proposed framework can be sufficiently large.
Therefore, the scalability of DeepMarks is guaranteed by a
properly designed BIBD ACC codebook. By expanding the
ACC codebook, DeepMarks supports IP protection and DRM
when new users join in the model distribution system.

Robustness, Reliability, and Integrity. We evaluate the ro-
bustness of DeepMarks against fingerprints collusion attack



TABLE II: Benchmark neural network architectures. Here, 64C3(1) indicates a convolutional layer with 64 output channels and 3× 3 filters
applied with a stride of 2, MP2(1) denotes a max-pooling layer over regions of size 2× 2 and stride of 1, and 512FC is a fully-connected
layer consisting of 512 output neurons. ReLU is used as the activation function in all the two benchmarks.

Dataset Model Type Architecture
MNIST CNN 784-32C3(1)-32C3(1)-MP2(1)-64C3(1)-64C3(1)-512FC-10FC

CIFAR10 WRN Please refer to [33]

TABLE III: Fidelity requirement. The baseline accuracy is preserved after fingerprint embedding in the underlying benchmarks.

Benchmark MNIST-CNN CIFAR10-WRN

Setting Baseline Fine-tune without
fingerprint

Fine-tune with
fingerprint Baseline Fine-tune without

fingerprint
Fine-tune with

fingerprint
Test Accuracy (%) 99.52 99.66 99.72 91.85 91.99 92.03

and model modifications, including parameter pruning as well
as model fine-tuning on MNIST and CIFAR10 benchmarks.
For all attacks, we assume the fingerprinting method as well as
the positions of the marked layers are known to the attackers.
The code-vector extraction and colluder detection scheme are
described in Section IV-B.

We use a (31, 6, 1)-BIBD AND-ACC codebook and assume
there are 31 users in total. For a given number of colluders,
10, 000 random simulations are performed to generate different
colluders sets from all users. When the colluder set is too large
to be uniquely identified by the BIBD AND-ACC codebook,
we consider all feasible colluder sets that match the extracted
code-vector resulting from the fingerprints collusion and take
the mean value of the detection rates as well as the false alarm
rates. The average performance over 10, 000 random tests is
used as the final metric. The details of the robustness tests
against the three aforementioned attacks are explained in the
following sections.

(I) Fingerprints collusion. Figure 2 shows the detection rates
of DeepMarks when different number of users participate
in the collusion attack. As can be seen from Figure 2, the
detection rate is 100% when the number of colluders is smaller
or equal to 5, which means the collusion resilience level is
Kmax = 5 with the (31, 6, 1)-BIBD ACC codebook. When
the number of colluders further increases, the detection rate
starts to decrease, and finally reaches a stable value at 19.35%.

Along with the evaluation of detection rates, we also assess
the false alarm rates of DeepMarks using 10, 000 random
simulations and summarize the results in Figure 3. It can be
seen that the false accuse rate remains 0% when the number
of colluders does not exceed 5, which is consistent with
Kmax = 5 found in the evaluations of detection rates. When
the number of colluders increases, the false alarm rate first
increases and stays at a stable value at the end.

Comparing the detection performance of DeepMarks on
MNIST-CNN and CIFAR10-WRN benchmarks shown in Fig-
ures 2 and 3, one can observe that the detection rates and
the false alarm rates are approximately the same for two
benchmarks given the same number of colluders. The con-
sistency across benchmarks derives from the correct code-
vector extraction and the unique identification property of
BIBD ACC codebooks. The colluder detection scheme of
DeepMarks can be considered as a high-level protocol which is

completely independent of the underlying network architecture
and the dataset. Therefore, our proposed framework meets the
generality requirement listed in Table I.

The high detection rates and low false alarm rates corrob-
orate that DeepMarks satisfies the reliability and integrity
requirements in Table I, respectively. Furthermore, the max-
imal number of colluders that the system can identify with
100% detection rate and 0% false alarm rate is found to be
Kmax = 5, which is consistent with the theoretical tolerance
(k− 1) given by the BIBD AND-ACC. The consistency helps
the owner to choose the proper ACC codebook based on her
desired collusion resilience requirement.

Fig. 2: Detection (true positive) rates of fingerprints averaging attack.
Using (31, 6, 1)-BIBD ACC codebook, up to 5 colluders can be
uniquely identified with 100% detection rate.

For a comprehensive evaluation of DeepMarks, we further
compare the robustness of our proposed framework when the
(31, 6, 1)-BIBD ACC and the (13, 4, 1)-BIBD ACC codebook
are used. The detection rates of the fingerprints collusion
attacks on MNIST and CIFAR10 datasets are shown in Fig-
ures 4a and 4b, respectively. The false alarm rates are shown in
Figures 5a and 5b. The comparison between two codebooks
shows how the design of BIBD-ACC codebooks affects the
collusion resistance of DeepMarks. Particularly, it can be
observed that the (31, 6, 1)-BIBD AND-ACC codebook has
a collusion resilience level Kmax = 5 while the (13, 4, 1)-
BIBD AND-ACC only has the resilience level Kmax = 3. In
addition, the (31, 6, 1)-BIBD codebook has higher detection



Fig. 3: False alarm (false positive) rates of fingerprints averaging
attack. Using a (31, 6, 1)-BIBD ACC codebook, no false accusement
occurs if the number of colluders is smaller or equal to 5.

(a) (b)

Fig. 4: Detection rates of fingerprints collusion attacks on (a) MNIST-
CNN and (b) CIFAR10-WRN benchmarks when different ACC
codebooks are used. The codebook with larger block size k has better
detection capability of collusion attacks.

(a) (b)

Fig. 5: False alarm rates of fingerprints collusion attacks on (a)
MNIST-CNN and (b) CIFAR10-WRN benchmarks. Given the same
number of colluders, the (31, 6, 1)-BIBD ACC codebook has lower
false alarm rates than the (13.4.1)-BIBD ACC codebook.

rate as well as lower false accuse rate compared to (13, 4, 1)-
BIBD codebook given a specific number of colluders. Same
conclusions hold for the collusion resilience against parameter
pruning and model fine-tuning attacks. For simplicity, the
results are not presented here.

(II) Model fine-tuning. To evaluate the robustness against the
fine-tuning attack, we retrain the fingerprinted model using
only conventional cross-entropy loss as the objective function.
The code-vector extraction and colluder detection scheme are
the same as in the evaluation of fingerprints collusion attacks.

The detection rates and false alarm rates of DeepMarks on
MNIST and CIFAR10 datasets are shown in Figures 6 and 7,
respectively. Compared with Figures 2 and 3, where the
robustness against collusion attacks is evaluated without model
fine-tuning, the same trend can be observed and the collusion
resistance level remains the same Kmax = 5, showing that
DeepMarks is robust against model fine-tuning attacks.

Fig. 6: Detect rates of fingerprint collusion with model fine-tuning.
DeepMarks attains high detection rate and the same resilience level
Kmax = 5 even if the marked neural network is fine-tuned.

Fig. 7: False alarm rates of fingerprint collusion with model fine-
tuning. The collusion resilience level (Kmax = 5) is not affected by
fine-tuning attack.

(III) Parameter pruning. Parameter pruning alters the
weights of the marked neural network. As such, we first
evaluate the code-vector extraction (decoding) accuracy of
DeepMarks under different pruning rates. Figures 8 and 9
show the results on MNIST and CIFAR10 datasets, respec-
tively. One can see that increasing the pruning rate leads to the
drop of the test accuracy, while the code-vector can always be
correctly decoded with 100% accuracy. The superior decoding
accuracy of the AND-ACC code-vectors under various pruning
rates corroborates the robustness of our designed fingerprint
code-vectors against the parameter pruning attack.



Fig. 8: Code-vector extraction accuracy and test accuracy under
different pruning rates. The test accuracy of MNIST-CNN drops when
the pruning rate when the pruning rates is larger than 95% while the
ACC decoding accuracy remains at 100%.

Fig. 9: Code-vector extraction accuracy and test accuracy under
different pruning rates. The ACC decoding accuracy is robust up
to 99.99% pruning rate while the test accuracy of CIFAR10-WRN
benchmark degrades when the pruning rate is greater than 90%.

We further assess the robustness of DeepMarks for colluders
identification against parameter pruning. Figures 10 and 11
show the detection rates of DeepMarks under three differ-
ent pruning rates (10%, 50%, 99%) using MNIST-CNN and
CIFAR10-WRN benchmarks, respectively. Similar to the trend
shown in Figure 2, the same collusion resilience level Kmax =
5 is observed in Figures 10 and 11; suggesting that the
reliability and the robustness criteria are satisfied for the
parameter pruning attacks as well.

To assess the integrity of DeepMarks, the false alarm
rates under three different pruning rates are also evaluated
on MNIST and CIFAR10 datasets. From the experimental
results shown in Figures 12 and 13, one can see that no false
accusement will occur if the number of colluders is smaller or
equal to Kmax = 5, which is consistent with the evaluation of
fingerprints collusion attacks. This consistency indicates that
our colluder detection scheme satisfies the integrity criterion
and is robust against parameter pruning attacks.

Fig. 10: Detection rates of fingerprint collusion with three different
pruning rates on MNIST dataset. The collusion resistance level
Kmax = 5 is robust up to 99% parameter pruning.

Fig. 11: Detection rates of the fingerprints collusion attack with three
different pruning rates on CIFAR10 dataset. The collusion resistance
level remains at Kmax = 5 when the parameter pruning is mounted
on fingerprints collusion attacks.

Fig. 12: False alarm rates of fingerprint collusion attacks on MNIST
dataset where three pruning rates are tested. No false alarms will
occur if the number of colluders does not exceed 5, showing the
robustness and integrity of DeepMarks against parameter pruning.



Fig. 13: False alarm rates of collusion attacks on CIFAR10 dataset
where three pruning rates are used. Innocent users will not be
incorrectly accused if the number of colluders is at most 5.

In conclusion, the high detection rates and low false
alarm rates under different attack scenarios corroborate that
DeepMarks satisfies the robustness, reliability, and integrity
requirements discussed in Table I. The consistency of detection
performance across benchmarks indicates that DeepMarks
meets the generality requirement.
Efficiency. Here, we discuss the efficiency of the fingerprinting
methodology in terms of the runtime overhead for fingerprints
embedding and the efficiency of the AND-ACC codebook.

• Fingerprints Embedding Overhead. Since each dis-
tributed model needs to be retrained with the fingerprint
embedding loss, it is necessary that the fingerprinting
methodology has low runtime overhead of generating
individual fingerprints. We evaluate the fingerprints em-
bedding efficiency of DeepMarks by retraining the un-
marked host neural network for 20 epochs and 5 epochs.
The robustness of the resulting two marked models
against fingerprints collusion attacks is compared. Fig-
ures 14 and 15 demonstrate the detection rates and false
alarm rates of these two marked models using MNIST-
CNN benchmark. As can be seen from the comparison,
embedding fingerprints by retraining the neural network
for 5 epochs is sufficient to ensure the collusion resistance
of the embedded fingerprints, suggesting that the runtime
overhead induced by DeepMarks is negligible. We also
observe that the marked models retrained for 5 epochs
and 20 epochs have the same collusion resistance level
against parameter pruning and model fine-tuning attacks.

• ACC Codebook Efficiency. In the multi-media domain,
the efficiency of an AND-ACC codebook for a given
collusion resistance is defined as the number of users
that can be supported per basis vector: β = n

v . For a
(v, k, 1)-BIBD AND-ACC, the codebook efficiency is:

β =
v − 1

k(k − 1)
. (10)

Thus, for a fixed resilience level k, the efficiency of an
AND-ACC codebook constructed from BIBDs improves

Fig. 14: Detection rates of fingerprint collusion attacks on MNIST-
CNN benchmark. The same detection performance can be observed
when the unmarked model is retrained for two different epochs for
fingerprints embedding.

as the code length increases [22]. DeepMarks allows
the owner to design an efficient coded fingerprinting
methodology by choosing appropriate parameters for the
BIBD ACC codebook.
In contrast with orthogonal fingerprinting where the num-
ber of users is the same as the fingerprint dimension
n = v (thus β = 1), it has been proven that a (v, k, λ)-
BIBD has n ≥ v [26], meaning that the codebook
efficiency of the BIBD construction satisfies β ≥ 1.
Equation 10 shows the trade-off between the code length
v and the collusion resilience level k. When the codebook
efficiency is fixed, higher resistance level requires longer
fingerprinting codes.

Fig. 15: False alarm rates of fingerprints collusion attacks on MNIST-
CNN benchmark when two different embedding epochs are used.
Retraining for 5 epochs is sufficient to ensure low false alarm rates.

B. Orthogonal Fingerprinting Evaluation

We evaluate the orthogonal fingerprinting methodology on
MNIST dataset using a group of 30 users. As expected, orthog-
onal fingerprinting has good ability to distinguish individual



users, while the collusion-resilience and scalability are not
competitive with coded fingerprinting. In addition, orthogonal
fingerprinting is essentially a special case of coded fingerprint-
ing whose codebook is an identity matrix. For this reason, we
evaluate the uniqueness, collusion resilience, and scalability of
orthogonal fingerprinting while the comprehensive assessment
is not shown here.

Uniqueness. Each user can be uniquely identified by com-
puting the correlation scores using Equation 4. An example
of user identification is shown in Figure 16 where user 11 is
selected as the target. The correct user can be easily found
from the position of the “spike” in correlation scores due to
the orthogonality of fingerprints.

Fig. 16: Correlation scores of the fingerprint assigned to user 11
with the fingerprints of all 30 users when orthogonal fingerprinting
is applied. The target user can be uniquely identified from the position
of the “spike” in the correlation statistics.

Collusion resilience. We evaluate the collusion resistance of
orthogonal fingerprinting according to the colluder identifica-
tion scheme discussed in Section IV-A. The detection results
of three colluders are shown in Figure 17, which suggests that
the three participants in the collusion attack can be accurately
identified by thresholding the correlation scores. However,
when more users contribute to the collusion of fingerprints,
the correlation scores of true colluders attenuate fast and the
colluder set cannot be perfectly identified. Figure 18 shows
the detection results of seven colluders where user 30 is
falsely accused with the decision threshold denoted by the
red dashed line. As can be seen from Figure 18, there is
no decision threshold that can ensure complete detection of
all colluders and no false alarms of innocent users. Thus,
orthogonal fingerprinting suffers from fingerprints attenuation
and has a high chance of false positives as well as false
negatives when collusion happens.

Scalability. Orthogonal fingerprinting requires the code length
to be O(n) bits for accommodating n users, which could be
much larger than the code bits O(

√
n) needed in coded finger-

printing. Thereby, the scalability of orthogonal fingerprinting
is inferior to that of code modulated fingerprinting.

Fig. 17: Detection results of three colluders (user 5, user 10, and
user 15) participating in the collusion attack. The red dashed line is
the threshold (0.3) that can catch all colluders correctly.

Fig. 18: Detection results of seven colluders (user 1, 5, 10, 15, 20,
25 and 28) participating in fingerprints collusion. User 30 is falsely
accused if the red dashed line is used as the threshold.

VI. CONCLUSION

In this paper, we propose DeepMarks, the first generic DL
fingerprinting framework for IP protection and digital right
management. Two fingerprinting methodologies, orthogonal
fingerprinting and coded fingerprinting, are presented and
compared. DeepMarks works by embedding the fingerprints
information in the probability density distribution of weights
in different layers of a (deep) neural network. The perfor-
mance of the proposed framework is evaluated on MNIST
and CIFAR10 datasets using two network architectures. Our
results demonstrate that DeepMarks satisfies all criteria for
an effective fingerprinting methodology, including fidelity,
uniqueness, reliability, integrity, and robustness. DeepMarks
attains comparable accuracy to the baseline neural networks
and resists potential attacks such as fingerprints collusion,
parameter pruning, and model fine-tuning. The BIBD AND-
ACC modulated fingerprinting of DeepMarks has consistent
colluders detection performance across benchmarks, suggest-
ing that our framework is generic and applicable to various



network architectures.

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, A. Rabinovich et al., “Going deeper with convolutions.”
Cvpr, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” arXiv preprint
arXiv:1707.07012, 2017.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[6] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[7] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160–167.

[8] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[10] F. Chollet et al., “Keras,” https://github.com/keras-team/keras, 2015.
[11] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,

C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[13] Caffe, “Model zoo,” https://github.com/BVLC/caffe/wiki/Model-Zoo,
2017.

[14] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proceedings of the 2017 ACM on
International Conference on Multimedia Retrieval. ACM, 2017, pp.
269–277.

[15] Y. Nagai, Y. Uchida, S. Sakazawa, and S. Satoh, “Digital watermarking
for deep neural networks,” International Journal of Multimedia Infor-
mation Retrieval, vol. 7, no. 1, pp. 3–16, 2018.

[16] E. L. Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching for
remote neural network watermarking,” arXiv preprint arXiv:1711.01894,
2017.

[17] M. Wu, W. Trappe, Z. J. Wang, and K. R. Liu, “Collusion-resistant mul-
timedia fingerprinting: a unified framework,” in Security, Steganography,
and Watermarking of Multimedia Contents VI, vol. 5306. International
Society for Optics and Photonics, 2004, pp. 748–760.

[18] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning,” IEEE transactions on medical imaging, vol. 35,
no. 5, pp. 1285–1298, 2016.

[19] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[20] M. Wu and B. Liu, “Data hiding in image and video. i. fundamental
issues and solutions,” IEEE Transactions on image processing, vol. 12,
no. 6, pp. 685–695, 2003.

[21] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for multimedia,” IEEE transactions on image
processing, vol. 6, no. 12, pp. 1673–1687, 1997.

[22] W. Trappe, M. Wu, Z. J. Wang, and K. R. Liu, “Anti-collusion fin-
gerprinting for multimedia,” IEEE Transactions on Signal Processing,
vol. 51, no. 4, pp. 1069–1087, 2003.

[23] W. Trappe, M. Wu, and K. R. Liu, “Collusion-resistant fingerprinting
for multimedia,” in Acoustics, Speech, and Signal Processing (ICASSP),
2002 IEEE International Conference on, vol. 4. IEEE, 2002, pp. IV–
3309.

[24] K. R. Liu, Multimedia fingerprinting forensics for traitor tracing.
Hindawi Publishing Corporation, 2005, vol. 4.

[25] Y. Yu, H. Lu, X. Chen, and Z. Zhang, “Group-oriented anti-collusion
fingerprint based on bibd code,” in e-Business and Information System
Security (EBISS), 2010 2nd International Conference on. IEEE, 2010,
pp. 1–5.

[26] J. H. Dinitz and D. R. Stinson, Contemporary design theory: A collection
of Surveys. John Wiley & Sons, 1992, vol. 26.

[27] C. J. Colbourn and J. H. Dinitz, Handbook of combinatorial designs.
CRC press, 2006.

[28] J. G. Proakis, M. Salehi, N. Zhou, and X. Li, Communication systems
engineering. Prentice Hall New Jersey, 1994, vol. 2.

[29] H. V. Zhao and K. R. Liu, “Fingerprint multicast in secure video
streaming,” IEEE Transactions on Image Processing, vol. 15, no. 1,
pp. 12–29, 2006.

[30] S. Jain, “Digital watermarking techniques: a case study in fingerprints
& faces,” in Proc. Indian Conf. Computer Vision, Graphics, and Image
Processing, 2000, pp. 139–144.

[31] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” 1998.

[32] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[33] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[34] C. A. Rodger and C. C. Lindner, Design theory. Chapman and
Hall/CRC, 2008.

[35] R. Lidl and H. Niederreiter, Introduction to finite fields and their
applications. Cambridge university press, 1994.


