
A Survey of Hardware
Trojan Taxonomy
and Detection
Mohammad Tehranipoor

University of Connecticut

Farinaz Koushanfar

Rice University

�BECAUSE OF GLOBALIZATION of the semiconductor

design and fabrication process, ICs are becoming in-

creasingly vulnerable to malicious activities and alter-

ations. These vulnerabilities have raised serious

concerns regarding possible threats to military sys-

tems, financial infrastructures, transportation security,

and household appliances. An adversary can intro-

duce a Trojan designed to disable or destroy a system

at some future time, or the Trojan could leak confi-

dential information and secret keys covertly to the ad-

versary. Trojans can be implemented as hardware

modifications to ASICs, commercial-off-the-shelf

(COTS) parts, microprocessors, microcontrollers, net-

work processors, or digital-signal processors (DSPs).

They can also be implemented as firmware modifica-

tions to, for example, FPGA bitstreams. These con-

cerns have been documented in recent reports from

the US Defense Science Board task force,1 the US

Senate,2 IEEE Spectrum,3 and Semiconductor Equip-

ment and Materials International (SEMI).4

An IC fabrication process contains three major

steps: design (which includes IP, models, tools, and

designers); fabrication (which includes mask genera-

tion, lithography, and packaging), and manufacturing

test. In an ASIC design process, the chip is com-

monly designed using tools developed by trusted

companies��that is, commercial CAD tool

developers such as Synopsys, Cadence

Design Systems, Mentor Graphics, and

Magma Design Automation. However,

the IP blocks, models, and standard

cells used by the designer during the de-

sign process and by the foundry during

the postdesign processes are considered

untrusted. The fabrication step might

also be considered untrusted, because

an attacker could substitute Trojan ICs for genuine

ones during transit or could subvert the fabrication

process itself by implanting a Trojan into the IC

mask. Manufacturing test, if done only in the produc-

tion test center of the client (semiconductor company

or government agency), would be considered trusted.

There are two main options to ensure that a chip

used by the client is authentic��meaning it performs

only those functions originally intended and nothing

more. The first option is to make the entire fabrication

process trusted. This option is prohibitively expensive

and nearly impossible with the current trends in the

global distribution of the IC design and fabrication

steps. The second option is to verify the trustworthi-

ness of the manufactured chips upon return to the cli-

ents. This requires defining a postmanufacturing step

to validate the chip’s conformance with the original

functional and performance specifications. We call

this new step silicon design authentication.

Generally, hardware-based security techniques

modify hardware to prevent attacks and to protect

IP blocks or secret keys. However, the types of attacks

we’re concerned with in this article are fundamentally

different. Here, the attacker is assumed to maliciously

alter the design before or during fabrication. Detec-

tion of such alterations is extremely difficult, for sev-

eral reasons. First, given the large number of soft,

Verifying Physical Trustworthiness of ICs and Systems

Editor’s note:

Today’s integrated circuits are vulnerable to hardware Trojans, which are mali-

cious alterations to the circuit, either during design or fabrication. This article

presents a classification of hardware Trojans and a survey of published tech-

niques for Trojan detection.

��Krish Chakrabarty, Editor in Chief

0740-7475/10/$26.00 �c 2010 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers10

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 10

firm, and hard IP cores used in

SoCs, as well as the high com-

plexity of today’s IP blocks,

detecting a small malicious alter-

ation is extremely difficult. Sec-

ond, nanometer IC feature sizes

make detection by physical in-

spection and destructive reverse

engineering very difficult and

costly. Moreover, destructive

reverse engineering does not

guarantee that the remaining

ICs will be Trojan free, especially

when Trojans are selectively

inserted into a portion of the

chip population.

Third, Trojan circuits, by de-

sign, are typically activated

under very specific conditions

(e.g., connected to low-transition-

probability nets or sensing a

specific design signal such as power or tempera-

ture), which makes them unlikely to be activated

and detected using random or functional stimuli.

Fourth, tests used to detect manufacturing faults

such as stuck-at and delay faults cannot guarantee de-

tection of Trojans. Such tests operate on the netlist of a

Trojan-free circuit and therefore cannot activate and

detect Trojans. Even when 100% fault coverage for all

types of manufacturing faults is possible, there are

no guarantees as far as Trojans are concerned. Finally,

as physical feature sizes decrease because of improve-

ments in lithography, process and environmental varia-

tions have an increasingly greater impact on the

integrity of the circuit parametrics. Thus, detection of

Trojans using simple analysis of these parametric

signals would be ineffective.

Hardware Trojans are modifications to original cir-

cuitry inserted by adversaries to exploit hardware or

to use hardware mechanisms to gain access to data

or software running on the chips. Hardware Trojan de-

tection is still a fairly new research area, but it has

gained significant attention in the past few years.

This survey presents the current state of knowledge

on existing detection schemes and design methodol-

ogies for improving Trojan detection techniques. We

discuss attempts at developing hardware Trojans in

IP cores and ICs. We also describe existing Trojan

detection methods, analyze their effectiveness in dis-

closing various types of Trojans, and demonstrate

several architecture-level solutions. Finally, we sum-

marize design methods to improve detection tech-

niques’ sensitivity to Trojans.

Trojan design and taxonomy
Wang, Tehranipoor, and Plusquellic developed the

first detailed taxonomy for hardware Trojans5 (a sim-

ple taxonomy devised earlier differentiated between

payload activation logic and triggering6). This com-

prehensive taxonomy lets researchers examine their

methods against different Trojan types.5 Currently,

the industry lacks metrics to evaluate the effective-

ness of methods in detecting Trojans. Such metrics

could foster a comprehensive taxonomy to help ana-

lyze Trojan detection techniques. Because malicious

alterations to a chip’s structure and function can

take many forms, Wang and colleagues decomposed

the Trojan taxonomy into three main categories (see

Figure 1) according to their physical, activation, and

action characteristics. Although Trojans could be

hybrids of this classification (for instance, they

could have more than one activation characteristic),

this taxonomy captures the elemental characteristics

of Trojans and is useful for defining and evaluating

the capabilities of various detection strategies.

The physical characteristics category describes the

various hardware manifestations of Trojans. The type

category partitions Trojans into functional and para-

metric classes. The functional class includes Trojans

Trojan
classification

Physical
characteristics

Activation
characteristics

Action
characteristics

Distribution

Structure

Size

Type

Externally
activated

Internally
activated

Modify
function

Modify
specification

Transmit
information

Layout
change

Layout
same

AntennaAlways on

Conditional

FunctionalParametric

SensorLogic

Change

DisableSensor

Figure 1. Detailed taxonomy showing physical, activation, and action characteris-

tics of Trojans. (Source: Wang et al.5)

11January/February 2010

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 11

that are physically realized through the addition or

deletion of transistors or gates, whereas the paramet-

ric class refers to Trojans that are realized through

modifications of existing wires and logic. The size cat-

egory accounts for the number of components in the

chip that have been added, deleted, or compromised.

The distribution category describes the location of the

Trojan in the chip’s physical layout. The structure cat-

egory refers to the case when an adversary is forced

to regenerate the layout to insert a Trojan, which

could then cause the chip’s physical form factor to

change. Such changes could result in different place-

ment for some or all design components. Any mali-

cious changes in physical layout that could change

the chip’s delay and power characteristics would fa-

cilitate Trojan detection. Wang and colleagues identi-

fied current adversaries’ capabilities for minimizing

the probability of detection.5

Activation characteristics refer to the criteria that

cause a Trojan to become active and carry out its dis-

ruptive function. Trojan activation characteristics fall

into two categories: externally activated (e.g., by an

antenna or a sensor that can interact with the outside

world) and internally activated (which are further

classified as always on and condition based), as

Figure 1 shows. ‘‘Always on’’ means the Trojan is

always active and can disrupt the chip’s function at

any time. This subclass covers Trojans that are imple-

mented by modifying the chip’s geometries such that

certain nodes or paths have a higher susceptibility to

failure. The adversary can insert the Trojans at nodes

or paths that are rarely exercised. The condition-

based subclass includes Trojans that are inactive

until a specific condition is

met. The activation condition

could be based on the output

of a sensor that monitors temper-

ature, voltage, or any type of ex-

ternal environmental condition

(such as electromagnetic inter-

ference, humidity, altitude, or

temperature). Alternatively, this

condition could be based on

an internal logic state, a particu-

lar input pattern, or an internal

counter value. The Trojan in

these cases is implemented by

adding logic gates and/or flip-

flops to the chip, and hence

is represented as a combina-

tional or sequential circuit.

Action characteristics identify the types of disrup-

tive behavior introduced by the Trojan. The classifica-

tion scheme shown in Figure 1 partitions Trojan

actions into three categories: modify function, modify

specification, and transmit information. The modify-

function class refers to Trojans that change the

chip’s function by adding logic or by removing or

bypassing existing logic. The modify-specification

class refers to Trojans that focus their attack on chang-

ing the chip’s parametric properties, such as delay

when an adversary modifies existing wire and transis-

tor geometries. Finally, the transmit-information class

includes Trojans that transmit key information to an

adversary. (Additional details on Trojan classification

and examples are available elsewhere.5)

Researchers have designed many types of Trojans

to evaluate their detection techniques by targeting

them in an IC.6-10 To imitate adversaries’ Trojan inser-

tions, Alkabani and Koushanfar classified the compo-

nents needed for a hardware Trojan horse (HTH)

into three categories: trigger, storage, and driver (see

Figure 2).7 A trigger incites the planned HTH. After a

trigger occurs, the action to be taken can be stored

in memory or a sequential circuit. A driver implements

the action prompted by the trigger. On the basis of the

classification just described, Alkabani and Koushanfar

present a systematic approach to insert hardware Tro-

jans into the IC using presynthesis manipulation of

the circuit’s structure.7 Such a model addresses the

issue of trust in IP cores designed by either a third-

party vendor or a system integrator when several IP

cores developed by many vendors are used.

Verifying Physical Trustworthiness of ICs and Systems

HTH implanter

External
trigger

HTH storage
Internal
trigger

HTH
driver

1 10 0 1 10 0

Figure 2. Three components of a hardware Trojan horse (HTH). (Source: Alkabani

and Koushanfar7)

12 IEEE Design & Test of Computers

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 12

Figure 3 shows an abstracted

view of the design process. The

Trojan designer composes the

high-level design description to

find the computation model of

the circuit that a finite-state ma-

chine (FSM) can represent. An

HTH can be inserted into the cir-

cuit by altering the FSM and

embedding states into it. The

modified FSM should have a trigger as an input and

a driver hidden in the structure of the FSM. This

FSM can be systematically hidden in the design by

merging its states within the states of the original

design’s FSM. Thus, the HTH would be inseparable

(unremovable) from the original design’s functional-

ity. A stealth communication, which uses the medium

for legitimate communications, can serve as a covert

channel to transfer confidential data from the work-

ing chips to the adversary. This Trojan-embedding

approach provides a low-level mechanism for bypass-

ing higher-level authentication techniques.

Jin, Kupp, and Makris investigated different types

of attacks on a design at the RTL.8 Specifically, they

examined the possibility of designing hardware Tro-

jans that can evade state-of-the-art detection method-

ologies and can pass functional test.

King et al. considered the malicious circuit design

space and introduced hardware components that can

enable several attacks.11 In particular, they designed

and implemented the Illinois Malicious Processor

with a modified CPU. The malicious modifications

allow memory access and shadow-mode mecha-

nisms. The former lets an attacker violate operating-

system isolation expectations, whereas the latter

admits stealthy execution of malevolent firmware.

The attacks were evaluated on an FPGA development

board by modifying the VHDL code of the Leon pro-

cessor, an open-source Sparc v8 processor that

includes a memory management unit. The overhead

in logic is less than 1% for both modifications, but the

timing overhead is about 12%. The authors further

designed and implemented three potential attacks:

a privilege escalation attack, which gives an intruder

access to the root without checking credentials or

generating log entries; a log-in backdoor in shadow

mode, which lets an intruder log in as a root without

using a password; and a service for stealing pass-

words and sending them to the attacker. They con-

cluded that hardware tampering is practical and

could support various attacks, while also being diffi-

cult to detect.

Mechanisms for actively controlling an IC can also

be used insert a malicious circuit in a design (i.e., IP

core). For example, manipulation of the states in an

FSM that cannot be reverse-engineered could be

used to embed Trojan circuitry by providing mecha-

nisms for remotely activating, controlling, and dis-

abling the Trojan.12

Trojan detection methodologies
Several Trojan detection methodologies have been

developed over the past few years. Without loss of

generality, the methods are categorized as either

side-channel analysis or Trojan activation, which are

mainly chip-level solutions and architectural-level

Trojan detection solutions.

Trojan detection using side-channel

signal analysis

Side-channel signals, including timing and power,

can be used for Trojan detection. Trojans typically

change a design’s parametric characteristics��for

example, by degrading performance, changing

power characteristics, or introducing reliability prob-

lems in the chip. This influences power and/or delay

characteristics of wires and gates in the affected cir-

cuit. Power-based side-channel signals provide visibil-

ity of the internal structure and activities within the

IC, enabling detection of Trojans without fully activat-

ing them. Timing-based side channels can detect a

Trojan’s presence if the chip is tested using efficient

delay tests that are sensitive to small changes in the cir-

cuit delay along the affected paths and that can

effectively differentiate Trojans from process variations.

Power-based analysis. Agrawal et al. were the first

to use side-channel information to detect Trojan con-

tributions to circuit power consumption.13 To obtain

the power signature of Trojan-free (i.e., genuine)

Designer FoundrySynthesis,
mapping,

placement,
and routing

FSM
manipulation

Design
description

Figure 3. Insertion of an HTH during the design process of an IP core. (Source:

Alkabani and Koushanfar7)

13January/February 2010

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 13

ICs, random patterns are applied and power measure-

ment is performed. The data belonging to each power

measurement consists of several elements, including

power consumption of the circuit after applying

inputs that are the same in all Trojan-free ICs; mea-

surement noise, which can be removed by several

measurements; process variations, which are random

and cannot be removed; and Trojan contributions to

the measured power consumption. After patterns are

applied, a limited number of ICs are reverse-

engineered to ensure they are Trojan free. Once the

reference signature is obtained, the same random pat-

terns are applied to the IC under authentication

(IUA). If the IUA’s power signature differs from the ref-

erence signature, the IUA is considered suspicious

and that it might contain a Trojan. Trojans of different

sizes under different process variations are detected

by applying random patterns and observing the signa-

tures. If the Trojan is comparable in size with the cir-

cuit, its impact on the circuit-transient current will be

significant and could be measured easily. However,

process variations will mask the impact of very

small Trojans on circuit power consumption.

Wang and colleagues argued that most Trojans

inserted into a chip require power supply and ground

to operate.9 The Trojans can be of different types and

sizes, and their impact on circuit power characteristics

could be very large or very small. The authors devel-

oped a multisupply transient-current integration meth-

odology to detect a hardware Trojan. Then, they

introduced a Trojan isolation method based on

localized-current analysis. They assumed the current

is measured from various power ports or controlled

collapse chip connections (C4s) on the die, and

they applied random patterns to increase the switch-

ing in the circuit in a test-per-clock fashion.

The amount of current that a Trojan can draw

might be so small that it could be submerged into

an envelope of noise and process variation effects,

and thus be undetectable by conventional measure-

ment equipment. However, Trojan detection capabil-

ity can be greatly enhanced by measuring currents

locally and from multiple power ports or pads. Figure 4

shows the current (charge) integration methodology

presented by Wang et al. for detecting hardware Tro-

jans.9 The die includes four power ports. The golden

die can be identified using an exhaustive test for sev-

eral randomly selected dies. It can also be identified

via the pattern set used in the current integration

method by comparing the results of all patterns in

an exhaustive fashion. If the same results (within the

range of variations) are obtained for all selected

dies, those dies can be identified as Trojan free.

The authors assumed the adversary will insert the

Trojans randomly in a selected number of chips.9

After the golden dies are identified, the worst-case

charge is obtained (dashed line in Figure 4 in

response to the pattern set. The worst-case charge is

based on the worst-case process variations in one of

the genuine ICs. Next, the pattern set is applied to

each chip, and the current is measured for each pat-

tern locally via the power ports or C4 bumps.

Figure 4 shows the current waveform of n number

of patterns applied to the chips. The figure also illus-

trates the charge variations with time for all the cur-

rent waveforms obtained after applying the patterns.

Verifying Physical Trustworthiness of ICs and Systems

Current monitor

Golden
die/chip

Chip/die under
authentication

Current

n Current
waveforms

Integration

t

Qn(t)

QTH

Trojan free (golden chip)
Trojan inserted

Figure 4. Current (charge) integration method. (Source: Wang et al.9)

14 IEEE Design & Test of Computers

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 14

The charge corresponds to the area produced by

each current waveform. Qn(t) denotes the accumula-

tive charge after applying n patterns. QTH is the

charge threshold to detect a Trojan; this threshold is

the resolution measurement defined by the instru-

mentation. When the patterns are applied, the charge

increases and is compared continuously against the

worst-case charge calculated for golden dies. Once

the difference between the two curves DQ is greater

than QTH, a Trojan is detected. The number of pat-

terns n is expected to be very small for large Trojans,

and large for very small Trojans. The application time

is expected to be low, because the patterns are

applied in a test-per-clock fashion.

Rad et al. proposed a region-based transient-

power signal analysis method to reduce the impact

of increasing process variation levels and leakage

currents.10 A region is a portion of the layout that

receives the majority of its power from surrounding

power ports or C4 bumps. Figure 5a shows a six-

metal-layer power grid with nine power ports. Meas-

urements are made through each power port indi-

vidually by applying patterns. The transient-current

detection algorithm is based on a statistical analysis

of the IDDT waveform areas generated at the nine

power ports as a test sequence is simulated on the

design. For each orthogonal pairing of power

ports, a scatter plot is constructed. The authors

used several different process models for Trojan-

free and Trojan-inserted designs. Figure 5b shows

that using a prediction ellipse derived from a

Trojan-free design with different process models

can help distinguish between Trojan-inserted and

Trojan-free designs. The dispersion in the Trojan-

free data points is a result of uncalibrated process

and test environment (PE) variations.

However, regional analysis alone is not sufficient

for dealing with the adverse effects of PE variations

on detection resolution. Signal calibration tech-

niques are necessary to attenuate and remove PE

signal variation effects, to fully leverage the resolu-

tion enhancements available in a region-based

approach. Calibration is performed on each power

port and for each chip separately, and it measures

the response of each power port to an impulse.

The response of each power port X (PPX) is normal-

ized by the sum of current drawn from power ports

in the same row as PPX. The calibration matrix com-

prises the normalized values of power ports. After

each test pattern is applied, the response is cali-

brated using the calibration matrix. The results pre-

sented by Rad et al. show that calibration can

increase the distance between Trojan-free and

Trojan-inserted designs (see residual in Figure 5b)

under different process parameters.

Recently, Alkabani and Koushanfar proposed sev-

eral approaches for gate-level timing and power char-

acterization via nondestructive measurements.14

Each measurement forms one equation. After a linear

number of measurements are taken, a system of equa-

tions for mapping the measured characteristics to the

gate level is formed.

Prediction
ellipse

Residual

P
P

0
I D

D
T

ar
ea

s

PP1 IDDT areas

Trojan-free
process models

(a) (b)

Trojan-inserted
process models

PP2 PP5 PP8

PP1 PP4 PP7

PP0 PP3 PP6

C499
Copy 3

C499
Copy 4

C499
Copy 2

C499
Copy 1

Figure 5. Architecture of the simulation model used by Rad et al. (a), and an example scatter plot for

PP01 (power ports 0 and 1) from one of the experiments (b). (Source: Rad et al.10)

15January/February 2010

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 15

Potkonjak et al. exploited the formulation of gate-

level characterization using linear programming and

singular-value decomposition to detect Trojans.15

They used both timing and static-power measure-

ments. Trojan detection is performed via constraint

(equation) manipulation. This method attempts to

find the measurement matrix with the highest rank,

and derives several heuristics for detecting gates

that have inconsistent characteristics compared to

their original specified characteristics. Learn, test,

and resubstitution statistical validation techniques

are used to estimate the bounds for normal (nonmali-

cious) characteristics. The experiments considered

errors in noninvasive measurements, but not process

variations. The evaluation results are promising be-

cause gate-level characterization with high accuracy

is possible. The gate-level characterization methods

can find the characteristics of controllable gates.

This controllability is known to be high for static-

power measurements and IDDQ testing.

Alkabani and Koushanfar used statistical conver-

gence of gate-level estimation and signal integrity

for Trojan detection.14 They found efficient robust

approximations for gate power consumptions and

identified malicious insertions using multiple consis-

tency checking.

Timing-based analysis. Li and Lach proposed a

delay-based physical unclonable function (PUF) for

hardware Trojan detection.16 This method uses a

sweeping-clock-delay measure-

ment technique to measure

selected register-to-register path

delays. Trojans can be detected

when one or a group of path

delays are extended beyond the

threshold determined by the pro-

cess variations level. Figure 6

shows the path delay measure-

ment architecture. The main cir-

cuit is the register-to-register

combinational path that is to

be characterized, and the regis-

ters on this path are triggered

by the main system clock

(CLK1). The components out-

side the box are part of the

testing circuitry. The shadow

register takes the same input as

the destination register in the

main circuit but is triggered by the shadow clock

(CLK2), which runs at the same frequency as CLK1

but at a controlled phase offset. The results latched

by the destination register and the shadow register

are compared during every clock period. If the com-

parison result is unequal, the path delay is character-

ized with a precision of the skew step size.

This method employs an on-die temperature mon-

itor to overcome the problem of temperature affecting

path delay. This monitor uses a ring oscillator as the

clock input of a counter to measure operating temper-

ature. Because the oscillator is embedded within the

main circuitry and its switching frequency is tempera-

ture dependent, the authenticator can calculate the ef-

fective response from the reported temperature and

delay signature. Although effective, this technique suf-

fers from considerable area overhead when targeting

today’s large designs with millions of paths.

Jin and Makris proposed a new fingerprint-

generating method using path delay information of

the entire chip.17 A chip has many delay paths, each

representing one part of the characteristic of the entire

chip. The timing features can generate a series of path

delay fingerprints. Regardless of how small the Trojan

is compared to the entire chip size, it can be signifi-

cant in the path view and could be detected. The en-

tire testing procedure includes three steps:

1. Path delay gathering of nominal chips. Many

chips are selected from a fabricated design.

Verifying Physical Trustworthiness of ICs and Systems

Result
bit

Comparator

Shadow
register

Destination
register

Source
register

Clk 1

Clk 2

Combinational path

Main circuit

Figure 6. Path delay measurement architecture using a shadow register. Such an

architecture can be used for IC authentication and Trojan detection. (Source: Li

and Lach16)

16 IEEE Design & Test of Computers

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 16

High-coverage input patterns are run on the sam-

ple chips, and high-dimension path delay informa-

tion is collected. Then, the sample chips are

checked via reverse engineering to ensure they

are genuine circuits.

2. Fingerprint generation. According to the path

delays, a series of delay fingerprints are generated

and mapped to a lower-dimension space.

3. Trojan detection. All other chips are checked

under the same test patterns. Their delay informa-

tion is reduced to a low dimension and compared

to the delay fingerprints.

This method uses statistical analysis to deal with

process variations. Because today’s circuits can

include millions of paths, measuring all paths��
especially the short ones��is not practical.

Trojan activation methods

Trojan activation strategies can accelerate the Tro-

jan detection process, and in some cases have been

combined with power analysis during implementa-

tion. If a portion of the Trojan circuitry is activated,

the Trojan circuit will consume more dynamic

power, which will further help differentiate the

power traces of Trojan-inserted and Trojan-free cir-

cuits. The existing Trojan activation schemes can be

categorized as follows.

Region-free Trojan activation. These methods do

not rely on the region but depend on accidental or

systematic activation of Trojans. For example, Jha

and Jha presented a randomization-based probabilis-

tic approach to detect Trojans.18 They showed that it’s

possible to construct a unique probabilistic signature

of a circuit on the basis of a specific probability for

patterns applied to its inputs. They apply input pat-

terns based on the specific probability to IUA and

compare its outputs with the original circuit. If there

are differences in the outputs, a Trojan is present.

For Trojan detection in a manufactured IC, patterns

can be applied only on the basis of such probability

to obtain a confidence level regarding whether the

original design and the fabricated chip are the same.

Wolff et al. analyzed rare-net combinations in

designs.6 These rarely activated nets are used as Trojan

triggers. At the same time, nets with low observability

are used as payloads (see Figure 7). Wolff et al. gener-

ated a set of vectors to activate such nets and sug-

gested combining them with traditional ATPG test

vectors to activate a Trojan and to propagate its im-

pact if the Trojan was connected to these nets.

Region-aware Trojan activation. Banga and Hsiao

developed a two-stage test generation technique that

targets magnifying the difference between the IUA

and the genuine design power waveforms.19 In the

first stage (circuit partitioning), a region-aware pattern

helps identify the potential Trojan insertion regions.

To detect a Trojan circuit, the activity within a portion

of the circuit is increased while the activity for the rest

of the circuit is simultaneously minimized. The flip-

flops in a circuit are classified into different groups,

depending on structural connectivity. In the next

stage (activity magnification), new test patterns con-

centrating on the identified regions are applied

to magnify the disparity between the original and

Trojan-inserted circuits. Regions (a set of flip-flops)

exhibiting increased relative activity are identified

by using the vector sequence generated in the first

stage to compare the relative differences between

the power profiles of the genuine and Trojan circuits.

In this stage, more vectors for the specific regions,

marked as possible Trojan regions, are generated

using the same test generation approach as in the

circuit-partitioning stage.

Banga and Hsiao discussed magnifying Trojan

contributions by minimizing circuit activity.20 This

involves keeping input pins unchanged for several

clock cycles. Thus, circuit activity comes from the

state elements of the design. Overall switching activity

is therefore reduced, and can be limited to those spe-

cific portions of the design that help Trojan localiza-

tion. Different portions of the design can be

explored by changing input vectors to localize a

Trojan. At the same time, each gate is equipped

q1

q2

R P

Stitch

P
rim

ar
y

in
p

ut

P
rim

ar
y

ou
tp

ut

Trojan circuit
Payload

q-Trigger

Figure 7. Trojan circuit model with a rare triggering condition.

(Source: Wolff et al.6)

17January/February 2010

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 17

with two counters: TrojanCount and NonTrojanCount.

With each vector, if the number of transitions at a

gate’s output exceeds a specific threshold, its Trojan-

Count would increase, and vice versa. The Trojan-

Count/NonTrojanCount ratio, called the gate weight,

indicates a gate’s activity. A high gate-weight ratio

means the gate is considerably impacted by a Trojan,

because there is a relatively high power difference

corresponding to that gate’s activation.

Because the test engineer does not know the Tro-

jan type or size, both region-free and region-aware

methods are necessary. If a Trojan circuit’s inputs

come from the part of the circuit where they are func-

tionally dependent (i.e., part of the same logic cone),

the region-aware method can be effective. However, if

the Trojan inputs are randomly selected from various

parts of the circuit, region-free methods could in-

crease the probability of detection.

Architecture-level Trojan detection

Verbauwhede and Schaumont explored trust issues

at different levels of design abstraction (protocols,

software, microarchitecture, and circuits).21 At the

most abstract level, the adversary can access the inter-

preter and perform software tempering, scan-chain

readout, or a fault attack. Side-channel information

can be used at the software-architecture level. At the

hardware microarchitecture and circuit levels, the

attacker takes into account power energy consump-

tion or electromagnetic energy. Hence, the authors

proposed a systematic countermeasure to protect

the root of trust at different design abstractions.

Tamper-proof techniques such as placing security

parts into special casing with light, temperature, tam-

pering, or motion sensors can provide protection at

the physical level. Side-channel information such as

power consumption should be separated from pro-

cessing data or execution time to provide circuit-

level protection. To deal with power fluctuation, dif-

ferent technologies such as full-custom dynamic

and differential logic styles should be used. In experi-

ments conducted by the authors, advanced en-

cryption standards employing wave dynamic and

differential logic remained safely after 1.5 million

power-differential attack measurements, whereas

standard CMOS technology disclosed the key only

after 2,000 attack measurements.

To deal with side-channel attacks at the microarch-

itecture level, Verbauwhede and Schaumont sug-

gested balancing if-and-else instructions to use the

same amount of time and power during execution.

The structure of microprocessors providing potential

sources of side-channel information should be con-

sidered seriously. The authors also suggested using se-

cure algorithm techniques, such as key and exponent

blinding, to disable side-channel attacks at lower

levels.

Suh, Deng, and Chan proposed authenticating the

hardware by directly checking its implementation

details at a low level.22 The microarchitecture features

of a high-end secure microprocessor are complex

and unique for each model. A secure processor is

authenticated by a checksum response to a challenge

within a time limit. The unique checksum is based on

the cycle-to-cycle activities of the processor’s specific

internal microarchitectural mechanism. Privacy is not

breached, because the checksum depends on the

processor-manufactured model and not the specific

processor. The authors showed that small differences

in the crypto-architecture result in significant devia-

tions in the checksum. Their work relied on the

speed advantages of the actual processor rather

than simulations that attempt to impersonate the pro-

cessor. The time limit on the authentication ensures

resiliency against simulation models attempting to

compute the checksum.

Bloom, Narahari, and Simha introduced a run-

time Trojan activity detection mechanism using a

hardware guard circuit and operating-system sup-

port.23 Trojan attacks can either be internally or ex-

ternally activated, and they can cause denial of

service, privilege escalation, or leakage of sensitive

information. Trojans can be detected by failure anal-

ysis and hardware verification, ATPG, or side-

channel analysis. Bloom, Narahari, and Simha’s

work concentrated on denial-of-service (DoS) and

privilege escalation attacks.23 They used a hardware

guard circuit to efficiently perform the testing, while

the operating system generated the checks. Their

hardware circuit included a timer, a scratch RAM, a

simple processor, and an optional content-addressable

memory (CAM).

Two tests were proposed: liveness checks and

memory protection checks. Liveness checks are pseu-

dorandom noncached-memory accesses that prevent

simple prediction, delay, and replay attacks. Two solu-

tions were provided for memory protection: a naive

solution and a solution using a real-time operating sys-

tem (RTOS). The naive solution periodically schedules

a process that continuously tries to read the kernel

Verifying Physical Trustworthiness of ICs and Systems

18 IEEE Design & Test of Computers

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 18

memory. However, the process is time-consuming.

RTOS support is needed to control the time of the

checking process, which is created as a real-time

task that is frequently required and consumes less

time. The proposed solutions are evaluated on SPECit

2006 benchmarks. The overhead for using RTOS sup-

port is approximately 2.2%.

McIntyre et al. used hardware multicore systems,

which permit simultaneous execution of the same

functionality combined with verification.24 Multicore

systems are inherently redundant. Thus, as trust de-

tection among the multiple cores is discovered, dis-

tributed software scheduling could be exploited to

avoid low-trust cores. The distributed multicore task

scheduler determines, over time and in the field,

each core’s hardware trust level.

Design for hardware trust
Current design practices do not support effective

side-channel signal analysis or pattern generation

for Trojan detection. The CAD and test community

has long benefited from DFT and DFM (design for

manufacturability). Here, we look closely at some of

the methods proposed by the hardware security and

trust community to improve Trojan detection and iso-

lation by changing or modifying the design flow. We

call these methods design for hardware trust. These

methods help prevent the insertion of Trojans, facili-

tate easier detection of Trojans, and provide effective

IC authentication.

Salmani, Tehranipoor, and Plusquellic developed

a methodology to increase the probability of gener-

ating a transition in functional Trojan circuits and to

analyze transition generation time.25 They modeled

transition probability using geometric distribution

and estimated it on the basis of the number of

clock cycles needed to generate a transition on a

net. They presented an efficient dummy flip-flop in-

sertion procedure to increase the transition proba-

bility of nets when it is lower than a specific

probability threshold. Figure 8a shows a circuit

with Tgj as a Trojan gate. The transition probability

at the gate output is extremely low. However, after

adding dummy scan flip-flops (see Figure 8b) to a

net with a low transition probability, the transition

probability at the Trojan output increased consider-

ably; similarly, the average number of clock cycles

per transition decreased.

Dummy flip-flops are inserted such that they do

not alter the design’s functionality or performance.

To examine the effectiveness of dummy flip-flop in-

sertion, the authors evaluated different transition

probability thresholds for various Trojan circuits.

They studied in detail the relationships among au-

thentication time, the number of required transitions

in the Trojan circuit, and the tester clock. These

parameters can help determine a design’s transition

probability threshold. The transition probability

threshold, in turn, provides an estimation of the

area overhead induced by the insertion of dummy

(1/2, 1/2)

(1/2, 1/2)
(1/2, 1/2)

(1/2, 1/2)
(1/2, 1/2)

(1/2, 1/2)
(1/2, 1/2)

(1/2, 1/2)
(3/4, 1/4)

(3/4, 1/4)

(3/4, 1/4)

(3/4, 1/4)

(15/16, 1/16)

(15/16, 1/16)

Tgj
(255/256, 1/256)

Transition probability at Trojan output = 255/65536
Average clock cycles per transition by GD = 255.6
Average clock cycles per transition by simulation = 250

Transition probability at Trojan output = 8415/262177
Average clock cycles per transition by GD = 30
Average clock cycles per transition by simulation = 33.4

(1/2, 1/2)

(1/2, 1/2)
(1/2, 1/2)

(1/2, 1/2) (1/2, 1/2)

(1/2, 1/2)

(1/2, 1/2)
(1/2, 1/2)

(1/2, 1/2)

(3/4, 1/4)

(3/4, 1/4)

(3/4, 1/4)

(3/4, 1/4)

(15/32, 17/32)
(15/16, 1/16)

(15/16, 1/16)

Tgi
(495/512, 17/512)

Scan flip-flop

dSFF-OR

(a) (b)

: Represents scan flip-flop or primary input

Figure 8. Analyzing transition probability in the original circuit (a) and after dummy scan flip-flop insertion (b).

(Source: Salmani et al.25)

19January/February 2010

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 19

flip-flops. This method can help detect Trojans in

two ways:

� It can improve power-based side-channel signal

analysis methods by increasing the number of

transitions in Trojans.

� It provides an opportunity for fully activating a Tro-

jan circuit and observing the erroneous response

at that circuit’s output.

Banga and Hsiao proposed an inverted voltage

scheme to magnify Trojan activity.26 Because the Tro-

jan is assumed to be activated only under rare condi-

tions, IC inputs could be changed so that rare

combinations are created to activate the Trojan. For

example, for an AND gate with four inputs, a rare con-

dition would be when all its inputs are 1 (a probabil-

ity of 1/16). The goal is to change the Trojan’s

functionality to remove the rare condition. Reversing

a gate’s power supply voltage (VDD) and ground

(GND) changes its function and reduces the noise

margin as the output swings between VDD � VTH

and VTH (where VTH is the transistor voltage thresh-

old). Thus, AND changes to NAND, and 1 at the out-

put of a NAND Trojan is no longer a rare value (its

probability becomes 15/16, as Figure 9 shows). How-

ever, this method must face the difficulty of switching

between power supply voltage and ground for each

gate on the circuit, because current power distribu-

tion networks are not designed to support an inverted

voltage scheme.

To monitor an IC’s system operation and detect un-

expected or illegal behavior, Abramovici and Bradley

suggested employing reconfigurable design-for-

enabling-security (Defense) logic to the functional

design.27 When an attack is detected, the first step is

to deploy countermeasures such as disabling a sus-

pect block or forcing a safe operational mode.

Figure 10 shows the architecture of a SoC with De-

fense inserted. Signal probe networks (SPNs) are con-

figured to select a subset of the monitored signals and

transport them to security monitors. A security monitor

is a programmable transaction engine configured to

implement an FSM, to check the current signals’

user-specified behavior properties.

The security and control processor (SeCoPro)

reconfigures SPNs to select the groups of signals that

security monitors must check and reconfigures these

security monitors to perform the required checks. All

configurations are encrypted and stored in the secure

flash memory. The security checks are application de-

pendent and circuit dependent. This approach can

detect attacks and prevent the damage they cause,

by inserting these security checks into every phase

of the design flow. These checks are concealed from

attackers trying to reverse-engineer the device,

Verifying Physical Trustworthiness of ICs and Systems

P
P
P

Payload
gate Trojan

gate
P

P

(a)

P1

P2
P3′

Payload
gate Trojan

gate
P′ = 1–P

P4

(b)

P1′′
P2′′
P3′′

Payload
gate Trojan

gate
P′′ = 1– P

P4′′

(c)

Figure 9. Trojan logic under normal voltage supply

(a), where only the Trojan gate is affected by an

inverted voltage supply (b), and where both the

Trojan and payload gate are affected by an inverted

voltage supply (c). (Source: Banga and Hsiao26)

SPN

SPN

SM

SeCoPro

Crypto

Secure
flash

Signal
control

SM

Figure 10. SoC design with design-for-enabling-

security (Defense) logic. (Source: Abramovici and

Bradley27)

20 IEEE Design & Test of Computers

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 20

because the reconfigurable logic

is blank (unprogrammed) in a

powered-off chip. On the other

hand, they are not accessible

from either the functional logic

or the embedded software. Simi-

larly, SeCoPro is invisible for the

other on-chip application pro-

cessors. However, this approach

cannot detect a Trojan unless

the chip is fabricated and the

method is also unable to locate

the Trojan. To increase the effi-

ciency of the method, a large

number of nets in the circuit

must be selected for observation,

and this could increase area

overhead.

Chakraborty, Paul, and Bhunia introduced a de-

sign methodology called on-demand transparency,28

which facilitates Trojan detection via logic testing.

They defined a special mode of operation, called

transparent mode, for a multimodule system. In this

mode, a signature is generated upon application of

a specific input. The hope is that Trojan tampering

will affect the signature and reveal the Trojan. The

selected nodes are those that are assumed to be

most susceptible to Trojan attacks, guided by the con-

trollability and observability values. (This type of sig-

nature generation for watermarking circuits and

finding watermark tampering had been proposed

and used earlier.29) The drawback of the authors’ pro-

posed method is that an FSM’s states contain many

don’t-care values and an enormous number of states.

Thus, generating a signature that each kind of tamper-

ing will affect is an extremely challenging problem for

larger circuits.

Researchers have attempted to develop on-chip

structures to facilitate effective IC identification and

authentication, which can help with Trojan detection

as well. For example, any change in the circuit physi-

cal layout or from moving components in the circuit

would potentially change the circuit parasitics param-

eters and could be detected by on-chip structures.10,16

PUFs represent one such structure. Built on many

random uncontrollable components originated

from process variations, PUFs can reliably and se-

curely identify individual ICs. Gassend et al. pro-

posed two candidate PUF circuits based on delay

measurement.30 Figure 11 shows the architecture

of the first PUF. The signature of the PUF is the

delay measured by the race between two paths to

the AND gate or arbiter. A 128-bit challenge is trans-

formed by a pseudorandom function into a bit pat-

tern b ¼ (b1, . . ., b128). The bits bi control switches,

as Figures 11a and 11b show. To obtain a response

from this circuit, a pulse is applied to its input.

The pulse is split into two competing pulses,

which independently propagate through the

switches until they reach the AND gate. The circuit

response is the time it takes for the pulse on the

input to produce a pulse on the output. Although

measuring delays using self-oscillating circuits is

easy and precise, the hundreds of bit patterns

require thousands of clock cycles.

The second PUF (see Figure 12) is implemented

with an arbiter circuit. The arbiter has two inputs,

which are low initially. The arbiter waits for one of

the inputs to go high; its output indicates which

input went high first. To harden the PUF design

to confront potential adaptive modeling attacks, a

feedforward arbiter is placed at an intermediate

point in the circuit. Its output drives one of the

(a) (b) (c)

bi = 1bi = 0

...

Switch

Pseudorandom function
Challenge

And

b1 b2 b3 b127 b128

Figure 11. Physical unclonable function (PUF) design 1. Arbiter switch when bi � 0

(a), arbiter switch when bi � 1 (b), and architecture of the first PUF (c). The

signature of the PUF is the delay measured by the race between two paths to

the AND gate or arbiter. A 128-bit challenge is transformed by a pseudorandom

function into a bit pattern /b/ � (/b/_1, . . ., /b/_128). (Source: Gassend et al.30)

b1 b2 b3

...

b126

Switch

b127 b128

Arbiter 0
1

Figure 12. PUF design 2. (Source: Gassend et al.30)

21January/February 2010

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 21

switches later in the circuit (see Figure 13). Many

such arbiters could be added to the circuit to make

modeling by an adversary more difficult. A variable

delay buffer is a component that directly passes a sig-

nal from its input to its output at a different speed,

depending on the state of its other input. Thus, the

extra effort put into the buffer’s variable delay charac-

teristics can have the benefit of making the circuit dif-

ficult to model in the additive delay model.

However, recent studies have shown that the

feedforward-arbiter approach is susceptible to non-

linear attacks, such as an evolutionary strategy.31

The method proposed by Majzoobi, Koushanfar, and

Potkonjak safeguards the PUFs by using an input net-

work that avoids individual controlling of the chal-

lenges, and an XOR output network that compresses

the responses so that they cannot be reverse-

engineered.32 Even though attempts have been

made to break this type of safeguard, no polynomial

method for learning the PUF with an XOR output net-

work has been reported thus far.

To ensure attack resiliency, Majzoobi, Koushan-

far, and Potkonjak proposed five tests: predictability,

collision, sensitivity, reverse engineering, and emu-

lation.32 The predictability test identifies the level

of difficulty of correctly calculating or predicting

PUF or random-ID outputs for a given input. The col-

lision test studies whether two different inputs can

map to the same output. The sensitivity test captures

the part of the required manufacturing variability

that allows a PUF to operate securely when the com-

ponents are imperfect. The reverse-engineering test

measures the level of difficulty to find the character-

istics of the circuit components. The emulation test

measures the compressibility level of the PUF I/O

pairs. If a PUF is reverse-engineered, the emulation

test always requires at most a linear number of

operations with respect to the number of participat-

ing elements in the PUF.

Majzoobi, Koushanfar, and Potkonjak also intro-

duced a suite of new techniques for testing the secu-

rity of random IDs, such as true random-number

generators (TRNGs), and PUFs.33 Introducing such

techniques is critical for many security applications

that use random IDs and PUFs as security primitives

or for key generation. The goal is not only to create

a methodology for testing the security of random-ID

generation and PUFs at the functional and IC levels,

but also to define specific techniques and tools that

can be extended to other security hardware.

The authors focused on five broad classes of

attacks: predictability, collision, fault injection, re-

verse engineering, and emulation. After presenting

an extensive case study of the test method on popular

and widely advocated PUF structures, they analyzed

two delay-based structures: linear (parallel) and feed-

forward. They demonstrated that both structures can

be reverse-engineered and easily emulated using the

introduced tests. They also introduced a set of safe-

guarding techniques to create secure PUFs. The

goal is to foster a clearer understanding of the PUF se-

curity requirements, and to propose a testing method-

ology to evaluate the requirements. They also devised

a specific PUF structure that can pass the proposed

security tests. The quantitative tests indicate drasti-

cally higher levels of achieved security with respect

to conventional linear and feedforward PUFs.

So far, our focus has been on trust issues and Tro-

jan detection methods for ASICs and general-

purpose microprocessors. Trimberger suggested

that the FPGA trust and Trojan insertion problems

are markedly different from those of ASICs.34 This

is because the FPGA design process is almost com-

pletely separate from the manufacturing flow, disal-

lowing tampering or piracy at fabrication. FPGAs

fabricated during nonsecure manufacturing can be

trusted if the bitstream is developed and loaded in

a secure design facility so that programming secrets

are not exposed to manufacturers. Trimberger

argued that, because the FPGA bitstream is an elec-

tronic message, the known methods of message au-

thentication and piracy are valid. The only issue is

that the physical access to the device could enable

new attacks. Trimberger also summarized the

known methods for securing FPGA systems in the

field, including methods that prevent reverse engi-

neering of the bitstream, load-once programming,

Verifying Physical Trustworthiness of ICs and Systems

b128b127b101b100

Challenge

Switch

Arbiter

... ...

Figure 13. Hardening a PUF via arbiters. (Source:

Gassend et al.30)

22 IEEE Design & Test of Computers

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 22

and bitstream encryption. According to Trimberger,

the serious vulnerability at the foundry is its suscep-

tibility to attacks on the security features, which an

adversary could later try to use in the field (e.g., via

Trojan or spyware insertion).34

CURRENT TRENDS IN SEMICONDUCTOR design and

manufacturing toward globalization and horizontal

integration of the industry constitute a source of

threat and vulnerability. Table 1 summarizes some

of the key Trojan detection methods discussed in

this article. In the table, ‘‘test modality’’ (second col-

umn) refers to the measurement modality used

(often as a side channel) to reveal the presence of

a Trojan. ‘‘Trojan model’’ (third column) indicates

the type of added Trojan used in the experimental

Table 1. Summary of recent work on Trojan detection.

Paper

Test

modality Trojan model Golden model

Detection

method

Process

variation Benchmark

Agrawal

et al.13

Transient power Counter: 16-bit

Comparators: 3,

8-bit

Invasive characteri-

zation

Kullback-Leibler

(KL) distance

256-bit Rivest,

Shamir, and

Adleman (RSA)

Wang et al.9 Transient power Counter: 1, 3, 7, 9-bit

Comparators: 3, 5,

20-bit

Simulation Current

integration

� S38417

Rad et al.10 Transient power Comparator Simulation Outlier analysis � C432

Li and Lach16 Delay Inverter chain Simulation Path delay analy-

sis using shadow

registers

Braun multiplier

Jin and

Makris17

Delay 2, 4-bit comparator Simulation Path delay analy-

sis measurement

� Data Encryption

Standard (DES)

core

Wolff et al.6 Functional 2-input gates acti-

vated by Trojans

Simulation Frequency analy-

sis for rate

triggers

ISCAS

Banga and

Hsiao19,20

Transient power,

pattern generation

Varying flip-flop

numbers

Simulation Pattern generation

for increasing

transient power in

a Trojan

� ISCAS

Potkonjak

et al.15

Static power, delay 1-gate Simulation Pattern generation

for increasing

static power and

circuits’ transient

switching

� ISCAS

Banga and

Hsiao26

Design for hardware

trust, transient

power

2, 3, 4-input gates Simulation Pattern generation

to improve full

activation and

transient-power

analysis

� ISCAS

Alkabani and

Koushanfar14

Static power 1, 3, 5 added

2-input gates

Simulation Pattern generation

to increase leak-

age transitions,

robust statistics,

and optimization

� ISCAS

23January/February 2010

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 23

designs��for instance, the number of components

and their characteristics. ‘‘Golden model’’ (fourth

column) represents the environment used to pres-

ent the results. Except for the work by Agrawal

et al.,13 where the authors had access to test chips

and did noninvasive measurements, all methods

were based on noninvasive simulations. ‘‘Detection

method’’ (fifth column) briefly describes the

essence of the detection method of choice in the

work cited. ‘‘Process variation’’ (sixth column) iden-

tifies whether the Trojan detection algorithms and

protocols take into account the inherent variability

in the silicon structure. Finally, in the last column,

we identify the benchmarks used.

Hardware Trojan modeling and analysis is a grow-

ing research topic that has attracted considerable at-

tention during the past three years. The recent work

in this area has paved the way for more comprehen-

sive models, preventive strategies, analysis, and detec-

tion methods for Trojans. �

Acknowledgments
We thank Yousra Alkabani, Mehrdad Majzoobi,

Hassan Salmani, Michel Wang, and Xhehui Zhang

from Rice University and the University of Connecti-

cut, Storrs, for their contributions to this article.

�References
1. ‘‘Report of the Defense Science Board Task Force on

High Performance Microchip Supply,’’ Defense Science

Board, US DoD, Feb. 2005; http://www.acq.osd.mil/dsb/

reports/2005-02-HPMS_Report_Final.pdf.

2. J. Lieberman, ‘‘National Security Aspects of the Global

Migration of the U.S. Semiconductor Industry,’’ white

paper, Airland Subcommittee, US Senate Armed

Services Committee, June 2003; http://lieberman.senate.

gov/documents/whitepapers/semiconductor.pdf.

3. S. Adee, ‘‘The Hunt for the Kill Switch,’’ IEEE Spectrum,

vol. 45, no. 5, 2008, pp. 34-39.

4. ‘‘Innovation at Risk��Intellectual Property Challenges

and Opportunities,’’ white paper, Semiconductor

Equipment and Materials International, June 2008.

5. X. Wang, M. Tehranipoor, and J. Plusquellic, ‘‘Detecting

Malicious Inclusions in Secure Hardware: Challenges

and Solutions,’’ Proc. IEEE Int’l Workshop Hardware-

Oriented Security and Trust (HOST 08), IEEE CS Press,

2008, pp. 15-19.

6. F. Wolff et al., ‘‘Towards Trojan Free Trusted ICs: Prob-

lem Analysis and Detection Scheme,’’ Proc. Design,

Automation and Test in Europe Conf. (DATE 08), ACM

Press, 2008, pp. 1362-1365.

7. Y. Alkabani and F. Koushanfar, ‘‘Extended Abstract:

Designer’s Hardware Trojan Horse,’’ Proc. IEEE Int’l

Workshop Hardware-Oriented Security and Trust (HOST

08), IEEE CS Press, 2008, pp. 82-83.

8. Y. Jin, N. Kupp, and Y. Makris, ‘‘Experiences in Hard-

ware Trojan Design and Implementation,’’ Proc. IEEE

Int’l Workshop Hardware-Oriented Security and Trust

(HOST 09), IEEE CS Press, 2009, pp. 50-57.

9. X. Wang et al., ‘‘Hardware Trojan Detection and Isolation

Using Current Integration and Localized Current Analysis,’’

Proc. IEEE Int’l Symp. Defect and Fault Tolerance of VLSI

Systems (DFT 08), IEEE CS Press, 2008, pp. 87-95.

10. R. Rad et al., ‘‘Power Supply Signal Calibration Tech-

niques for Improving Detection Resolution to Hardware

Trojans,’’ Proc. IEEE/ACM Int’l Conf. Computer-Aided

Design (ICCAD 08), IEEE CS Press, 2008, pp. 632-639.

11. S. King et al., ‘‘Designing and Implementing Malicious

Hardware,’’ Proc. 1st USENIX Workshop Large-Scale

Exploits and Emergent Threats (LEET 08), Usenix

Assoc., 2008, pp. 1-8.

12. Y. Alkabani and F. Koushanfar, ‘‘Active Hardware Meter-

ing for Intellectual Property Protection and Security,’’

Proc. 16th USENIX Security Symp., Usenix Assoc.,

2007, pp. 291-306.

13. D. Agrawal et al., ‘‘Trojan Detection Using IC Fingerprinting,’’

Proc. IEEE Symp. Security and Privacy (SP 07), IEEE CS

Press, 2007, pp. 296-310.

14. Y. Alkabani and F. Koushanfar, ‘‘Consistency-Based

Characterization for IC Trojan Detection,’’ Proc. IEEE/

ACM Int’l Conf. Computer-Aided Design (ICCAD 09),

IEEE CS Press, 2009.

15. M. Potkonjak et al., ‘‘Hardware Trojan Horse Detection

Using Gate-Level Characterization,’’ Proc. 46th Design Au-

tomation Conf. (DAC 09), ACM Press, 2009, pp. 688-693.

16. J. Li and J. Lach, ‘‘At-Speed Delay Characterization for

IC Authentication and Trojan Horse Detection,’’ Proc.

IEEE Int’l Workshop Hardware-Oriented Security and

Trust (HOST 08), IEEE CS Press, 2008, pp. 8-14.

17. Y. Jin and Y. Makris, ‘‘Hardware Trojan Detection Using

Path Delay Fingerprint,’’ Proc. IEEE Int’l Hardware-

Oriented Security and Trust (HOST 08), IEEE CS Press,

2008, pp. 51-57.

18. S. Jha and S.K. Jha, ‘‘Randomization Based Probabilistic

Approach to Detect Trojan Circuits,’’ Proc. 11th IEEE

High Assurance Systems Engineering Symp., IEEE CS

Press, 2008, pp. 117-124.

19. M. Banga and M. Hsiao, ‘‘A Region Based Approach for

the Identification of Hardware Trojans,’’ Proc. IEEE Int’l

Verifying Physical Trustworthiness of ICs and Systems

24 IEEE Design & Test of Computers

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 24

Workshop Hardware-Oriented Security and Trust (HOST

08), IEEE CS Press, 2008, pp. 40-47.

20. M. Banga and M. Hsiao, ‘‘A Novel Sustained Vector Tech-

nique for the Detection of Hardware Trojans,’’ Proc. 22nd

Int’l Conf. VLSI Design, IEEE CS Press, 2009, pp. 327-332.

21. I. Verbauwhede and P. Schaumont, ‘‘Design Methods for

Security and Trust,’’ Proc. Design, Automation and Test in

Europe Conf. (DATE 07), EDA Consortium, pp. 672-677.

22. G.E. Suh, D. Deng, and A. Chan, ‘‘Hardware Authentica-

tion Leveraging Performance Limits in Detailed Simula-

tions and Emulations,’’ Proc. 46th Design Automation

Conf. (DAC 09), ACM Press, 2009, pp. 682-687.

23. G. Bloom, B. Narahari, and R. Simha, ‘‘OS Support for

Detecting Trojan Circuit Attacks,’’ Proc. IEEE Int’l Work-

shop Hardware-Oriented Security and Trust (HOST 09),

IEEE CS Press, 2009, pp. 100-103.

24. D. McIntyre et al., ‘‘Dynamic Evaluation of Hardware

Trust,’’ Proc. IEEE Int’l Workshop Hardware-Oriented

Security and Trust (HOST 09), IEEE CS Press, 2009,

pp. 108-111.

25. H. Salmani, M. Tehranipoor, and J. Plusquellic, ‘‘New

Design Strategy for Improving Hardware Trojan Detection

and Reducing Trojan Activation Time,’’ Proc. IEEE Work-

shop Hardware-Oriented Security and Trust (HOST 09),

IEEE CS Press, 2009, pp. 66-73.

26. M. Banga and M. Hsiao, ‘‘VITAMIN: Voltage Inversion

Technique to Ascertain Malicious Insertion in ICs,’’

Proc. 2nd IEEE Int’l Workshop Hardware-Oriented

Security and Trust (HOST 09), IEEE CS Press, 2009,

pp. 104-107.

27. M. Abramovici and P. Bradley, ‘‘Integrated Circuit Security:

New Threats and Solutions,’’ Proc. 5th Ann. Workshop

Cyber Security and Information Intelligence Research:

Cyber Security and Information Challenges and Strategies

(CSIIRW 09), ACM Press, 2009, article 55.

28. R.S. Chakraborty, S. Paul, and S. Bhunia, ‘‘On-

Demand Transparency for Improving Hardware Trojan

Detectability,’’ Proc. IEEE Int’l Workshop Hardware-

Oriented Security and Trust (HOST 08), IEEE CS

Press, 2008, pp. 48-50.

29. G. Qu and M. Potkonjak, Intellectual Property Protection

in VLSI Designs: Theory and Practice, Kluwer Academic

Publishers, 2003.

30. B. Gassend et al., ‘‘Identification and Authentication of

Integrated Circuits: Research Articles,’’ Concurrency and

Computation: Practice & Experience, vol. 16, no. 11,

2004, pp. 1077-1098.

31. U. Rührmair, J. Sölter, and F. Sehnke, ‘‘On the Founda-

tions of Physical Unclonable Functions,’’ Cryptology

ePrint Archive, report 2009/277, 10 June 2009; http://

eprint.iacr.org/2009/277.pdf.

32. M. Majzoobi, F. Koushanfar, and M. Potkonjak, ‘‘Tech-

niques for Design and Implementation of Secure Recon-

figurable PUFs,’’ ACM Trans. Reconfigurable Technology

and Systems, vol. 2, no. 1, 2009, article 5.

33. M. Majzoobi, F. Koushanfar, and M. Potkonjak, ‘‘Testing

Techniques for Hardware Security,’’ Proc. Int’l Test Conf.

(ITC 08), IEEE CS Press, 2008, pp. 1-10.

34. S. Trimberger, ‘‘Trusted Design in FPGAs,’’ Proc. 44th

Design Automation Conf. (DAC 07), ACM Press, 2007,

pp. 5-8.

Mohammad Tehranipoor is an assistant professor

of electrical and computer engineering at the Univer-

sity of Connecticut, Storrs. His research interests in-

clude CAD and test for CMOS VLSI designs and

emerging nanoscale devices, DFT, at-speed test, se-

cure design, and IC trust. He has a PhD in electrical

engineering from the University of Texas at Dallas.

He is a senior member of the IEEE and a member of

the ACM and ACM SIGDA.

Farinaz Koushanfar is an assistant professor of

electrical and computer engineering and the director

of Texas Instruments DSP Leadership at Rice Univer-

sity. Her research interests include hardware trust

and IP protection, computer and communication sys-

tem security, design and analysis of adaptive systems,

and emerging technologies. She has a PhD in electri-

cal engineering and computer science from the

University of California, Berkeley. She is a senior mem-

ber of the IEEE and a member of the ACM and the

American Association for the Advancement of

Science.

�Direct questions and comments about this article to

Mohammad Tehranipoor, Electrical and Computer

Engineering Dept., University of Connecticut, 371

Fairfield Way, Unit 2157, Storrs, CT 06269-2157;

tehrani@engr.uconn.edu.

25January/February 2010

[3B2-9] mdt2010010010.3d 13/1/010 11:24 Page 25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

