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Abstract—We propose a novel end-to-end framework to
customize execution of deep neural networks on FPGA plat-
forms. Our framework employs a reconfigurable clustering
approach that encodes the parameters of deep neural networks
in accordance with the application’s accuracy requirement and
the underlying platform constraints. The throughput of FPGA-
based realizations of neural networks is often bounded by the
memory access bandwidth. The use of encoded parameters
reduces both the required memory bandwidth and the compu-
tational complexity of neural networks, increasing the effective
throughput. Our framework enables systematic customization
of encoded deep neural networks for different FPGA platforms.
Proof-of-concept evaluations on four different applications
demonstrate up to 9-fold reduction in memory footprint and
15-fold improvement in the operational throughput while the
drop in accuracy remains below 0.1%.

Keywords-Deep neural networks, Reconfigurable computing,
Domain-customized computing, Platform-aware customization.

I. INTRODUCTION

Deep neural networks (DNNs) have been successfully
adopted in many applications, including but not limited
to computer vision [1], voice recognition [2], [3], natural
language processing [4], and health care [5]. A DNN is
composed of multiple layers of neurons stacked in a hier-
archical formation. DNN computations involve parameters
whose values are learned in a training procedure. Once the
parameters are trained, The DNN can extract meaningful
features from raw inputs.

DNN computation can be parallelized across multiple
computational units, motivating prior work on the efficient
implementation of neural networks on GPU, CPU clusters,
and FPGA clusters [6], [7], [8]. Many applications require
DNNs to be deployed on mobile and embedded devices
where memory and runtime budgets are strictly limited. For
instance, object recognition in robotics and self-driving cars
should be performed in real-time under certain resource
constraints[9]. Since FPGAs are promising platforms for
high-throughput and power efficient implementation of par-
allel algorithms, efficient FPGA realization of DNNs on
single FPGA chips has attracted researchers’ attention [10],
[11], [12]. These works are mainly focused on efficient
implementation of existing models rather than modifying the
models to tailor them for FPGA platforms.

Neural networks are inherently approximate models, and
can often be simplified. Previous work shows that there
is a significant redundancy among neural network param-
eters [13], offering alternative models that can deliver the

same of accuracy with less computation or storage require-
ment. Inspired by this fact, we propose a novel end-to-end
framework to customize execution of deep neural networks
on FPGA platforms. Our framework employs a reconfig-
urable clustering approach that encodes the parameters of
deep neural networks in accordance with the application’s
accuracy requirement and platform constraints.

Towards this goal, this paper focuses on two challenges
associated with execution of DNNs on FPGA settings: first,
the memory requirement of fully connected layers often
exceeds the available on-chip storage capacity, making it
inevitable to store the parameters in the off-chip memory;
consequently, the achievable throughput becomes bounded
by the communication bandwidth. To address this issue, we
propose a greedy algorithm that encodes DNN parameters in
accordance with the platform’s memory constraints and the
application’s accuracy requirement. Second, matrix-vector
multiplications often require significant amounts of process-
ing resources allocated to MAC operations. To decrease
the computational burden, we propose a factorized version
of matrix-vector multiplication in the encoded domain that
replaces the majority of the MAC operations with additions,
allowing efficient use of the FPGA’s computing power.

To implement DNNs on different FPGA platforms, We
propose a systematic design flow involving two steps. First,
to specify the encoding bit-width, the pre-trained parameters
of the DNN are encoded in a software module according to
(i) the error tolerance, and (ii) the maximum storage capacity
that the hardware designer allocates to model parameters.
Second, a performance profiling process utilizes the en-
coding bit-width and the DNN topology to optimally map
the corresponding computations to the target platform. This
step is performed by specifying parallelism factors within
different DNN layers. Eventually, encoded DNN parameters
and customized DNN layers are used in design synthesis.

We evaluate the proposed framework on four DNN appli-
cations. In particular, we synthesize baseline DNNs and their
corresponding encoded DNNs on a Zynq-ZC706 board, then
compare them in terms of memory footprint, throughput,
accuracy, and resource utilization.

In summary, the contributions of this paper are as follows:
• Devising a greedy algorithm for encoding the pa-

rameters of a pre-trained DNN in accordance with
the application’s accuracy requirement. This algorithm
leverages a clustering-based approach to finding the



optimal representatives for the encoding such that DNN
accuracy is retained.

• Developing a software API for systematic customiza-
tion of the encoded parameters with regards to mem-
ory constraints. The proposed methodology iteratively
searches for the smallest encoding bit-width that en-
sures classification accuracy. Proof-of-concept evalu-
ations demonstrate up to 9-fold reduction in mem-
ory footprint and 15-fold improvement in operational
throughput while accepting less than 0.1% drop in
classification accuracy.

• Proposing a systematic design flow to optimally sched-
ule DNN computations according to the platform. We
formulate computation efficiency to ease performance
optimization of DNNs on various platforms.

II. PRELIMINARIES

This paper proposes a novel feature encoding algorithm
to customize DNNs for execution on FPGA platforms. Our
encoding algorithm is inspired by [14], where the authors
utilize a random hash function to decrease the number
of free parameters within DNN models. We propose a
clustering-based methodology to encode DNN parameters.
Our algorithm enables systematic customization of neural
networks in accordance with application requirements and
hardware constraints. The rest of this section provides
insightful background regarding neural networks and our
encoding algorithm.

A. Deep Neural Networks

As indicated in figure 1, a DNN is formed by stacking
multiple dense layers. Each layer takes an input vector,
extracts abstract features from it, and feeds the extracted
feature vector to the next layer. The output of the last layer
is then used for classification or regression purposes.

Figure 1: Schematic depiction of a DNN consisting of 3
dense layers. Circles denote vector elements (neurons) and
arrows denote matrix elements (parameters).

Each DNN layer takes an input vector XN×1, then com-
putes its output YM×1 according to equation 1:

Y = f (WX +b) (1)
where f (.) is a nonlinear function, WM×N is a 2-D matrix
multiplied by the input, and bM×1 is a vector of bias values.
The matrix W and the vector b are known as the parameters
of dense layers. Prior to execution, the parameters are

learned in a training process. Once the DNN is trained, it
can be executed on the FPGA platform.

B. Parameter Encoding

Figure 2 illustrates the idea of parameter encoding. Given
a parameter matrix, WM×N , we seek a dictionary of K values
C = {c1,c2, ...,cK} to replace the elements of W . Once
we find such a dictionary, the original matrix W can be
represented by an alternative matrix W̃M×N whose elements
are codes referring to dictionary values. The objective of our
encoding algorithm is to optimally choose this “dictionary”
based on the underlying platform constraints and application
accuracy requirements, such that parameter encoding mini-
mally affects DNN functionality. Since the number of values
in the dictionary is limited by K, the encoded parameters
are represented with log(K) bits, resulting in significant
reduction in memory footprint.
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Figure 2: Illustration of the encoding method for a 4× 4
matrix. (a) The original matrix containing floating-point
numerals. (b) Matrix elements substituted with a dictionary
of 2 values. (c) The encoded matrix of 1-bit numerals
alongside the dictionary of floating-point values.
C. Factorized Dot Product

Encoding the parameters not only reduces their memory
footprint but also decreases the total FLOPs required to
execute DNNs. Consider a dot product involving vector X
and a row of the parameter matrix W :

dot(W,X) =
N

∑
i=1

W [i]×X [i] (2)

Figure 3 illustrates how dot products can be simplified us-
ing encoded parameters: MAC operations involving weights
with the same color can be factorized, thus the result can be
computed using less computing resources. To facilitate the
factorized computation, a factorized coefficient vector V is
computed using equation 3.

V [i] = ∑
j∈Si

X [ j] (3)

where Si denotes a subset of W pointing to the ith element
of the dictionary:

Si = { j|W [ j] = ci} or equivalently Si = { j|W̃ [ j] = i} (4)
Vector V has K elements, with K being equal to the

number of elements in the dictionary. Equation 5 presents
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Figure 3: Conventional dot product (left) versus dot product
with factorized coefficients (right)

Table I: Memory footprint and computational complexity for
three different implementations of dot products.

method memory (bits) # add # mult
no encoding 32×N N N

encoded, not factorized log(K)×N +32×K N N
encoded, factorized log(K)×N +32×K N+K K

how the correct result is computed by a light-weight dot
product over factorized vector V and dictionary C.

dot(W,X) =
N

∑
i=1

W [i]×X [i] =
K

∑
k=1

V [k]×C[k] (5)

The right-most summation in equation 5 requires only
K multiply-accumulate operations. Table I summarizes the
memory footprint and computational complexity of a dot
product involving N elements for three different approaches.

III. PREVIOUS WORK

Previous work shows that there is a large amount of
redundancy among neural network weights [13]. One ob-
servation is that the numerical precision can be customized
in accordance with different applications. Many authors have
suggested the use of fixed-point parameters of variable bit-
widths to customize DNNs for efficient execution [15],
[16], [17], [18], [19]. The design process of reconfigurable
accelerators with variable numerical precision can be trou-
blesome [20]. Additionally, the use of fixed-point parame-
ters is application-specific and does not provide a generic
solution for applications which require higher numerical
precision [15].

Instead of using fixed-point parameters, this paper as-
sumes high-precision arithmetics, i.e. floating point opera-
tions, to be applicable to generic applications. Our encoding
approach is inspired by parameter hashing [14]. Similar idea
has been proposed to design specific neural networks based
on look-up tables [21]. The focus of [14] is training DNNs
on CPU or GPU, thus they only report the number of free
parameters (i.e. the dictionary of cluster centroids) as the
memory footprint. Random hashing requires large dictionar-
ies to ensure DNN accuracy hence the encoded parameters
incur high memory overhead, resulting in inefficient FPGA
designs in practice. Our clustering-based approach retains

the desired classification accuracy with significantly smaller
dictionaries (K=8 in our experiments, 3-bits per encoded
weight) since it explicitly leverages the structure of the
parameter space. As such, our algorithm is able to customize
the memory footprint of the encoded parameters according
to the memory constraints of the target platform.

A line of existing work demonstrates that the through-
put can be significantly improved by systematic computa-
tion mapping methodologies either in single-chip acceler-
ators [10] or clusters of processing units [8]. These works
efficiently map DNN computations to FPGA resources, how-
ever they lack a model adaptation technique to customize
DNNs for the underlying platform. The works in [22],
[23] propose platform-aware dimensionality reduction for
the input data, while our work is focused on the model
itself. Therefore, existing works are orthogonal to this paper.
Our methodology reduces the total memory footprint and
computational burden of DNNs, which can be applied on top
of existing frameworks to further improve their performance.

IV. SYSTEM OVERVIEW

Figure 4 illustrates the design flow of customized-encoded
neural networks. First, the “Customized Encoding Module”
encodes pre-trained neural networks in accordance with the
memory constraints and/or the desired DNN accuracy. Next,
the parameterized HLS functions are utilized to form the cor-
responding DNN topology. These functions are customized
for the specifications of the underlying platform within
the “Kernel Customization” block. Finally, the customized
kernels along with the encoded parameters are used to
synthesize the DNN. The rest of this section provides details
of the framework.
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Figure 4: Global design flow of encoded neural networks.

A. Customized Encoding Module

This module takes a pre-trained DNN and encodes its
parameters using our proposed greedy algorithm that clusters



the parameters considering the amount of memory that the
designer wishes to allocate to DNN parameters. In particular,
the software module customizes the encoding bit-width to
ensure a certain level of accuracy.

1) Encoding Algorithm: We propose a greedy algorithm
to encode DNN parameters with minimal loss of accuracy.
As illustrated in figure 4, the algorithm has 3 steps: weight
clustering, error assessment, and weight retraining. Below
we describe each step in details.
Weight clustering: The weight clustering module applies
the K-means clustering algorithm to the original matrix of
parameters, with K being equal to the number of elements in
the dictionary. Given a matrix W , the objective of K-means
is to minimize the numerical distance between clustered
values and the original values. The optimization objective
is presented in equation 6.

min
c1,...,cK

(
K

∑
k=1

∑
Wi j∈ck

||Wi j− ck||2) (6)

Error estimation: Clustering affects the numerical com-
putations within the DNN model, which may result in an
increased error rate. The error assessment module calculates
the classification error over the cross-validation data and ter-
minates the algorithm if the error rate is within the threshold
provided by the user. The error rate can be controlled in two
ways: (i) increasing the number of dictionary elements, and
(ii) clustering and retraining the parameters iteratively.
Weight retraining: The retraining module fine-tunes clus-
tered parameters for a pre-specified number of training
epochs. A retrained DNN model is more robust against
weight clustering since its trained parameters were ini-
tialized with clustered values; therefore, iterative retrain-
ing/clustering reduces the error of the model. Figure 5-
a shows an example of DNN error monitored in subse-
quent cluster/retrain iterations for K = 2. Note that the
improvement in the accuracy shows diminishing returns in
subsequent iterations. Figure 5-b shows the monitored error
for the same DNN with K = 4, showing that the asymptotic
error rate can be decreased with larger K.
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Figure 5: Error rate of encoded DNN for K=2 and K=4.

2) Software API: We provide a software API to en-
code pre-trained DNN parameters according to the train-
ing data, the maximum dictionary size, and the threshold
for validation error. It runs the encoding algorithm with
K ∈{2 . . .Kmax} to find the minimum K resulting in error rate
below the threshold ε , where Kmax and ε are user-defined

parameters. The encoded parameters are stored in binary
files which will be used for initialization of DNN parameters
during synthesis.

B. FPGA Execution Module

The binary files containing encoded/raw parameters and
the available HLS functions are used to synthesize DNNs
for different applications. We have developed basic building
blocks of DNNs which allow the designers to implement
DNNs of arbitrary topologies. Each building block is a
parametrized function implemented in high-level synthesis
(HLS) programming language.

1) Matrix-vector Multiplication Kernel: The most
computation-intensive operation in DNN execution is
matrix-vector multiplication. Figure 6 presents our approach
to parallelize such an operation. Two levels of parallelism
controlled with parameters P1 and P2 are leveraged in each
dense layer. First, multiple rows of the parameter matrix W
are processed simultaneously in the “DNN Layer” block:
each row is accompanied by a copy of the input vector
and the pairs are fed into “dot product” modules. Second,
each “dot product” function partitions its input vectors and
concurrently executes MAC operations over the partitioned
subsets. The accumulated results of the subsets are added
together within the “reduce sum” block to compute the
output. As mentioned previously, our HLS functions are
parameterized to ease systematic design. Parameters P1 and
P2 along with input/output dimensionality are passed to
HLS functions, enabling designers to optimally customize
the kernels for execution on different FPGA platforms. We
will elaborate on kernel customization in section IV-C.
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Figure 6: An example of parallelized matrix-vector multipli-
cation with P1 = 2 and P2 = 3.

2) Encoded Matrix-vector Multiplication Kernel: This
module is similar to the conventional matrix-vector mul-
tiplier, except that one of the MAC operands should be
decoded prior to multiplication. Figure 7 illustrates the
difference between multiplication of raw inputs and encoded
inputs. The decoder is realized by a small look-up table
which imposes a negligible overhead. In the case of storing



parameters in off-chip memory, the throughput is upper-
bounded by the communication bandwidth:

T hroughput upper bound =
communication bandwidth

No. bits per FLOP
As such, while an operation involving a floating point pa-
rameter requires 32 bits to be read from the off-chip memory
for each element of the matrix, an operation on an encoded
parameter requires fewer bits (2-3 in our experiments) to be
accessed; therefore, for the same communication bandwidth,
the encoded DNN module is able to load more parameters
from the memory in a fixed amount of time. Additionally,
the encoded weights may even fit inside the on-chip BRAMs
of the FPGA, in which case the throughput is not limited
by the communication bandwidth.
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Figure 7: Multiplication with raw weights (left) and encoded
weights (right).

3) Factorized Matrix-vector Multiplication Kernel: As
previously discussed in section II-C, the dot products op-
erating on encoded inputs can be performed in a factorized
way to reduce the computational burden. First, equation 4
is used to compute the vector of factorized coefficients V ,
then the light-weight dot product over vector V is computed
according to equation 5. The factorized coefficients are
computed in one pass over input vector X as in pseudo
code 1.

Algorithm 1 Pseudo code for computing factorized coeffi-
cients.
inputs:W̃ , X
outputs:V

1: V ← 0
2: for i = 1 . . .N do
3: V [W̃ [i]]←V [W̃ [i]]+X [i]
4: end for
5: return V

Figure 8 demonstrates the flow diagram for a factorized
dot product. Similar to the non-factorized DNN layer, two
levels of parallelism are leveraged in the factorized DNN
layers: parameter P1 determines the number of concurrent
dot products and parameter P2 sets the parallelization factor
along the “factorize” kernel. The “factorize” block involves
only addition operations, hence it requires fewer resources
than conventional dot products. The “reduce sum” block
within the “factorize” module computes the sum over par-
tially factorized vectors and stores the result in vector V ,
which is then used by the light-weight dot block to compute
the output in few cycles.
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Figure 8: Factorized dot product kernel with parallelization
factor P2 = 3.
Table II: Metrics defined to assign parallelizarion factor P2.

metric discription
Initiation Interval (II) No. cycles to compute the function
Effective DSP Utilization (EDU) DSP Utilization (percent) × II
Effective LUT Utilization (ELU) LUT Utilization (percent) × II
Effective FF Utilization (EFU) FF Utilization (percent) × II
Effective BRAM Utilization (EBU) BRAM Utilization (percent) × II
Effective Utilization (EU) Max (EDU, ELU, EFU, EBU)

C. Kernel Customization

Let {(P1
1 ,P

1
2 ), . . . ,(P

L
1 ,P

L
2 )} be the parallelization factors

applied in a DNN composed of L layers, where superscripts
denote layer ID and subscripts denote the dimension along
which the parallelization is applied. Figure 9 presents our
methodology to find optimal parallelization factors, which
in turn determines how computations are mapped to FPGA
resources. Below we describe the 3 steps of the kernel
customization process in details.
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Figure 9: The 3-step methodology for kernel customization.

Step 1, assigning P2 to each layer: For each DNN layer,
we consider the “dot product” kernel and profile synthesis
reports corresponding to different parallelization factors.
Table II outlines metrics used for optimizing the kernel. We
define the effective utilization (EU) metric so that resource
utilization and computation time are jointly involved in the
optimization process. A smaller EU corresponds to higher
throughput achieved with less resource utilization; as such,
the optimization objective is to minimize EU by exploring
possible parallelization factors.

Figure 10 presents design metrics for three different
realizations of an example dot function, where dotbase exe-
cutes conventional dot product with raw weights, dotE uses
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Figure 10: Synthesis report of dot product kernels processing vectors of length N = 5625. The minimum of each curve
corresponds to the optimal P2. Metrics used in this figure are defined in table II.

encoded weights without factorization, and dotEF computes
its output using encoded weights and factorized coefficients.
The following observations are worth noting:

• The minimums of the curves correspond to the optimal
P2 for the kernels.

• The baseline function (dotbase) has high BRAM utiliza-
tion, imposing high EU and restricting the throughput.

• The EDU and ELU of dotEF are smaller than those
of the other two kernels, making it suitable for FPGAs
with lower computing power.

Step 2, assigning P1 to each layer: The next step is
to determine how many “dot product” kernels should be
instantiated in each layer. To do so, we first allocate a
portion of the available resources to each DNN layer based
on its computational complexity, which is proportional to
the number of parameters within the layer. For each layer,
parameter P1 is determined such that the maximum number
of “dot product” kernels are instantiated without violating
the assigned resource budget.
Step 3, avoiding computational bottlenecks: The oper-
ational throughput of DNNs can be improved by pipelin-
ing the execution of DNN layers. To achieve maximum
throughput, it is important to make sure that DNN layers
have latencies of the same order. Figure 11 illustrates how
high-latency layers can limit the operational throughput. The
throughput can be improved by exchanging the resource
budget in favor of DNN layers with high latencies, and re-
assigning parallelization factors as in step 2.

95% resource
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II=max(1000,3000)=3000

5% resource
utilization

85% resource
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II=1100 II=1000

II=max(1100,1000)=1100

15% resource
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Figure 11: Left: high initiation interval is imposed by
layer2. Right: the overall initiation interval is improved by
exchanging resources among DNN layers.

Table III: Specifications of the Zynq-ZC706 board.

DSP LUT FF BRAM PCIE bandwidth
900 218600 437200 1090 up to 20Mbps

Table IV: Datasets and DNN topologies

Application input categories DNN Topology
dim.

Speech Recognition 617 26 617×512×512×26
Indoor Localization 520 13 520×512×512×13
Activity Recognition 5625 19 5625×512×512×19

MNIST 784 10 784×512×512×10

V. EVALUATION

Our design experiments are synthesized for the Zynq-
ZC706 board using Vivado HLS 2015.4. Table III outlines
the specifications of the FPGA and the communication band-
width. In this section, we evaluate the effect of customized
parameter encoding on four different DNN architectures.
In particular, we compare baseline DNNs with their cor-
responding encoded DNNs in terms of accuracy, memory
footprint, and throughput.

A. Datasets

We evaluate the framework on four datasets, each of
which has a different data dimensionality and DNN topology
outlined in table IV.
Speech Recognition: Many mobile applications require
online processing of vocal data. We evaluate the framework
on the ISOLET dataset [24]. The goal of this task is to
classify vocal signals to one of the 26 English letters.
Indoor Localization: We apply a DNN to the Indoor
Localization dataset [25]. Automatic user localization using
GPS is widely used in today’s mobile phones; however, the
loss of GPS signal in indoor environments inspires the use
of machine learning algorithm for the task.
Activity Recognition: For This dataset, the objective is to
recognize human activity based on signals collected from
motion sensors [26].
MNIST: MNIST is a popular machine learning dataset
including images of handwritten digits [27]. The objective
is to automatically classify handwritten inputs to one of the
ten digits {0 . . . 9}.



Table V: Classification accuracy for different DNN appli-
cations. Results in bold letters correspond to the encoding
bit-widths chosen by the customized encoding module.

dataset baseline K=2 K=4 K=8
Speech Recognition 96 89.5 95.1 96
Indoor Localization 95.2 93.2 95.1 95.2
Activity Recognition 98.4 89 98.3 98.4

MNIST 98.4 94.9 98.3 98.4

B. Effect of Parameter Encoding on Accuracy

As discussed previously, the encoding module is used to
customize the DNN for different applications and platforms.
We use Keras [28] and Scikit-learn [29] libraries for software
realizations of DNNs and K-means algorithm respectively.
Hidden layers of all DNNs apply “Rectified Linear Unit”
on their outputs. For each experiment, the baseline DNN
is trained until its test accuracy stops improving. Stochastic
gradient descent with momentum [30] is used for the training
and customization processes. Dropout [31] is applied during
training to avoid over-fitting. We centralize the Speech
Recognition and Activity Recognition datasets prior to train-
ing, such that input features have zero mean and unity
standard deviations, which results in slight improvement in
baseline accuracies.

Table V presents the accuracy of baseline DNNs and
DNNs encoded with different numbers of clusters. We do
not report accuracy for more than 8 clusters as they result
in the same accuracy for higher dictionary sizes. Results
in bold letters correspond to dictionary sizes for which
either the entire DNN fits inside the BRAMs or the baseline
accuracy is recovered. Our clustering-based algorithm is able
to fully retain the baseline accuracy for Speech Recognition,
Indoor Localization, and MNIST datasets, while the drop of
accuracy for Activity Recognition is below 0.1%.

In these examples, the encoded parameters fit in BRAMs.
In general, access to off-chip memory might be unavoidable
since some large-scale DNNs might not fit in BRAMs even
with 1-bit encoding. Also, the desired accuracy might not be
achievable using small dictionaries, leading to high memory
footprint of the encoded parameters. It is worth mention-
ing that, even in such scenarios, encoding the parameters
improves the operational throughput as it reduces the total
bandwidth required to access the parameters.

C. Comparison of Customized DNN Architectures

For each application, we compare synthesis reports of
3 different realizations of the DNN: (i) a baseline neural
network that uses 32-bit floating-point numerals denoted as
DNNbase, (ii) an encoded DNN without factorized multipli-
cation denoted as DNNE , and (iii) an encoded DNN that uses
factorized matrix-vector multiplication denoted as DNNEF .
Each DNN is implemented using HLS kernels customized
as described in section IV-C. Table VI presents customized
parallelization factors for DNN architectures.

Table VI: Customized parallelization factors

Application Layer 1 Layer 2 Layer 3
(P1,P2) (P1,P2) (P1,P2)

Speech Recognition (24,8) (24,8) (1,8)
Indoor Localization (24,8) (24,8) (1,8)
Activity Recognition (16,32) (8,8) (1,8)

MNIST (24,8) (24,8) (1,8)
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Figure 12: Synthesis reports for DNN architectures. DNNbase
is the baseline, DNNE is the encoded neural network without
factorized dot kernels, and DNNEF denotes encoded neural
network with factorized dot products.

For each application, we adopt the customized encoding
bit-width from table V, then use the parallelization factors
of table VI along with the parameterized HLS kernels to
synthesize the neural network. The final synthesis reports
are outlined in figure 12. Each sub-figure compares synthesis
reports of the three DNN architectures – namely DNNbase,
DNNE , and DNNEF – for one of the datasets. Note that the
vertical axes are scaled logarithmically.

In all experiments, the BRAM utilization of DNNbase
exceeds the maximum capacity, while DNNE and DNNEF
remain below the on-chip memory budget; therefore, the
operational throughput of DNNbase is bounded by

communication bandwidth
bits per FLOP

=
20Gbps

32 bpFLOP
= 625MFlops

as it should read one parameter from the off-chip memory
for each operation. Table VII compares the throughput of
the three DNNs for a clock frequency of 100 MHz. The
encoded DNNs improve the baseline throughput by an order
of magnitude. DNNE and DNNEF can be alternatively used
based on FPGA specifications. In our case studies, the
operational throughput of DNNEF is on average 11.5% less
than that of DNNE . However, the normalized throughputs of
DNNEF with respect to DSP utilization and LUT utilization
are on average 1.8× and 1.4× higher than those of DNNE
respectively; as such, DNNEF would be a better solution for
FPGAs with limited computing power.



Table VII: Synthesis reports of practical design experiments.
Speech Recognition Indoor Localization Activity Recognition MNIST Average (Normalized)

DNNbase DNNE DNNEF DNNbase DNNE DNNEF DNNbase DNNE DNNEF DNNbase DNNE DNNEF DNNbase DNNE DNNEF
Nominal Throughput (GFLOPs) 6.57 6.56 6.03 6.89 6.89 5.46 10.1 10.1 9.91 6.12 6.11 5.21 1 0.99 0.88

Operational Throughput (GFLOPs) 0.625 6.56 6.03 0.625 6.89 5.46 0.625 10.1 9.91 0.625 6.11 5.2 1 11.86 10.64
Throughput/DSP (GFLOPs/DSP) 1.2E-3 1.2E-2 2.3E-2 1.3E-3 1.4E-2 2.1E-2 8.2E-4 1.3E-2 3E-2 1.2E-3 1.2E-2 2E-2 1 11.66 22.14
Throughput/LUT (GFLOPs/LUT) 3.3E-6 3.4E-5 4.8E-5 3.3E-6 3.5E-5 4.3E-5 3.1E-6 5E-5 8.4E-5 3.3E-6 3.1E-5 4.1E-5 1 9.51 16.77

Throughput/FF (GFLOPs/FF) 5.3E-6 5E-5 3.6E-5 5.3E-6 5.2E-5 3.3E-5 4.2E-6 6.6E-5 7.1E-5 5.3E-6 4.7E-5 3.1E-5 1 8.99 8.95
Throughput/BRAM (GFLOPs/BRAM) - 2.7E-2 1.6E-2 - 2.8E-2 1.4E-2 - 1.2E-2 1E-2 - 1.9E-2 1.1E-2 - - -

Finally, table VIII compares our customized DNNE with
the conventional approach DNNbase in terms of throughput,
memory footprint, and classification accuracy. The Activity
Recognition dataset achieves 15× throughput improvement
sacrificing only 0.1% classification accuracy. All other tasks
are customized without loss of accuracy. On average, our
customization results in 11.8× throughput improvement and
reduces the memory footprint by a factor of 7.7×.

Table VIII: Outlined comparison between baseline (DNNB)
and customized (DNNC) implementations.

Application Accuracy (%) Throughput
(samples/s)

memory
footprint (MB)

DNNB DNNC DNNB DNNC DNNB DNNC
Speech Recognition 96 96 1057 11093 3.75 0.54
Indoor Localization 95.2 95.2 1168 12877 3.7 0.54
Activity Recognition 98.4 98.3 198 3204 20.23 1.8

MNIST 98.4 98.4 934 9137 5.44 0.71
Average -0% -0.025% 1× 11.8× 1× 0.13×

VI. CONCLUSION

This paper proposes a systematic design flow for platform-
aware customization of deep neural networks executed on
FPGA platforms. Our customization scheme employs a
clustering-based algorithm to encode DNN parameters so
that memory footprint and computational complexity are
jointly reduced. Previous methods for customizing DNN
models utilize fixed-point parameters. Our proposed encod-
ing algorithm permits the use of floating-point parameters
with low memory footprint, enabling automatic customiza-
tion of DNNs for a broad variety of applications requiring
different numerical precisions. Proof-of-concept evaluations
on four different applications demonstrates up to 15-fold
improvement in throughput and 9-fold reduction in memory
footprint while the loss of accuracy remains below 0.1%.
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