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ABSTRACT

Logic locking inserts additional key gates to the original circuit
for protecting the intellectual property (IP) of modern integrated
circuits (ICs). Prior works have identified the vulnerability of logic
locking to satisfiability (SAT)-based attacks. However, SAT attacks
are ineffective on circuits with SAT-hard structures. In this paper,
we propose GenUnlock, the first genetic algorithm-based logic un-
locking attack framework addressing the above limitation of SAT
attacks. GenUnlock formulates logic unlocking (i.e., identifying the
correct keys) as a combinatorial optimization problem and tackles
it using genetic algorithms (GAs). Multiple key sequences form the
individuals in the population and undergo the following main op-
erations: circuit fitness evaluation, population selection, crossover,
and mutation. The key sequences with high fitness scores ‘survive’
the selection and are transformed into the offspring. GenUnlock’s
evolutionary process of key searching features high scalability,
exploration efficiency, and parallelizable fitness evaluation.

We take an Algorithm/Software/Hardware co-design approach
to optimize GenUnlock’s runtime overhead. More specifically, Ge-
nUnlock (i) Pipelines each computation stage by automatically
constructing auxiliary circuitry for constraints checking, sorting,
crossover, and mutation; (ii) Employs hardware emulation on pro-
grammable hardware for accelerating circuit fitness evaluation. We
perform a comprehensive evaluation of GenUnlock’s performance
on various benchmarks and demonstrate that GenUnlock achieves
up to 1014.1X speedup and is 3974.3x higher energy efficiency
compared to the state-of-the-art SAT attacks for logic unlocking.

1 INTRODUCTION

Integrated circuits (ICs) are indispensable for various real-world
applications ranging from domestic electronics, autonomous ve-
hicles to medical devices and deep learning systems [6, 17]. The
supply chain of modern ICs involves the participation of multiple
parties, thus is vulnerable to potential attacks such as IC piracy,
overproduction, and counterfeiting [13, 19]. Logic locking and cir-
cuit camouflaging have been suggested as obfuscation techniques
to protect the Intellectual Property (IP) of ICs. IC camouflaging
aims to prevent layout-level reverse engineering (RE) attacks by
adding dummy contacts/cells to the standard gates [15]. Logic lock-
ing intends to protect the functionality of the circuit by inserting
additional key gates to the original circuit [20, 21] such that the
output is correct only when the decryption key is applied. Figure 1
illustrates an example of the XOR-based logic locking scheme.
The security of logic locking has been discussed in prior works.
Satisfiability (SAT)-based attacks and their variants can break ob-
fuscated circuits with the state-of-the-art logic locking methods.
Traditional SAT attacks work by eliminating incorrect keys with
distinguishing input patterns (DIPs) found by SAT solvers [18].

However, SAT-based attacks have the following drawbacks: (i) They
are not scalable to large benchmarks since the size of the DIP con-
straints increases over iterations; (ii) The computation of SAT solv-
ing is difficult to parallelize; (iii) They cannot activate circuits with
SAT-hard designs (e.g., an internal ‘and-tree’ structure) since a DIP
can only eliminate a single incorrect key in this case [18]. Devel-
oping an efficient and effective logic unlocking methodology is
challenging since the approach is desired to: (i)Be generic to negate
arbitrary logic encryption techniques and unknown circuit structures;
(ii) Provide the trade-off between the attack success rate and runtime
overhead; (iii) Demonstrate scalability on large circuits.
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Figure 1: Example of XOR-based logic locking. The en-
crypted circuit (b) yields consistent outputs as the original
one (a) only when the two-bit key K; K3 is set to 2’500.

We propose GenUnlock, the first genetic algorithm-based frame-
work for logic unlocking. GenUnlock takes the netlist of the en-
crypted circuit and the corresponding black-box accessible active
IC as its inputs. A set of feasible key sequences are returned as the
outputs of GenUnlock. Our framework consists of two main phases:
(i) Training data generation. We first generate the training dataset
by querying the active IC and collecting corresponding outputs. (ii)
Key evolution. A set of keys are instantiated as individuals in the
population and ‘evolve’ with GA training. GenUnlock provisions
the trade-off between the unlocking accuracy and execution time.
Compared to the existing SAT attacks, GenUnlock can efficiently
find approximate keys that yield correct outputs with high proba-
bility. The approximate keys can be used to attack fault-tolerant
applications such as deep learning systems and block-chain mining.

GenUnlock is devised based on an Algorithm / Software / Hard-
ware co-design approach. We deploy a diversity-guided genetic
algorithm to ensure the stable convergence of the GA. Further-
more, GenUnlock incorporates hardware emulation and pipelining
as optimization techniques to accelerate GenUnlock’s computa-
tion on FPGAs. To the best of our knowledge, GenUnlock is the
first logic unlocking framework that provides hardware design and

optimization. This paper makes the following contributions:
e Demonstrating the first genetic algorithm-based key

searching method to invalidate logic locking. GenUn-
lock’s diversity-guided key evolutionary facilitates the ex-
ploration of key space, thus is more scalable and generic
than the traditional SAT attacks.
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Figure 2: Global flow of GenUnlock framework for logic unlocking,.

e Enabling logic unlocking with performance trade-off.
GenUnlock allows the adversary to explore the trade-off
between attack effectiveness and runtime, thus revealing an

undiscovered threat on fault-tolerant applications.
e Leveraging an Algorithm/Software/Hardware co-

design approach to devise an efficient attack scheme.
GenUnlock provides a scalable and high-performance
hardware design that advances the deobfuscation speed to
a higher level. Our hardware design incorporates various
optimization techniques including computation pipelining
and circuit emulation on programmable hardware.
¢ Investigating the performance of GenUnlock on vari-
ous circuits. We conduct an extensive evaluation of GenUn-
lock and compare the results with the state-of-the-art SAT
attacks to corroborate its efficacy and efficiency.
GenUnlock opens a new axis for the growing research in hard-
ware security by shedding light on the potential of deploying ge-
netic algorithms to address challenging problems in the hardware
domain. Our approach is alternative to the existing SAT-based
attacks and provide a new attack dimension for (approximately)
unlocking the encrypted circuit. GenUnlock provides a flexible
attack mechanism that yields a set of feasible keys for circuit un-
locking with improving effectiveness over time. Furthermore, the
returned population after convergence (i.e., key sequences) enables
ensemble-based circuit evaluation that exhibits superior unlocking
performance compared to one when a single key is used.

2 GENUNLOCK OVERVIEW

Figure 2 illustrates the global flow of GenUnlock. We discuss the at-
tack assumptions in Section 2.3. GenUnlock framework consists of
two stages: (i) Offline pre-processing phase that generates training
data for GA; and (ii) Key searching phase that performs key evo-
lution. The one-time pre-processing phase is performed via oracle
access while the key searching phase is accelerated using FPGA.
Phase I: Training data generation. This phase consists of the
following two tasks:

@ Generate input vectors. Given the netlist of the encrypted
circuit, GenUnlock crafts input vectors and filter the ones that result
in the same circuit outputs when different keys are applied.

2] Query active IC. The remaining input patterns from step 1 are
then used to query the active IC. The collected input/output (I0)
pairs form the training dataset for GenUnlock’s logic unlocking.

Phase II: Key evolution. Once the training data for the target cir-
cuit is generated in Phase I, GenUnlock performs three subroutines
during the key evolution phase as shown in the bottom of Figure 2:

Circuit fitness evolution. Analogous to natural selection, the
key sequences with higher fitness scores are maintained and trans-
formed to offsprings at each iteration. The fitness of each key is eval-
uated by the ratio of output matching on the training dataset when
the specific key is applied. We convert the netlist representation to
conjunctive normal form (CNF) to facilitate fitness evaluation.

2] Population diversity computation. GenUnlock separates ge-
netic operations into two groups (‘exploitation’ or ‘exploration’)
and determines which branch to take depending on the population
diversity. Since key sequences are binary-valued in logic locking,
we use the dispersion (i.e., variance) of the population as the mea-
surement of diversity.

© Diversity-guided GA execution. GenUnlock applies genetic
operations on the current population (i.e., key sequences) based
on the computed diversity. As opposed to traditional GAs that per-
form all genetic operations in each iteration, GenUnlock’s dynamic,
diversity-aware GA execution demonstrates better convergence.

2.1 Motivation

Prior works on circuit deobfuscation heavily rely on external SAT
solvers to find distinguishing input patterns and eliminate incorrect
keys [1, 16, 18]. However, the existence of SAT-hard problems [7]
makes it challenging to apply SAT attacks in these scenarios. For in-
stance, the SAT attack proposed in [18] fails to unlock the 2670 and
c6880 benchmark since these circuit contains an internal ‘and-tree’
structure. To address the above limitation, we propose GenUnlock
framework that is able to attack circuits with SAT-hard structures.
Real-world Use Cases. Existing works focus on unlocking the
circuit with perfect accuracy, thus may incur prohibitive runtime
overhead to break large circuits (Section 5). Here, we want to em-
phasize that fast, approximate decryption of the target circuit can be
more threatening than slow, full decryption. This is particularly true
for fault-tolerant applications. Let us consider block-chain mining
as a real-world example where the signature of the cryptocurrency
is extracted from AES and hashing operations [10] on the hardware
miner. The resulting signature is continuously checked against the
pre-defined template to determine whether the cryptocurrency is le-
gitimate. As such, it is sufficient for the user to find a key that yields



correct outputs with high probability in order to obtain financial
benefits. Emerging ASIC accelerators for Deep Neural Networks
(DNN) are also inherently fault-tolerant, which has been exploited
for parameter quantization or pruning.

2.2 Notations and Metrics

Problem Statement and Notation. Our objective is to design
a systematic methodology for unlocking arbitrary unknown, en-
crypted circuit. We denote the original unlocked circuit and its
encrypted version as C, and Ce. The primary input, output vec-
tor and the encryption key of the circuit are denoted as I B/,
0 € BN, and K € BF, respectively. The functionality of the circuit
is represented by the following deterministic mapping: Co)=0
and Co (T, K )= O. The quality of a decryption key is quantified by
the output fidelity (OF) that defines the probability of the output
vector of C, being consistent with the one of C, given any input I:

OF(K; Co. Ce) = Prob [ Ce(I, K) = Co (D). 1)

VIeBM
We consider logic unlocking as successful if the OF of the identified

key is higher than the attacker-defined threshold OF > (1 — ¢).
Note that two different key sequences might result in the same
circuit behavior (i.e., same mapping C.). We define that Ky and K,
belong to the same equivalence class of keys [18] if the condition
Ce(f, 1?1) = Ce(f, IZ’Z) is satisfied for any TeBM.

Performance Metrics. We use effectiveness and efficiency as two
main metrics to assess the performance of a logic unlocking scheme.
These two metrics are quantified by the attack success rate (defined
in Equation (1)) and the execution time, respectively. GenUnlock,
for the first time, provides the trade-off between effectiveness and
efficiency by generating a set of keys with evolving quality over
time. In addition, we also use resource consumption as a metric to
evaluate our hardware design. A detailed, quantitative analysis of
these metrics is given in Section 5.

2.3 Threat Model

We make the following assumptions about GenUnlock framework:
(i) The attacker has black-box access to the active IC. We as-
sume that the adversary can purchase the unlocked circuit from the
market and obtains oracle access to it. As a result, the attacker is
able to query the active IC with arbitrary input challenges and ob-
serve the corresponding outputs, which is the basis of GenUnlock’s
training data generation phase (Phase I in Figure 2).

(ii) The attacker knows the netlist of the encrypted circuit.
We assume the attacker can reverse engineer the netlist of C, from
a physical circuit by performing depackaging, delayering and imag-
ing [9]. The obtained netlist is converted to CNF and used in circuit
fitness evaluation (Phase II in Figure 2).

3 GENUNLOCK METHODOLOGY

Prior works have identified that there might be more than one cor-
rect keys to unlock the given circuit [18]. GenUnlock leverages this
fact and processes multiple keys representing different equivalence
classes in each iteration, thus features higher efficiency for space
exploration. Note that GenUnlock is oblivious of the underlying
encryption schemes used by the defender, thus is genetic and appli-
cable to arbitrary ICs. In the following of this section, we detail the
two key phases of GenUnlock framework.

3.1 Training Data Generation

Algorithm 1 outlines the steps of the one-time, offline training data
generation phase in GenUnlock. Ground-truth input/output pairs
(S1,So) are generated using oracle access to the active IC.

Algorithm 1 Training Data Generation.

INPUT: Active circuit (C,) with oracle access; Netlist of tar-
get encrypted circuit (C.); Number of desired IO pairs (T);
Size of primary inputs (M) and the encryption key (k).

OUTPUT: A set of input/output pairs (S7, So) as the training
data for genetic algorithms.
1: Initialization: S; « 0, Sp « 0, i « 0.
2. whilei < T do
3 I « generate_random_inputs(M)
4: 1?1,1?2 « generate_random_keys(k)
5. 01« Cell, K1), 0y « Cell, Ky)
6: if 51 * (32 then

7: ie—i+1

8: St « add_element(Sy, f)

9 0« Co(f)

10: So « add_element(So, 5)

11: Return: Obtained IO pairs (S;, Sp) for GA training.

Note that a naive implementation of challenge-response pairs
collection is not desirable since the resulting training data may
not be able to distinguish different key sequences in Phase II. To
alleviate this concern, we estimate the distinguishing capability of
each input (f) by comparing the outputs of the encrypted circuit
(Ce) when two different random keys are applied. Only inputs that
result in different outputs are maintained in the final training set
(line 4-10 in Algorithm 1). The attacker can obtain a more accurate
approximation of the input’s distinguishing capability using more
keys at the cost of higher computation complexity.

3.2 Genetic Algorithm for Key Searching

The workflow of GenUnlock’s logic unlocking is detailed in Al-
gorithm 2. GenUnlock deploys a dynamic, diversity-aware genetic
algorithm for efficient and effective solution searching. Diversity
evaluates the difference of individuals’ gene representation and
affects the convergence of GAs. The intuition behind GenUnlock
is that we compute the diversity of the current population at the
beginning of each epoch (iteration) to determine the ‘gene flow’ as
shown in Figure 2. Diversity-guided GA dynamically alternates be-
tween the ‘exploitation’ mode (population selection and crossover)
and the ‘exploration’ mode (mutation) in order to ensure a fast and
stable convergence. We use the dispersion of the key sequences in
the population as the measurement of the diversity metric. The
formula of computing diversity is given in Equation (2).

P k

div(si) = 5 3 | YISk - Sk G @

i=1 \j=1

where Sk (j) is the sample average of all individuals at j* h bit:

=

P
Sk() = 5 2. Sk(i.]) 3
i=1



Here, P is the population size, k is the key length, Sx € BP*k

is the current population, and Sk (i, j) denotes the j’ h bit of the
it" individual in the population Sk. In the following of this sec-
tion, we discuss the four main steps involved in GenUnlock’s GA
methodology as outlined in Algorithm 2.

Algorithm 2 Genetic Algorithm for Logic Unlocking.

INPUT: Netlist of target encrypted circuit (C.); Size of the
encryption key (L); Training dataset (S;, Sp); GA param-
eters, including the population size (P), maximum num-
ber of generations (G), number of high-fitness (h) and
low-fitness individual (/) for selection, number of child
(c) for each pair of parent, and mutation rate m; Diversity
threshold (dj.» dhign); Error tolerance of the attack (e).

OUTPUT: A set of feasible key values ( {I_(> }) that can unlock
the circuit Ce.
1: Initiali}ation;
Sk =Ki,...,Kp « generate_population(L, P).
i—0
2: whilei < Gand Fx < 1—¢ do
3: Fx < evaluate_population_fitness(Sk, Si, So)

4 div « compute_population_diversity(Sk)

5 if div < dj,,, then

6: GA_mode « ‘explore’

7 else if div > dy; 4, then

8: GA_mode « ‘exploit’

9: if GA_mode == ‘exploit’ then

10: Sk « select_next_generation(Sg, Fx, h, 1)
11 Sk « crossover(Sk, ¢)

12: else if GA_mode == ‘explore’ then

13: Sk < mutate_population(Sg, m)

14: if Fx > 1 — € then
15: break > Check termination condition
16: i—i+1

17: Return: Obtained a set of circuit deobfuscation keys Sk .

@ Fitness Evaluation. The fast and accurate computation of
fitness scores is the backbone of genetic algorithms. The definition
of fitness is task-specific. Since our objective is to find (a set of)
feasible decryption keys with high OF, we use the matching ratio
of the specific key on the training data as the fitness measurement
as shown in Equation (4). To facilitate the computation, GenUnlock
first automatically constructs auxiliary comparator components that
are added to the netlist of Ce, resulting in an evaluation netlist
C3¥X_Each comparator is implemented as an XNOR gate with two
inputs where one of them comes from the ground-truth output in
the training dataset. The auxiliary netlist is then converted to CNF
to compute the fitness score based on Equation (4).

_ # matched CNF clauses

Frx = 4
K # total CNFclauses “)

2] Population Selection. As a step of ‘exploitation’, the diversity
of the population decreases after population selection. GenUnlock
determines high-fitness individuals using the tournament selection

technique [11]. A random subset of the current population is se-
lected to participate in each round of the tournament. The individual
with the highest fitness score is maintained in the next generation.
Such a selection process repeats until the size of the resulting new
generation reaches the desired number of high-fitness individuals
(h). GenUnlock also incorporates several (I) ‘lucky’ individuals with
relatively low fitness in the next generation in order to increases
the randomness and help GA escape local optima.

© Crossover. Crossover (also called ‘breeding’) is the other step in
‘exploitation’. In this process, the ‘genome’ (encoding) of the parents
are recombined to produce the offsprings. Crossover consists of the
following two subroutines: (i) Parent pairing: given the current
population, GenUnlock randomly assigns two individuals as a pair
of parents without repeating the use of an individual. (ii) Offspring
generation: each bit of the child sequence is obtained from a uniform
random sampling of the corresponding bit from its parents (i.e., 50%
probability inheriting the bit from either of the parents).

@ Mutation. mutation is of critical importance to maintain a
certain level of diversity of the population. As such, mutation is
performed in the ‘exploration” mode of GenUnlock when the pop-
ulation diversity is lower than the pre-defined threshold. There
are two key parameters in the mutation process: the chance of
mutation and the level of mutation. The first parameter determines
the probability that mutation occurs on a particular individual. The
second parameter dictates how many bits in the key sequence will
be flipped as a result of mutation. A high chance and/or a large
magnitude of mutation will result in large fluctuation of the fitness
scores of the population, making the GA training unstable.

4 GENUNLOCK OPTIMIZATION

We empirically identify that circuit fitness evaluation is the bottle-
neck of GenUnlock’s execution time. To accelerate circuit evalua-
tion, GenUnlock deploys circuit emulation on the programmable
hardware to obtain the response of the encrypted circuit (Ce) for
the given input signals and the tested key. Furthermore, GenUnlock
framework automatically constructs the customized auxiliary cir-
cuitry to pipeline each computation stage and reduce the runtime.
GenUnlock framework integrates innovative hardware-level de-
sign to ensure attack efficiency. We explicitly discuss our hardware
design optimizations as follows.

4.1 GenUnlock Architecture

GenUnlock leveraged an Algorithm/Software/Hardware approach
to accelerate the key searching process for the target circuit as
outlined in Figure 2. Particularly, GenUnlock maps the netlist of the
encrypted circuit with the auxiliary part to the FPGA and perform
circuit evaluation O = cux (I, K) directly. Given the input vector
from the training data and the key sequence from the population,
acquiring the circuit’s response from the configured FPGA (circuit
emulation) is significantly faster than the same process running on a
host CPU (software simulation). In addition, GenUnlock parallelizes
the computation of circuit emulation and pipelines each stage of
GA operations. Population fitness evaluation and key evolving are
performed in an online approach to minimize data communication
between the off-chip DRAM and the FPGA.
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Figure 4: Pipelining optimization deployed in GenUnlock’s genetic algorithm accelerator for logic unlocking.

GenUnlock Hardware Overview. Figure 3 illustrates the
overview of GenUnlock’s hardware architecture consisted of a com-
puting engine for circuit emulation and an auxiliary circuitry for
genetic operations. To reduce the data communication between the
off-chip DRAM and the FPGA, we perform all computations of key
evolution on-chip. Note that we do not include a random number
generator (RNG) in GenUnlock’s hardware design. Instead, GenUn-
lock stores a set of random numbers pre-computed on CPU using
the inherent variation of the operating system. There are two main
reasons behind our design choice: (i) The hardware implementation
of a True RNG incurs non-trivial overhead, thus is not desired; (ii)
Offloading random number generation to CPU typically provides
stronger randomness compared to the one generated on FPGA. The
results of circuit emulation are used for computing fitness scores
using Equation (4) during CNF evaluation. The clause checking pro-
cess in CNF evaluation is parallelized by accommodating multiple
Checking Engine (CE) in GenUnlock’s design. The workload for
each CE is partitioned evenly offline.

After accumulating the fitness for each key sequence, the sorting
engine permutes the key index based on their corresponding fitness.
We implement a lightweight sorting engine following the ‘even-odd
sort’ algorithm [5] for genetic selection, incurring a linear runtime
overhead with the population size P. The population diversity is
computed as follows. First, the average key is calculated along with
circuit emulation as every key is read from the buffer. The div metric
is then computed during sorting using [; norm instead of I; norm
in Equation (2) to reduce computation complexity. Note that this
change does not affect the performance of GenUnlock.

It is worth noting that GenUnlock does not employ a central
control unit to coordinate the entire computation flow. Instead, each
part of the design shown in Figure 3 follows a trigger-based control
mechanism [12]. More specifically, each module is controlled by the
status flag from its previous computation stage. For example, the
sorting engine in GenUnlock begins to function when the fitness
accumulation process is detected to be completed. Such a trigger-
based control flow simplifies the control logic while respecting the
data dependency between different modules shown in Figure 2. We

detail the design of GenUnlock’s circuit emulation and auxiliary
circuitry in the following of this section.

4.2 GenUnlock Circuit Emulation

We empirically observe from GenUnlock’s software implementation
that circuit evaluation (i.e., obtaining 0= Ce (f K )) dominates the
execution time (Section 5). Due to the high latency of evaluating
a circuit netlist on CPU, we propose to use circuit emulation to
improve the attack efficiency. The first step of circuit emulation
is rewriting the netlist of the target encrypted netlist such that
the values of all observable nodes can be recorded by registers.
The rewritten circuit is then connected with the auxiliary circuitry
and mapped onto FPGA. In this way, we can emulate the response
of the target circuit C, for any given input and key by directly
applying the known signals (including Tand K ) on the circuit and
collecting the corresponding values in the registers. To further
hide the latency of hardware evaluation, GenUnlock stores the
emulation results in a ping-pong buffer and decouples it from the
other hardware components as shown in Figure 3. More specifically,
the CNF checking engine (CE) computes the fitness score of the
population using the data from one buffer. In the meantime, the
emulator acquires observable outputs of C, given the next input/key
pair (f R K ) and stores the results into the other buffer.

4.3 GenUnlock Auxiliary Circuitry Design
In this section, we discuss how the auxiliary circuitry is constructed
for the target circuit to accelerate the computation in GenUnlock’s
GA workflow as shown in Figure 2.

= Pipeline Evolution Epochs with Early Starting. GenUn-
lock’s hardware design aims to maximize the time overlapping
between each execution stages to increase the throughput of key
evolution. As shown in Figure 4, the ping-pong buffer enables
pipelined execution of hardware emulation and CNF evaluation.
Furthermore, fitness evaluation and cross-over/mutation of each
key in the population can be pipelined across different epochs. As
illustrated in Figure 4, epoch (i +1) starts circuit emulation and CNF
evaluation when the previous epoch begins to breed new keys for
the next epoch. As such, the latency of crossover and/or mutation
can be hidden by circuit emulation and CNF evaluation.



= Scalable CNF Checking Engine. Once circuit emulation is
completed for the given input/key pair (f K ), GenUnlock begins to
calculate the fitness score of the key sequence using Equation (4).
From the perspective of the hardware, the fitness Fx is computed
by accumulating the ratio of satisfied CNF clauses for the encrypted
circuit C,. Independence between different groups of wire signals
typically exists in the encrypted circuit. GenUnlock leverages this
property by distributing the checking of independent groups of
clauses in CNF evaluation to different CNF checkers as shown in
Figure 3 (b). As such, each CE stores a subset of CNF clauses in
the associated CNF buffer. The accumulation of the ultimate fitness

score completes when the last CE finishes CNF checking.
= Crossover and Mutation Logic. The crossover logic ex-

changes random elements among two parent keys. The mutation
logic randomly selects a subset of key bits and flip them (i.e. XOR
the key sequence with a binary random mask vector). The execu-
tion of crossover and mutation can also be paralleled using multiple
crossover and mutation processing units. In this case, each of the
unit handles different segments of the key sequence and performs
crossover and/or mutation. We use a default value of 1 for the
number of the crossover/mutation unit since this step is not the
bottleneck of GenUnlock’s runtime.

5 GENUNLOCK EVALUATION

We investigate GenUnlock’s performance on various benchmarks,
including ISCAS’85 and Microelectronics Center of North Carolina
(MCNQC) [3] as summarized in Table 1.

Table 1: Summary of the evaluated circuit benchmarks.

Key Length
(5%, 10%, 25%)

(60,119,298)
(8,16,40)
(48,51,101)
(115,231,577)
(176,351,878)
(38,96,192)
(324,647,1618)
(106,264,528)
(104,259,518)
(132,265,660)

Circuit  dataset  #in #out #gate

c2670 ISCAS-85 233 140 1193
c432  ISCAS-85 36 7 160
c499  ISCAS-85 41 32 202
c5315 ISCAS-85 178 123 2307
c7552 ISCAS-85 207 108 3512
c880  ISCAS-85 60 26 383
des MCNC 256 245 6473
ex5 MCNC 8 63 1055
i9 MCNC 88 63 1035
seq MCNC 41 35 3519

Experimental Setup. We demonstrate the software implemen-
tation of Algorithms 1 and 2 in python. Experiments are run on
an Intel i7-7700k processor with 32 GB of RAM and the energy
consumption is measured using pcm-monitor utility. We use the
open-sourced code of the SAT attack [18] as our baseline compar-
ison. Note that [18] is implemented in C++ and tested on a more
powerful CPU (Intel Xeon E31320). As such, our empirical results
serve as a conservative relative speedup comparison.

Our FPGA prototype is implemented on Zynq ZC706 board using
the high-level synthesize tool Xilinx SDx 2018.2. GenUnlock’s CNF
checking engine and the auxiliary GA accelerator discussed in Sec-
tion 4.1 are implemented using high-level programming language.
Our design is synthesized using a clock frequency of 100MHz. The
power of FPGA is measure at the socket using a power meter during
the execution of the GenUnlock. Throughout our experiments, we
set the number of CEs to N, = 16 and the encryption overhead to
10% with [14] as our default setting. As for GenUnlock’s GA, we use

a key population size P = 80 and the total number of generations
G = 50. The number of high-fitness and low-fitness individuals are
set to h = 54 and | = 6 for selection. Each pair of parents produces
¢ = 4 children during crossover. The mutation rate is set to 2% (see
Algorithm 2 for details). We generate 50 input/output pairs from the
active IC to construct the training data as outlined in Algorithm 1.

5.1 Unlocking Capability

We assess the effectiveness of GenUnlock for logic unlocking on
the benchmarks in Table 1. Each experiment is repeated 20 times to
collect the statistics of the performance metrics. The maximum exe-
cution time is set to 10 hours (3.6 X 10* seconds). During this period,
GenUnlock is able to unlock 10 out of 10 benchmarks (100% attack
success rate) with the best key, while the baseline method [18] can
only break 7 out of 10 benchmarks (70% attack success rate). In
other words, GenUnlock framework finds a decryption key that
yields an ideal output fidelity OF = 1. Figure 9 shows the runtime
statistics of GenUnlock software implementation on CPU for un-
locking various circuit benchmarks. One can see that GenUnlock’s
capability of logic unlocking increases over time.

For large and complex circuits such as des, c2670 and ¢7552, tradi-
tional SAT-based method [18] takes very long to find distinguishing
input patterns using the external SAT solvers (>10 hours). As such,
SAT attacks fail to unlock the circuit with a very high probability
when the design of the encrypted circuit turns out to be a SAT-hard
problem (e.g., containing an internal ‘and-tree’). Figure 5a shows the
encryption-agnostic property of GenUnlock. The loss is computed
as (1 — OF). The convergence speed of GenUnlock depends on the
adopted logic encryption scheme while the GA can always return a
set of keys with improving quality over time. As opposed to the SAT
attacks, GenUnlock is generic and is able to provide approximate
keys with high output fidelity for circuits with arbitrary structures.
Figure 5b shows the effect of GenUnlock’s ensemble-based logic
unlocking with the top three key sequences. The validation set is
generated following the steps in Algorithm 1. It can be seen that
the ensemble-based unlocking yields a small error compared to
GenUnlock attack using the single best key.
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Figure 5: (a) Learning curve of GenUnlock fs)r) different logic

encryption methods. (b) Effect of GenUnlock’s ensemble-
based logic unlocking using the top three keys.

5.2 Efficiency

Figure 6 shows the comparison between GenUnlock’s software
(Section 2.2) / hardware (Section 4.1) implementation with the base-
line [18]. Note that we use the average runtime on each benchmark
to visualize the performance comparison in Figure 6. Several cir-
cuits cannot be decrypted by the baseline algorithm within 10 hours.
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Figure 6: Average runtime comparison between GenUnlock and the baseline SAT attack [18]. ‘GenUnlock’ and ‘GenUn-
lock+HW’ denotes the latency of our software implementation and accelerated FPGA implementation, respectively.

In this case, we use 10 hours as the estimated runtime of [18] in Fig-
ure 6. With dedicated hardware design support, GenUnlock delivers
on average 4.68X speedup compared to the baseline method. For
SAT-hard circuits (such as ¢2670, 7552, des), GenUnlock engenders
superior performance compared to SAT-based attacks, achieving
90%,13X, 2.1X speedup on CPU and 1014X, 153X, 31.2X speedup on
the dedicated hardware. Besides the latency comparison, we also
measure the power consumption of different circuit deobfuscation
methods. The power consumption of ‘GenUnlock+HW’ on Zynq
SoC is measured via the socket when the application is running. On
average, GenUnlock with hardware optimization consumes 13.6W
power while the software implementation of GenUnlock consumes
53.3W power on CPU. Considering the runtime, the overall energy-
efficiency of GenUnlock is 18.3% higher than the SAT-based method.

GenUnlock’s resource utilization depends on the key length (k)
and the size of the original circuit. Table 2 shows the resource utiliza-
tion of the assessed benchmark circuits. We present the sensitivity

analysis of GenUnlock’s performance in Section 5.3.
Table 2: Resource utilization of the auxiliary circuitry on

¢432,c880, c2670 and des benchmarks with default settings
(10% overhead and Ncg = 16) on Zynq ZC706.

Benchmarks c432 c880 c2670 des
Data Transfer
(Kine/epact) 13 3.0 95 51.8
BRAMS 22 27 37 86
DSP48E1 0 0 0 0

KLUTs (emulator usage) 9.4 (0.3) 12.1(0.3) 19.4 (1.1)

4397 (80) 5,734 (160) 6,689 (316)

41.1 (4.6)
12,972 (1176)

FFs (emulator usage)

5.3 Sensitivity Analysis

5.3.1 Sensitivity to Size of Key and Observable Wires. Figure 7
shows that the resource utilization of GenUnlock demonstrates an
approximately linear dependency on the length of the encryption
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Figure 7: Resource utilization of the auxiliary circuitry with
varying size of the encryption key (a) and observable wires
(b). The key length and the wire length is set to 100 and 400
respectively in the initial setting.

key length and the observable wires (which are primary outputs
in our case). This is because a larger number of observable wires
requires more comparator logic for each CNF checking engine as
the index used in CNF checking requires a longer bitwidth, thus
resulting in a higher LUT utilization. We tune the depth of the wire
buffer and key buffer to accommodate the entire netlist.

5.3.2  Sensitivity to Number of CNF Checking Engines. Figure 8
shows the approximately linear relation between GenUnlock’s
speedup and the number of CEs. Our system can be scaled up by
adding more CNF checking engines to parallel the clause checking
process as GenUnlock’s computation bottleneck is CNF evaluation.
Nevertheless, the speedup saturates when Ncg is sufficiently high
such that the computation overhead is dominated by crossover
operation instead. GenUnlock broadcasts the observed wire values
to all the CEs via a shared data bus. Each CE scans the CNF buffer
and obtains the broadcast wire values for checking the satisfiability
of the clauses. As such, increasing the number of CEs does not lead
to extra wire delay. However, more CEs suggests a higher overhead
during the fitness accumulation stage.
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Figure 8: Scalability of GenUnlock to the number of CNF
CEs. The speedup is near-linear with Ncg on large circuits
where CNF checking is the computation bottleneck.

5.3.3  Sensitivity to Obfuscation Overhead. Encryption overhead is
defined as the ratio of the additional key gates to the total number
of gates in the original circuit. Larger encryption overhead suggests
that a longer key sequence is used to encrypt the circuit. Figure 9
shows the execution time averaged across all assessed benchmarks
with varying obfuscation overhead. One can see that GenUnlock’s
execution time does not grow exponentially with the increase of
the obfuscation overhead, suggesting the scalability of GenUnlock
framework to large circuits.

6 RELATED WORK

s Conventional Circuit Deobfuscation. The SAT-based attack
on logic locking is first introduced in [18]. In their proposed method,
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Figure 9: Execution time of GenUnlock averaged across all
benchmarks. The circuits are encrypted using the logic lock-
ing technique in [14] with different obfuscation overhead.

a distinguishing input pattern is found by the external SAT solver
in each iteration and is added as the constraints on the correct keys.
The SAT algorithm terminates when no DIPs can be found, ensur-
ing the full unlocking of the encrypted circuit. Later on, an active
learning-based approached called ‘AppSAT’ is suggested in [16]
where random queries are incorporated as constraints on the key
in the iterative algorithm in addition to DIPs found by the SAT
solver. As a result, AppSAT alleviates the limitation of SAT attacks
on ‘SAT-hard’ circuits. Various attacks targeting at sequential cir-
cuit have also been studied [4]. In this paper, we mainly focus on
GenUnlock’s performance on combinational benchmark. Note that
our attack framework and hardware optimization techniques are
generic and applicable to the encrypted sequential circuits. We
leave the implementation of GenUnlock on sequential circuits for
future work.

= Hardware Acceleration of Genetic Algorithms. GAs have
been adapted to FPGA platforms for various applications such as
cognitive radio processing [8] and design exploration [2]. Existing
works mainly focus on accelerating particular GA benchmarks and
their fitness functions do not characterize the goal of logic unlock-
ing. Also, fitness evaluation is not the bottleneck of computation
latency in the existing GA acceleration benchmarks. As opposed
to these works, GenUnlock customizes its hardware design to our
particular defined problem (Section 2.2). We tailor the GA for at-
tacking encrypted circuits and develop FPGA design optimizations
to accelerate our proposed algorithm.

7 CONCLUSIONS

In this paper, we introduce GenUnlock, the first genetic algorithm-
based framework for logic unlocking. GenUnlock leverages an Algo-
rithm/Software/Hardware co-design approach and engenders supe-
rior performance improvement compared to traditional SAT-based
attacks. More specifically, GenUnlock is encryption-agnostic and is
generic to arbitrary circuit designs. Our framework yields a set of
feasible keys that unlock the obfuscated circuit with an attacker-
defined output fidelity. Furthermore, GenUnlock, for the first time,
provides the trade-off between runtime overhead and output fidelity
of the resulting keys. In real-world settings, GenUnlock poses a
threat to the rising amount of fault-tolerant applications such as
block-chain mining and deep neural networks. Circuit emulation
and pipelining are presented as hardware optimization techniques
to further accelerate the computation of GenUnlock. We perform
comprehensive experiments to corroborate the efficiency and ef-
fectiveness of GenUnlock across different circuit benchmarks. In

future work, we will consider using the learning-based algorithms
to guide the mutation and crossover operations.
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