Consistency-based Characterization for IC Trojan detection

Yousra Alkabani
CS Dept., Rice University
6100 Main St., MS-132
Houston, TX 77005
yousra@rice.edu

ABSTRACT

A Trojan attack maliciously modifies, alters, or embeds un-
planned components inside the exploited chips. Given the
original chip specifications, and process and simulation mod-
els, the goal of Trojan detection is to identify the malicious
components. This paper introduces a new Trojan detection
method based on nonintrusive external IC quiescent current
measurements. We define a new metric called consistency.
Based on the consistency metric and properties of the objec-
tive function, we present a robust estimation method that
estimates the gate properties while simultaneously detecting
the Trojans. Experimental evaluations on standard bench-
mark designs show the validity of the metric, and demon-
strate the effectiveness of the new Trojan detection.

1. INTRODUCTION

Continuous miniaturization of CMOS to new technologies
require costly upgrades of manufacturing technologies and
processes. Due to this high cost, in today’s semiconductor
business model IP providers, IC designers, and foundries are
separate companies often located in different parts of the
World. Some of the potential threats of this business model
includes unauthorized use and theft of IPs, piracy of ICs, and
addition of Trojans. A Trojan component maybe inserted
in the design to enable the attacker to monitor, control, or
steal information from the chip, or maybe used to remotely
enable or disable all or parts of the chip. Establishing the
IC trust in face of offshore and untrusted fabrication is a
challenging and important problem especially since the ICs
are the kernels of businesses, government, and defense in the
modern world.

Detecting Trojans post fabrication encounters a number
of challenges. First, the number of gates in a design has
been exponentially growing, while the number of external
pins has only linearly increased. Thus, there is a limited
controllability and observability to the complex internals of
ICs. Second, there are many opportunities for Trojan inser-
tion at the various fabrication steps. Since the foundries are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICCAD’09, November 2-5, 2009, San Jose, California, USA.

Copyright 2009 ACM 978-1-60558-800-1/09/11...$10.00.

123

Farinaz Koushanfar
ECE and CS Dept(s)., Rice University
6100 Main St., MS-380
Houston, TX 77005
farinaz@rice.edu

equipped with advanced technologies, processes and state-
of-the-art facilities, they are able to strategically plan and
hide Trojans. Third, the increasing amplitude of process
variations introduces uncertainty in the measured charac-
teristics, further complicating the Trojan (change) detection
process. Forth, classic testing methods are insufficient for
Trojan detection since they assume a Trojan-free netlist.

Employing noninvasive IC measurements has been shown
to be effective and promising in detecting some of the pos-
sible IC Trojans. The use of transient power side-channel
signals for Trojan detection was investigated [1, 4, 10]. A
number of statistical methods for change detection by hy-
pothesis testing, principal component extraction, calibra-
tion, and empirical sensitivity analysis were proposed for
transient power and timing measurements [1, 6, 11]. Much
more research and development is still needed for finding
scalable and cost-effective Trojan testing and identification
methods, establishing detection bounds, and improving sta-
tistical detection, calibration, and sensitivity analysis.

This paper presents a novel algorithm for detecting Tro-
jans based on quiescent (static) current measurements. We
formally define the problem and establish its complexity.
Linear translation of the measurements to gate-level char-
acteristics is demonstrated. We introduce a measure for the
integrity of the gate-level estimation called consistency. Our
contributions are as follows. (i) We present a formal for-
mulation for detecting Trojans by quiescent current mea-
surements and analysis. The problem is shown to be NP-
complete. (ii) We define the consistency metric and propose
an efficient iterative algorithm that exploits the consistency
measure for finding the anomalous gates. (iii) We study the
performance of the algorithm for different measurement er-
rors and the Trojan sizes. (iv) We show how the signature
of an added Trojan can be used for classifying the newly
tested chips that are similarly exploited. (v) We introduce
a method for calibration of non-random process variations.
The method exploits the properties of the Trojan gradient
and its differences with the spatial frequency of correlated
variations. (vi) Experimental evaluations on benchmark cir-
cuits with different Trojan sizes show that the method is ef-
ficient for Trojan detection and robust against measurement
noise and process variations.

2. PRELIMINARIES

Testing for Trojan. We rely on unobtrusive leakage cur-
rent (a.k.a. Ippg or quiescent power supply current) tests
for Trojan identification. The Ippg testing has been shown
to be an effective method for detecting the faults in CMOS

circuits [12]. While the objective of Trojan detection and
the Trojan models are different than the stuck-at, open,
and bridge fault models that are classically addressed by
Ippgq tests, the ATPG input vectors for the tests are appli-
cable. The measurements are assumed to be stationary and
the measurement noise is assumed to be independently and
identically distributed.

Adversarial model. In our model, Trojan IC has the same
set of input/output pins as the original design and the same
form factor. The assumption is that all the ICs have already
passed the standard parametric and functional tests and do
not have known defects or faults, including stuck-at faults,
open faults, or bridging faults [5]. In this paper, we use the
terms anomalous, Trojan, and abnormal interchangeably.

3. RELATED WORK

Wang et al. [14] discussed a number of key methods for
IC modifications and provide a general framework for the
hardware Trojan attack classification. The first comprehen-
sive Trojan detection study was done by Agrawal et al. who
used the transient power signal analysis (dynamic current
or Ippr) to detect the Trojan alteration [1]. The tech-
nique first destructively tested a control group of (assumed
to be) unaltered ICs to extract the fingerprint for the nor-
mal chip behavior. The rest of the chips were tested against
the extracted fingerprints by using standard hypothesis test-
ing against the principal components (a.k.a Karhunen-Love
transform). The drawbacks of the approach was the over-
head of testing destructively both in terms of time and
expense, and noise/process variation (PV) sensitivity. A
region-based testing approach was proposed by Banga et
al. [4]; they use the dynamic power signatures to identify
the regions with abnormal behavior and then perform closer
tests in those regions. The behavior abnormality is studied
by comparing to the simulated intended waveform. Power
supply transient analysis for Trojan detection was also in-
vestigated by Rad et al. [10, 11]. In their method, the
supply current is measured from multiple ports to overcome
the small Trojan ratio to the background current and is then
calibrated for PV. Calibration is done by transforming and
comparing the test IC currents to those produced by Trojan-
free simulation models. Gate-level estimation as a method
for post-silicon IC characterization has been introduced ear-
lier [2, 3, 13, 9]. Potkonjak et al. combined the gate-level
estimation with constraint manipulation to detect Trojans
using delay and leakage side channels [9]. Our consistency-
based detection provides a sound formal basis for robust
estimation of the gate-level characteristics and Trojan de-
tection.

The use of path-delay fingerprints was proposed by Jin
and Markis [6] who employed principal component analysis
to characterize the original circuit and used the distance of
the tested paths to the principal components to find the
Trojan. This approach may require a large number of path
measurements. Wolff et al [15] suggest an approach that first
identifies a set of target “hard-to-observe” sites for a Trojan
and then uses ATPG to generate patterns to activate the
Trojan. This approach could be efficient for Trojans that
have a few inputs. The analysis complexity and test set size
would render it impractical for larger Trojans. While the
existing approaches have shown promise in their ability to
detect deviations from the original design plan, the focus
have been on detection heuristics. This paper provides a

formal treatment of detection formulation by analyzing the
complexity of the problem, and providing new consistency
metrics that are efficient in addressing the problem.

4. TROJAN DETECTION

Our Trojan detection method is built upon the gate leak-
age estimation. The first step is to generate the input vectors
that enable leakage current (Ippg) measurements. Next,
we apply the measurement vectors and map the measured
values to gate leakages (Section 4.1). The anomalies are de-
tected by comparing to the Trojan-free nominal simulation
values while considering PV. Our consistency-based Trojan
detection algorithm use the properties of the optimization
objective and employ the gate leakage estimations, sensitiv-
ity analysis, and calibration for PV.

4.1 Gate leakage estimation
Problem. GATE LEAKAGE ESTIMATION.

Given: A combinational IC with fully available netlist and
the CMOS technology process design kit and simulation
models. The original design plan has K gates Gi,...,Gxk,
N, primary inputs, and N,y.: primary outputs. The gates
are single-output and each gate may implement an arbitrary
logic function. The nominal leakage values of each gate for
each input is available from the simulation models. Such
models are standard and are given to the designers to en-
sure the competency of the design with the process.

On each IC, we test a set of J input vectors vi,...,vs
where each input vector is a tuple with cardinality N;, with
elements in {0,1}. An input vector changes the internal state
of the gates whose input is affected by the input vector tran-
sition. For each input, the leakage current at the external
power supply pin is measured and recorded.

Objective: For each tested chip, estimate the gate leakage
values for the incident input vectors.

To address the problem, the overall measured current at
the output pin is written as the sum of the gate leakages
(the impact of interconnect leakages could also be included
but we omit it because of its low amplitude compared to
gate leakages). The gate leakages are inherently unique at
each IC post-fabrication due to PV. Thus, for the input v;,

the total measured leakage (Ijocr°(v;)) can be written as:

K
Voj IR)+ e(v) = Y Hiar(ain) (1)
k=1

where €(v;) is the measurement error for the input v;, g
is the input at the gate G after applying v; to the primary
inputs, and I, (q;x) is the leakage of gate Gy with g;x as
its inputs. By taking multiple measurements for each input
one would be able to reduce the random measurement error,
but would increase the test time.

Assuming the gate’s nominal leakage value for each input
combination is known from the simulations, the objective
can be transformed to finding the deviations in gate leakages
from their nominal values. If the gate Gj has @ inputs, it
would have 2% input combinations and a leakage value corre-
sponding to each input combination. Let the nominal value
for I\, (g;x) from the simulation models is Ii%’;om) (gjk). On
each IC, for the gate G\ we define a scaling factor denoted
by ¢r quantifying Gi’s leakage deviation from the nominal

124 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

values as follows:
Vaie Hean(ain) = én Ii00™ (gk)- (2)

The assumption is that the leakage of one gate is scaled
the same way over all input combinations, when compared
to the nominal values. Equation 2 becomes:

meas k: m
Vg I () + e(vy) Zm L™). (3)

Assume for now that the given input vector set of car-
dinality J has a full Ippg test coverage. One can write a
convex quadratic program with linear constraints (C’s) dic-
tated by the leakage summations and the objective function
(OF) of minimizing the square root of measurement noise
(MSE(E)), i.e

OF : min Z}]:1 e(v;)2 =min MSE(E) (4)

k
=25 oe L™ (gn),

where FE is a vector with cardinality J with elements
{e(vj) }1<j<s. Assuming that the above system is full-rank,
one can always solve the equations where the unknowns are
the scaling factors of the gates and the measurement errors.

The input vectors should be such that each gate at least
once changes its state (i.e., is controllable), independent of
any other gates in the circuit. If this condition is not satisfied
and some gates are collinear (i.e., the input to those gates are
not independently changeable), we lump the collinear gates
together in our equation and form a smaller subspace of the
coefficient matrix which is full-rank. In this case after the
gate leakages are found, the impact of the lumped gates can
be quantified together. We emphasize that the quadratic
convex optimization defined by Equation 4, works optimally
for a full-ranked matrix, but the solvers can find numerical
approximations for many cases of the matrices that are not
full rank. To maximize controllability, we employ the known
high coverage input generation methods for Ippgq testing [5].
We note that one of the major advantages of Ippqg testing
compared with the timing tests is its high coverage.

Since the measured leakage is an additive function of the
circuit components, and the Trojan is not known to the
simulation models, the impact of an inserted Trojan would
change the estimates of the overall gate leakages. We use
this fact to detect the Trojan.

Problem. TROJAN DETECTION BY GATE LEAKAGE
ESTIMATION.

Given: The same inputs as Section 4.1.

C's: Vi Ije®(vs) + e(vy)

Objective: Estimate the leakage value for each gate on
each IC and identify the gates with anomalous (abnormal)
leakage values.

An abnormal gate is the one which has a large deviation in
its estimated leakage characteristics compared with its nom-
inal value from the simulations. To quantify this deviation,
we use the Euclidean distance between the estimated gate
leakage and its nominal value. Identification of the abnor-
mal gates is an integer problem combined with the quadratic
problem of gate leakage estimation. Thus, we require a
mixed integer optimization problem. In fact, this optimiza-
tion is in the form of a robust estimation and distance-based
outlier detection problem where the MSE distance between
the outlier and the estimated values from non-outliers are

used for distinguishing and removing the outliers (anoma-
lies) [8]. The outlier distance to the estimation is removed
by reweighing to nominal values. Such problems contain an
uncertainty about the values of the variables and the interval
of the benign variables (because of the measurement error
and PV) and have been shown to be NP-complete [7].

4.2 The detection algorithm

In this section, we develop efficient heuristics to address
the above complex problem. For the MSE estimation, an
influence function (IF) is defined which measures the im-
pact of a single anomaly on the estimator standardized by
the proportion of contamination. A bounded IF is a de-
sirable attribute since unbounded IF allows the impact of
anomalous observations to grow. Unfortunately, the IF for
an MSE estimator is well known to be proportional to the
size of the anomaly; meaning that a highly discrepant mea-
surement can completely destroy the MSE estimation. To
alleviate this problem, one option is to use as an error mea-
sure a metric which is not sensitive to outliers e.g. median
errors. However, the median is known to generate much
higher inference error. Furthermore, under the assumption
of Gaussian errors and no outliers the MSE estimator is the
best known for minimizing the estimation error [8]. One
solution for decreasing the influence of outliers and to still
retain the desirable estimation properties of MSE is to use
iterative MSE estimation where in each iteration the scaling
factors are reweighed and adjusted. We opt to use Gaussian
kernel function for iterative reweighing. The kernel function
is 1 minus Gaussian distribution with a mean of 1. The vari-
ance of the Gaussian is chosen such that the weights given
to the scaling factors within the expected range of process
variation are close to zero, and weights given to points that
are further from the expected range are close to 1 (nominal
scaling factor).

The details of the detection algorithm are shown in pseu-
docode 1. The inputs to the problem are the combinational
circuit, non-invasive leakage measurement for J input vec-
tors, the nominal gate leakage values, and the minimum re-
quired improvement in consistency A2,. The outputs of the
algorithm are the scaling factors of the gates and the set of
anomalous gates. In Step 1, we use the optimization formu-
lation in Equation 4 to estimate the gate leakages in form
of scaling factors. Step 2 calibrates the scaling factors for
inter-chip and intra-chip correlations. The consistency of
estimation is initialized to 0 and the iteration counter is set
to 1 in Step 3. Consistency and calibration will be described
in details later in this section. In Steps 4-9, there is a loop
that runs at least once. In each run, the gate scaling factors
are reweighed using the Gaussian kernel and the measure-
ment relationships are adjusted for reweighing. In Step 7,
we do re-estimation of the scaling factors. Then, we update
the iteration counter in Step 8. The loop terminates at Step
9 if the improvement in the consistency (A?(consistency))
is less than A% . Finally, anomalous gates are identified as
the gates with highest change in scaling factors (¢° — ¢%).

The overall complexity of the algorithm is dominated by
the time needed for solving a quadratic convex program. It
is possible to further reduce this complexity but we did not
include the results in this paper because of space constraints.
For example, using a linear objective function would reduce
the complexity of the scaling factors estimation to linear
time.

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 125

Pseudocode 1 - Trojan detection

use equation 4 to estimate the scaling factors (¢°);
calibrate the scaling factors;

consistency=0; i=1;

do

use the kernel to reweigh the scaling factors;
adjust the measurements accordingly;
re-estimate the scaling factors (¢°);
i++;
while (A%(consistency) > A%,);
0 identify the anomalous gates by comparing ¢¢, ¢°;

= © 00O Uk WwWwN—

e The consistency metric. Our assumption is that
measurement errors are i.i.d Gaussian random variables,
furthermore we assume that the variations in gate scal-
ing factors are also i.i.d distributed according in NV (0, 0?).
The consistency metric measures the distance between the
real scaling factors and the estimated ones. The assump-
tion of Normal distribution is based on the distance from
real values of scaling factors. We apply the same distri-
bution to approximate the distribution of benign scaling
factors. The consistency metric is the square distance be-
tween the initial estimate and the ** iteraton value, i.e.,
A?(consistency) = Z,ﬁ;l () — $%)?. Assuming that the de-
viation in the gates scaling factors from their nominal values
is only due to random process variations (systematic varia-
tions are calibrated) and the anomalous gates are reweighed,
we derive the following lemma for calculating the distribu-
tion of A?(consistency).

Lemma 1. The probability distribution of
AZ(consistency) has a Chi-square (x%) distribution
with K degrees of freedom (DF).

Proof. Follows immediately from the fact that the mea-
surement errors are distributed i.i.d. Gaussian. (]

For a large K (K > 30) this distribution can be safely
approximated by a Gaussian. The A?, is set to be twice the
variance of the estimator’s distribution.

e Calibration. A key step in anomaly detection algo-
rithm is adjusting the scaling factors such that the estimated
values are not impacted by the PV. The PV components:
random, inter-chip correlations, and intra-chip correlations.
Since the average scaling factor is 1, the inter-chip correla-
tions can be calibrated by shifting the scaling factor values
of all gates on one IC to have a mean value of 1. The intra-
chip correlations are spatial. Based on our studies, the rate
of spatial change in leakage characteristics because of even
a small Trojan addition (i.e., Trojan gradiant) across the
chip layout is much sharper than the rate of spatial change
in leakage characteristics due to the intra-chip correlations.
Note that the most challenging types of Trojans are the small
ones: if a larger Trojan trying to emulate the process vari-
ations is inserted in the design, it would be easy to detect.
The difference between the added Trojans gradient and the
intra-chip correlations suggests employing a filter over the
discrete 2D space of the IC’s layout that removes the soft
edges caused by the intra-chip correlation. Thus, the filter
should be a 2D highpass filter over the chip layout space.
Note that the random variations would have an extremely
high frequency and would not be adjusted using this method.
After shifting the mean of the scaling factors and applying
the high-pass filtering method on the spatial variation of the
scaling factor values, the impact of the systematic inter-chip

and intra-chip correlations would be removed. The only PV
component that would remain is the random variations.

S. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the detection methods on stan-
dard MCNC’91 benchmarks. The circuits are synthesized
and mapped using ABC synthesis tool. The library used for
mapping includes 2-input, 3-input, and 4-input NAND and
NOR gates, in addition to inverters. The nominal values of
the leakage current of the different gates are estimated using
HSPICE. Placement is done by the Dragon tool. TetraMAX
ATPG is used for IDDQ test generation. Matlab is used to
perform the simulations and solve the quadratic programs
(QPs). The process variation is applied as follows: 12%
random variations, 60% intra-die variation with 60% corre-
lation of the total variation, 20% of the total variation is
uncorrelated intra-chip variation and the remaining varia-
tion is inter-chip variation.

Using the QP formulation described in section 4.1, we
evaluate the scaling factors of the different gates in a circuit
while optimizing MSE error. The average percentage MSE
error in estimation is evaluated in Table 1, for different cir-
cuits. The first column represents the name of the circuit
denoted by Ct. The second column size shows the number of
gates in the circuit, while the next two columns #inputs and
#outputs are the numbers of inputs and outputs. The last
three columns show the percentage error in characterization
while imposing 3%, 5%, and 10% measurement noise. The
number of measurements is double the size of each bench-
mark. On the average, the error is 4%, 5.8%, and 10.3%
in the case of 3%, 5%, and 10% measurement noise, respec-
tively. In general, increasing the number of measurements
improves the characterization error. For instance, employ-
ing half of the measurements used in Table 1 on average
increases the characterization error by 1%.

Table 1: Gate characterization error vs. measure-
ment noise.

Ct | size inputs outputs 3% 5% 10%

c8 165 28 18 5.6 7 11.6
C432 206 36 7T 1.7 35 7.2
C880 353 60 26 29 5.1 11
C1355 512 41 32 85 10 12.1
C499 532 41 32 29 45 9
C1908 615 33 25 3.2 4.9 10.5
C3450 | 1131 50 22 4 59 9.8
C5315 | 1796 178 123 3.1 5.5 108

The QP formulation is used as a part of the detection
algorithm described in section 4.2. The scaling factors from
the QP are filtered using the existing Matlab 4" order high-
pass filter to remove the effect of systematic variations.

The iteration number is shown on the x-axis and the value
of the consistency metric is on the y-axis. Three cases are
shown: the case with no Trojan (denoted by mo Trojan),
the case with one extra gate (denoted by 1 gate), and when
adding three extra gates (denoted by 3 gates). The results
are smoothed over 100 runs of different PV simulations for
the same benchmark and the same Trojan. It can be seen
on the figure that the consistency function is monotonic and
non-decreasing. The slope of the consistency curve increases
as the number of Trojan gates increase.

126 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

—no Trojan
—— 1 Trojan
3 Trojan

Consistency metric
S e
a8 ¥

3

o

10
Iteration

Figure 1: A?(consistency) versus iteration.

Our clustering results show close vicinity of the anomalous
gates to the inserted Trojan with a median cluster size of 1
or 2 on the benchmark circuits, for one added Trojan gate
and 100 random PV instances on each benchmark. We also
studied the Trojan signature similarities across the identi-
cally attacked chips. Trojan detection was run on 50 chips
with no Trojans and 50 chips with 1 Trojan inserted in the
same place in circuit C432. Each IC was an instance of the
PV model. Figure 2 shows the boxplots of the scaling factors
for G1 and G2, the two gates labeled the most as anoma-
lous. The scaling factor of G; and G2 in Trojan-free case
are shown on the first and third box, and the Trojan cases
are shown on the second and forth box respectively. The
median of scaling factor (shown in the middle of the box)
is close to 1 for no Trojan and around 1.5 with the Trojan.
Using the differences, one could classify new chips based on
the signatures from the scaling factors of only a few gates.
For example, for 100 new ICs with 1 Trojan, we were able
to classify 99% of the ICs correctly by comparing the scaling
factors of the two gates. The classification decision is made
by maximum likelihood; the scaling factors probabilities for
Trojan or no Trojan cases are extracted from the boxplots
in Figure 2.

g Factor
®

Scali

‘ i
0.8] * —

o

G1no Trojan G11 Trojan G2 no Trojan G2 1 Trojan

Figure 2: Scaling factors for two detected anomalous
gates for 1 gate Trojan in C432.

6. CONCLUSION

We have introduced a formal Trojan detection method
that uses noninvasive measurements of static current for per-
forming gate leakage estimation. We formulated the Trojan
detection as an optimization problem for minimizing the es-
timation error. We defined a consistency metric based on the
expected error distribution. We showed that the problem is
NP-complete and developed an efficient algorithm that itera-
tively improves the consistency in the estimation error. Cal-

ibration for inter-chip and intra-chip correlations was done
by shifting the mean values and filtering the low frequency
correlations. Experimental evaluations on benchmarks con-
firmed that the method is efficient for Trojan detection and
robust to measurement noise and process variation.

Acknowledgment

This work is partly supported by the NSF Career Award
number 0644289, and by ONR YIP grant N000140910831.

7. REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi,
and B. Sunar. Trojan detection using ic fingerprinting.
In IEEE S& P, pages 296-310, 2007.

Y. Alkabani, F. Koushanfar, N. Kiyavash, and

M. Potkonjak. Trusted integrated circuits: A

nondestructive hidden characteristics extraction

approach. In Information Hiding, pages 102—-117, 2008.

Y. Alkabani, F. Koushanfar, and M. Potkonjak. Input

vector control for postsilicon leakage current

minimization in the presence of manufacturing

variability. In DAC, 2008.

[4] M. Banga and M. Hsiao. A region based approach for
the identification of hardware trojans. In HOST, pages
43-50, 2008.

[5] N. Jha and S. Gupta. Testing of Digital Systems.
Cambridge University Press, 2003.

[6] Y. Jin and Y. Makris. Hardware trojan detection using
path delay fingerprint. In HOST, pages 51-57, 2008.

[7] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl.
Computational Complezity and Feasibility of Data
Processing and Interval Computations. Kluwer
Academic Publishers, Dordrecht, 1997.

[8] A. M. L. P. J. Rousseeuw, editor. Peter J. Rousseeuw,

Annick M. Leroy. Wiley, 2003.

M. Potkonjak, A. Nahapetian, M. Nelson, and

T. Massey. Hardware trojan horse detection using

gate-level characterization. In DAC, 2009.

[10] R. Rad, J. Plusquellic, and M. Tehranipoor.
Sensitivity analysis to hardware trojans using power
supply transient signals. In HOST, pages 3—7, 2008.

[11] R. Rad, X. Wang, J. Plusquellic, and M. Tehranipoor.
Power supply signal calibration techniques for
improving detection resolution to hardware trojans. In
ICCAD, pages 632—639, 2008.

[12] S. Sabade and D. Walker. IDDX-based test methods:
A survey. ACM Trans. Design Automation of
Electronic Systems, 9(2):159-198, 2004.

[13] D. Shamsi, P. Boufounos, and F. Koushanfar.
Noninvasive leakage power tomography of integrated
circuits by compressive sensing. In ISLPED, pages
341-346, 2008.

[14] X. Wang, J. Plusquellic, and M. Tehranipoor.
Detecting malicious inclusions in secure hardware:
Challenges and solutions. In HOST, pages 15-22, 2008.

[15] F. Wolff, C. Papachristou, S. Bhunia, and
R. Chakraborty. Towards trojan-free trusted ICs:
problem analysis and detection scheme. In DATE,
pages 13621365, 2008.

2

[3

[9

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers 127

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Times-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

