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Abstract
Automatic Speech Recognition (ASR) systems are widely

deployed in various applications due to their superior perfor-
mance. However, obtaining a highly accurate ASR model is
non-trivial since it requires the availability of a massive amount
of proprietary training data and enormous computational re-
sources. As such, pre-trained ASR models shall be considered
as the intellectual property (IP) of the model designer and pro-
tected against copyright infringement attacks. In this paper, we
propose SpecMark, the first spectral watermarking framework
that seamlessly embeds a watermark (WM) in the spectrum of
the ASR model for ownership proof. SpecMark identifies the
significant frequency components of the model parameters and
encodes the owner’s WM in the corresponding spectrum region
before sharing the model with end-users. The model builder
can later extract the spectral WM to verify his ownership of
the marked ASR system. We evaluate SpecMark’s performance
using DeepSpeech model with three different speech datasets.
Empirical results corroborate that SpecMark incurs negligible
overhead and preserves the recognition accuracy of the original
system. Furthermore, SpecMark sustains diverse model modi-
fications, including parameter pruning and transfer learning.
Index Terms: speech recognition, intellectual property protec-
tion, spectral watermarking

1. Introduction
Automatic Speech Recognition (ASR) is a technology that al-
lows humans to interact with machines using their voices. The
emergence of Deep Learning (DL) techniques has revolution-
ized ASR systems and enabled their commercialization. Voice
assistants including Google Home, Amazon Alexa, Microsoft
Cortana, and Apple Siri are examples of ASR’s wide deploy-
ment [1, 2, 3, 4]. The success of modern ASR systems relies on
the superior performance of the underlying DL models [5, 6].
While current researches in this field mainly focus on increas-
ing the accuracy of ASR models, we take an orthogonal per-
spective to ASR applications and investigate the copyright con-
cerns of the pre-trained models. Training a highly accurate ASR
model is expensive since this process requires: (i) Access to an
enormous amount of proprietary training dataset; (ii) Allocat-
ing extensive computing resources and time [7, 8]. As such,
the resulting ASR system shall be considered as the Intellectual
Property (IP) of the model developer and protected to preserve
the competitive advantage of the owner.

Regularization is a typical approach to increase the gener-
alization capability of a DL model to unseen datasets [9, 10].
Prior works have explored regularization and adapted digital
watermarking for ownership proof of Deep Neural Networks
(DNNs). Existing DNN watermarking techniques can be cate-
gorized into two types based on the deployment scenario of the

DL model. A line of works assumes the model internals are
known in the watermark (WM) extraction stage (i.e., ‘white-
box’ setting) and insert the WM by training the DL model with
additional regularization loss terms [11, 12, 13, 14]. In this
case, the WM is typically a binary sequence. For instance, [12]
modulates the distribution of static weights to encode the WM
information while DeepSigns [11] manipulates the distribution
of dynamic activations to insert the WM.

Another line of research targets at the ‘black-box’ scenario
where the DL model is employed as a remote oracle (i.e., only
the input-output behavior is known) [15, 16, 17, 18, 19]. The
model owner generates a secret WM key set (i.e., input-output
pairs) and uses it to finetune the model. Here, the WM takes
the form of statistically biased responses and is encoded in the
decision boundary of the model. Note that all of the above
mentioned watermarking methods require expensive model re-
training and are shown to be vulnerable to careful model dis-
turbance [20]. Such limitations motivate us to design a more
efficient and resilient watermarking scheme.
Contributions. In this paper, we propose SpecMark, the first
systematic model-level spectral watermarking framework that
protects the IP of contemporary ASR systems. SpecMark en-
codes the ownership information in the spectrum characteristics
of the ASR model while preserving the task accuracy. More
specifically, we propose to spread the watermark over multi-
ple random subsets of the significant spectra components of the
model parameters to ensure that SpecMark is robust and secure.
Furthermore, our framework is highly lightweight since it em-
beds the WM strategically in the spread spectrum (SS) of the
ASR model without re-training it. We validate the feasibility
and robustness of SpecMark using the DeepSpeech v2 [6] on
AN4, Command Voice, and LibriSpeech datasets. Our spectral
watermarking technique is compatible with existing DL-based
ASR systems and paves the way for safe and reliable deploy-
ment of ASR systems.

2. Related Work
Previous works have identified IP concerns of DNNs and
adapted digital watermarking techniques for ownership authen-
tication in the DL domain. We categorize existing methods into
two types based on the application scenarios of the DL model.
We introduce each type in detail as follows.
White-box Watermarking. In the white-box setting,the pre-
trained DL model for the intended task (computer vision,
speech recognition, etc.) is shared with the end-users. This
means that model internals including weight parameters and ac-
tivation maps are publicly accessible. Such a deployment sce-
nario is common with the increasing trend of knowledge ex-
change among the research community. [12] takes the first
step of DNN watermarking and develops a customized regular-
ization term to embed the watermark in the weight distribution



Figure 1: Global workflow of SpecMark watermarking framework for ASR systems.

of the selected DL layer. To improve the security and robust-
ness, DeepSigns [11] proposes to insert the WM in the distri-
bution of dynamic activations corresponding to the secret key
input. DeepMarks [13] uses weight regularization and incorpo-
rates anti-collusion codes for WM design to enhance the water-
mark’s resistance against averaging attacks.
Black-box Watermarking. In the black-box setting, the pre-
trained DL model is employed as a remote service where the
customer sends his data to the cloud server and receives the cor-
responding output. Since the DL model is only available as an
oracle, prior works suggest to craft secret input-output pairs as
the WM. To insert the WM in the model’s decision boundary,
the WM key set is used to finetune the model. As an exam-
ple, [17] proposes to craft adversarial samples as the WM set,
which results in high false alarm rates due to the transferability
of adversarial examples. To resolve the issue, DeepSigns [11]
generates random inputs and random labels as the WM key set.

Existing DL watermarking techniques have the following
constraints: (i) Application domain. All of the above mentioned
watermarking papers demonstrate their methods on image clas-
sification tasks. However, the intrinsic time-evolving nature
and the representation form of speech signals distinguish ASR
from image tasks. Such a discrepancy might render the water-
marking techniques less effective or invalid for ASR systems;
(ii) High WM embedding overhead. Present DL watermarking
primitives embeds the WM via model re-training, which might
be prohibitively costly; (iii) Robustness. Current watermark-
ing schemes are susceptible to careful model disturbance such
as transfer learning [20]. To address the above limitations, we
propose SpecMark, the first practical and resilient model-level
watermarking framework that is suitable for ASR systems.

3. Problem Statement
We define the problem of ASR model watermarking in this sec-
tion. SpecMark assumes a white-box scenario where the model
internals are known to the public. We formulate model-level
watermarking as a one-time, post-training step where the ob-
jective is to embed a WM (a binary sequence in our work) in
the parameter distribution of the ASR model. To be practi-
cal and effective in real-world ASR systems, the watermarking
technique shall satisfy a set of criteria. We summarize these
fundamental requirements in Table 1 and present a quantitative
assessment of SpecMark’s performance in Sec. 5.
Potential Attacks. The model owner inserts a secret water-
mark in his trained ASR model and shares the marked variant

with the public. However, the marked model might undergo
unintentional or deliberate model modifications in a practical
deployment setting. The robustness criterion in Table 1 re-
quires that the WM shall be resistant to potential disruptions
and remains detectable. We consider three types of model dis-
turbance attacks: (i) Parameter pruning: Parameters with small
magnitudes can be zeroed out for computation savings without
significant accuracy degradation [21, 22, 23]; (ii) Model fine-
tuning: The converged model can be fine-tuned to find better
local optima [24, 25, 26]; (iii) Transfer learning: A pre-trained
model might be re-trained on a new dataset for the intended
task [27, 28, 29]. We corroborate the robustness of SpecMark
spread spectrum watermarking against these attacks in Sec. 5.

Table 1: Requirements for an effective watermarking method of
speech recognition systems.

Requirement Definition

Fidelity Preserve the functionality of the original model.
Robustness WM sustains possible model modifications.
Efficiency Low overhead for WM embedding and detection.
Reliability High detection rates of the embedded WM.
Integrity Low false positive rates of WM detection.
Security WM carrier is difficult to identify.

4. SpecMark Methodology
Figure 1 shows the global flow of SpecMark framework. From
the high-level overview, SpecMark takes the pre-trained ASR
model and a set of secret WM keys as the inputs. The marked
variant of the ASR model is returned as the output. Our water-
marking framework consists of two main phases: offline WM
embedding and online WM detection. We detail the procedures
of each step as follows.

4.1. Spectral WM Embedding
SpecMark spreads the WM information in the significant spec-
trum components of the target ASR model. Such an embedding
mechanism features two advantages: (i) Security: Spreading the
WM information over many frequency bins ensures that the en-
ergy change on a single bin is small and undetectable. The in-
sertion location and content of the WM are only known to the
owner, making it difficult to find out by the attacker using ran-
dom guesses. (ii) Robustness: SpecMark’s WM is encoded in
the important frequency regions of the ASR model. Since fea-
sible model modifications have to leave the significant spectra
components intact to maintain high accuracy, the attacker can-



not remove our WM without performance degradation.
We define the WM as a binary bit sequence b of length

T where bk = {−1,+1} , k = 1, ..., T . To provide security
guarantee, SpecMark’s WM key has three components: (i) The
layer position (denoted by l) whose parameters are selected to
carry the WM information; (ii) The secret random seeds (s) that
are used to determine the frequency bins modulated by the WM;
(iii) The secret reference pattern matrix UT×M where T is the
length of the WM sequence and M is the number of frequency
bins controlled by each WM bit. The kth row of U is used as the
reference vector uk to carry the WM bit bk. Note that elements
in each row of U have equal probabilities of taking two values:
ui,j = {−σu,+σu}. We detail each step of SpecMark’s WM
embedding stage shown in Figure 1 below.

Identify Significant Spectra Components. Given the layer
position l in the WM key, SpecMark performs DCT transfor-
mation on the corresponding weight parameter w and obtains
the frequency coefficientsW = DCT (w). Since large values
are less sensitive to additive alternations than small values, we
select the top N largest elements ofW as the tentative WM in-
sertion locations and denote the resulting index set as IN . Note
that M � N such that the spectra components controlled by
each WM bit do not overlap with each other.

Encode WM in Random Spectra Subsets. To enhance
watermarking security, SpecMark embeds each WM bit in a
random subset of spectra components with the highest values
(found by IN ). The insertion location Ik (with size M ) for the
bit bk is determined by Eq. (1) where sk is the random seed
from the WM key. To make the element-wise addition of fre-
quency components feasible, we then use Ick to zero-pad the
secret reference vector uk as shown in Eq. (2). Here, Ick is the
complement set of Ik where the whole set is the index range of
W . The padded variant ũk takes the corresponding value from
uk only when its current index exists in Ik. Finally, the entire
WM sequence b is embedded in the significant part of the DCT
coefficientsW using Eq. (3).

Ik = RandomSelect(IN ,M, sk), (1)

ũk = ZeroPad(uk, I
c
k), (2)

W∗ =W +

T∑
k=1

bkũk, (3)

Perform Inverse Frequency Transformation. After embed-
ding the WM in the selected bins of the important spectrum of
the ASR model, we convert the resulting frequency map back
to the spatial domain using inverse DCT: w∗ = iDCT (W∗).
The original weight parameterw of the secret layer l is replaced
with w∗ to obtain the marked ASR model.

4.2. Spectral WM Detection
In the online detection phase, the model owner queries the un-
known ASR system and obtains its internal weights. Since the
owner knows the WM insertion locations and content, he can
concentrate the ‘weak’ WM signals spread over the particular
frequency bins and extract the WM for authorship proof. We
detail each step of WM detection shown in Figure 1 below.

Transform Queried Data to Frequency Domain. Given
the WM key, the model owner performs DCT on the weight
parameter of the layer l of the queried modelW

′
= DCT (w

′
).

Compute Normalized Correlation. As the developer of the
original ASR system, the model owner has the DCT values
W of the unmarked weights w. As such, he can compute the
spectral difference ∆W between the queried weight and the
unmarked one in the DCT domain using Eq. (4). Then, the

normalized correlation between ∆W and each reference vector
uk is computed using Eq. (5). Note that ‖uk‖ = σ2

u, since
elements in uk can only take the value of −σu or +σu.

∆W =W
′
−W, (4)

r
′
k =

∆W · ũk

‖ũk‖
. (5)

Determine WM Existence. After computing the normalized
correlation rk (k = 1, .., T ) individually, the corresponding bi-
nary WM bit bk is extracted by taking the sign of the correlation
statistics as shown in Eq. (6). Finally, we compute the Bit Error
Rate (BER) between the ground-truth WM sequence b and the
extracted one b

′
. SpecMark’s WM is successfully detected for

ownership authentication only when BER = 0.

b
′
k = sign(r

′
k). (6)

5. Evaluations
We present a comprehensive assessment of SpecMark’s perfor-
mance according to the watermarking requirements discussed
in Table 1. The results are summarized in this section.
Experimental Setup. We demonstrate the effectiveness of
SpecMark using the DeepSpeech v2 model [6] and three dif-
ferent speech datasets: AN4, Command Voice, as well as Lib-
riSpeech [30]. To implement SpecMark’s spread spectrum wa-
termarking (detailed in Sec. 4.1), we use the following configu-
ration: WM sequence length T = 16, candidate range of signif-
icant spectra componentsN = 5000, number of frequency bins
controlled by each WM bit M = 20, and reference strength
σu = 0.5. The hidden-hidden weights of the third LSTM
layer of DeepSpeech is selected to carry the WM. Similar re-
sults are obtained when other layers are used for SpecMark’s
watermarking. We emphasize that no model re-training is re-
quired by SpecMark to embed the WM, making our framework
lightweight. We use the same hyper-parameters (e.g., learning
rate, batch size, and optimization level) as [30] for three WM re-
moval attacks. Our evaluations are performed on Nvidia Titan
Xp with 12 GiB memory. We repeat each set of experiments for
10 runs and report the average values in the following section.

5.1. Fidelity and Efficiency
Recall that fidelity requires the watermarking technique to pre-
serve the accuracy of the pre-trained model. Table 2 summa-
rizes the performance comparison results of the ASR system
before and after SpecMark’s WM embedding. The last two
rows show the Frobenius norm of the weight perturbation in-
troduced by WM insertion in the spatial and the DCT domain,
respectively. One can see that SpecMark’s spread spectrum wa-
termarking primitive does not impact the accuracy of the orig-
inal model, thus respects the fidelity criterion. This is due to the
fact that our framework induces negligible disturbance on the
weight parameters (small ‖∆w‖ in Table 2).
Table 2: Fidelity evaluation of SpecMark. The WER and CER
of the pre-trained baseline model and the watermarked variant
are compared across different datasets.

Datasets AN4 Command Voice LibriSpeech

Models Baseline Marked Baseline Marked Baseline Marked

WER (%) 11.38 11.38 26.72 26.72 18.09 18.09
CER (%) 6.81 6.81 11.63 11.63 7.32 7.32
‖∆w‖ 0.20 0.20 0.16
‖∆W‖ 9.11 9.11 7.07

As for efficiency, we analyze the runtime overhead of Spec-
Mark’s WM embedding and detection procedure. According to
the mechanism of SpecMark outlined in Sec. 4, we can see that



SpecMark has a fixed computational overhead for a specific wa-
termarking configuration and a given target ASR system. Such
independence of SpecMark’s overhead with the dataset dimen-
sionality suggests that our framework is scalable to large ASR
tasks. In our experiments, the WM embedding and detection
time is 97.67 and 10.98 millisecond for all three datasets, re-
spectively. Compared with existing DL watermarking tech-
niques [11, 12, 13], SpecMark features the highest efficiency
since no model re-training is required.
5.2. Robustness
We discuss three possible attack scenarios in Sec. 3: parameter
pruning, model fine-tuning, and transfer learning. In the follow-
ing of this section, we validate SpecMark’s robustness against
these attacks with empirical results.
5.2.1. Robustness against Parameter Pruning
We perform standard parameter pruning (i.e., zero-out elements
with the smallest magnitudes [21]) on all Convolutional and
LSTM layers of the marked ASR model. Acceleration-oriented
pruning pipeline conducts model re-training to compensate for
accuracy loss induced by pruning. In our case, the attacker in-
tends to use pruning for WM removal. It is very unlikely that
the attacker has the original training data and the computing
power to perform model re-training (otherwise he has less in-
centive to steal the ASR model.) As such, we measure the test
accuracy and BER of WM detection of the pruned model with-
out re-training. Figure 2 demonstrates SpecMark’s robustness
against parameter pruning on LibriSpeech dataset. One can ob-
serve that the BER of SpecMark’s WM is less sensitive to pa-
rameter pruning compared to the accuracy metrics (i.e., WER
and CER). As such, the adversary cannot remove the WM by
excessive pruning while acquiring a functional ASR model. In
our experiments, SpecMark spectral watermarking tolerates up
to 99%, 90%, and 90% parameter pruning on AN4, Command
Voice, and LibriSpeech datasets, respectively.

Figure 2: SpecMark’s robustness against parameter pruning.
5.2.2. Robustness against Transfer Learning
Transfer learning is a popular practice that leverages the fea-
tures extracted by a pre-trained DL model for a new task [27,
28]. More specifically, the user performs model re-training on
his new dataset instead of training a model from scratch. In our
robustness evaluation, the DeepSpeech model is first pre-trained
on LibriSpeech dataset and marked by SpecMark. The trans-
fer learning attack is then performed by re-training the marked
model on AN4 dataset using the same configurations in [30].
Figure 3 shows the test accuracy of the marked DeepSpeech
model on the new dataset (AN4) and the BER of WM detec-
tion during the transfer learning process. We can see that Spec-
Mark’s SS WM remains detectable (i.e., BER=0) even if the
marked ASR model undergoes transfer learning. This transfer-

ability of SpecMark’s WM makes it suitable for reliable tech-
nology exchange in the speech recognition domain.

Figure 3: SpecMark’s robustness against transfer learning.

5.2.3. Robustness against Model Fine-tuning

The nature of model fine-tuning determines that it introduces
a smaller amount of perturbation to the marked weights com-
pared to parameter pruning and transfer learning. Our evalu-
ation results show that SpecMark still yields zero BER for the
fine-tuned marked model across all three datasets, thus is re-
silient against model fine-tuning attacks. The detailed results
are not shown here for simplicity.

5.3. Integrity
Recall that integrity requires the WM detection process to yield
small false positive rates (see Table 1). This property is im-
portant since falsely claiming the ownership of an ASR model
might lead to law disputes. To assess the integrity of SpecMark,
we extract the watermark from unmarked ASR models follow-
ing the procedures in Sec. 4.2. Table 3 shows the integrity
evaluation results on LibriSpeech dataset while similar results
are obtained on the other two datasets. ‘Unmarked1’ and ‘Un-
marked2’ are models trained on the same dataset as the marked
one (LibriSpeech in this case). ‘Unmarked3’ and ‘Unmarked4’
are models trained on different datasets (AN4 and Command
Voice, respectively). We can see that SpecMark has no false
alarms since the BER is non-zero for each unmarked model
(regardless of the underlying training data). As such, our water-
marking framework respects the integrity criterion.
Table 3: Integrity evaluation of SpecMark on four different un-
marked DeepSpeech models.

Models Marked Unmarked1 Unmarked2 Unmarked3 Unmarked4

BER 0. 1. 0.5625 0.5 0.6875

6. Conclusion
In this paper, we propose SpecMark, the first spectral water-
marking framework for speech recognition systems. SpecMark
tackles an important and timely problem of Intellectual Prop-
erty protection for ASR systems. For the first time, SpecMark
demonstrates a lightweight, secure, and robust watermarking
primitive that is suitable for ASR applications. Our proposed
framework formulates model-level watermarking as a one-time,
post-processing step and leverages spread spectrum watermark-
ing to address the problem. SpecMark can be easily integrated
within contemporary DL-based ASR systems without impact-
ing their accuracy on the intended tasks. Experimental results
on DeepSpeech model and various datasets corroborate that
SpecMark respects the essential requirements for an effective
watermarking approach.
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