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Abstract—This paper proposes CuRTAIL, an automated end-
to-end computing framework for characterizing and thwarting
adversarial space in the context of Deep Learning (DL). CuR-
TAIL protects deep neural networks against adversarial samples,
which are perturbed inputs carefully crafted by malicious entities
to mislead the victim DL model. The precursor for the proposed
methodology is a set of new quantitative metrics to assess the
vulnerability of various DL architectures to adversarial samples.
CuRTAIL formalizes the goal of preventing adversarial samples
as a minimization of the space unexplored by the pertinent DL
model that is characterized in CuRTAIL vulnerability analysis
step. To thwart the adversarial machine learning attack, we
introduce the concept of Modular Robust Redundancy (MRR)
as a viable solution to achieve the formalized minimization
objective. The proposed MRR methodology explicitly charac-
terizes the geometry of the input data and its corresponding
high-level data abstractions within the victim DL network. It
then learns a set of complementary but disjoint models which
maximally cover the unexplored space in the victim model, thus
reducing the risk of integrity attacks. We extensively evaluate
CuRTAIL performance against various attack models including
Fast-Gradient-Sign, Jacobian Saliency Map Attack, Deepfool,
and Carlini&WagnerL2. Proof-of-concept implementations for
analyzing various data collections including MNIST, CIFAR10,
and ImageNet corroborate CuRTAIL effectiveness to detect
adversarial samples in different settings. The computations in
each MRR module can be performed independently of the other
redundancy modules. As such, CuRTAIL detection algorithm
can be completely parallelized among multiple hardware settings
to achieve maximum throughput. We further provide an open-
source Application Programming Interface (API) to facilitate the
adoption of the proposed framework for various applications.

I. INTRODUCTION

Security and safety consideration is the biggest obstacle for
the wide-scale adoption of emerging learning algorithms in
sensitive scenarios such as intelligent transportation, health-
care, and video surveillance applications [1], [2], [3]. While
advanced learning technologies are essential for enabling
coordination and interaction among autonomous agents and
the environment, a careful analysis of their security as well as
thwarting their vulnerabilities is still in its infancy. Machine
learning models including the state-of-the-art deep neural
networks are widely used in various scientific fields ranging
from speech recognition [4], [5] and computer vision [6], [7]
to financial fraud [8] and malware detection [9], [10]. These
applications have been mainly developed with an implicit se-
curity assumption about the generalizability of such models for
evaluation of unseen examples. Recent results on adversarial
machine learning, however, have shed light on a new and

largely unexplored surface for malicious attacks jeopardizing
the reliability of machine learning models [11], [12], [13].

As shown in several recent studies, a malicious adversary
can carefully manipulate the input data by leveraging spe-
cific vulnerabilities of learning techniques to undermine the
integrity of a certain system [1]. Misclassifying a certain
source class into a distinct target class is one of the strongest
adversarial goals for attackers targeting classifiers as outlined
in [13], [14], [15]. The problem of adversarial samples arises
due to the fact that machine learning algorithms are designed
for stationary environments where the training and test data are
collected from the same unknown distributions. This working
hypothesis, however, can be easily violated by adversaries to
mislead the learning system.

A vast majority of recent research efforts have focused on
devising new attack methodologies in particular for the popular
class of deep learning algorithms with limited attention to pos-
sible countermeasures [11], [12], [13]. The existing research
works which have considered viable countermeasures for ad-
versarial deep learning can be categorized into three classes: (i)
Denoising encoders have been suggested in the literature as a
pre-processing step to improve the robustness of DL networks
by mapping the adversarial samples into the original input
space. As shown in [16], however, the resulting two-stage DL
network is no more difficult to attack than the original one. (ii)
Several recent papers have focused on training the DL model
by including adversarial examples in the training set [17],
[12], [18], [19]. Although this technique has yielded significant
improvement in the convergence of the underlying model and
robustness to particular noise patterns in the input space, it can
only partially evade adversarial samples from being effective
as shown in [20]. (iii) Distillation is another countermeasure
recently proposed in [21]. This technique aims to improve
the robustness of DL networks by transforming the original
model into a second model that lies in a smoother gradient
space compared to the original one. However, recent follow-up
papers (e.g., [22]) have demonstrated that the distilled network
is as vulnerable to adversarial attacks as the original model.

This paper proposes CuRTAIL, a holistic framework for
characterizing and thwarting adversarial deep learning space.
CuRTAIL formalizes the goal of preventing adversarial sam-
ples as an optimization problem to minimize the unexplored
space in the target DL model. To fulfill this objective, we
introduce a new defense mechanism called Modular Robust
Redundancy (MRR). MRR approach is motivated by our key
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observation that no single model can completely eliminate
the potential adversarial space by relying on a limited set of
labeled data. As such, instead of using a single module for
detection of adversarial samples, CuRTAIL employs multiple
minimally overlapping redundant modules (defender models)
that investigate each input sample in parallel to the main
DL model and raise alarm flags for those samples that are
suspected to be infected. Compared to the existing DL defense
mechanisms (e.g., [16], [21], [12]), our proposed approach is
beneficial due to three main reasons: (i) Existing works either
restrict the accuracy of the main DL model or particularly
rely on altering the current DL topologies and/or training
process to make the model more robust against adversarial
samples. In CuRTAIL neither the training complexity nor the
final accuracy of the main DL model is affected. (ii) In order
to adjust the level of security in most of the existing works, the
victim DL model should be retrained with alternative hyper-
parameters, whereas in CuRTAIL the hardness of the detection
policy can be easily adjusted once a defender model has
been trained. (iii) The use of parallel redundancy modules in
CuRTAIL framework significantly reduces the risk of integrity
attacks as the attacker requires to simultaneously deceive all
the defender models to succeed.

For a given DL model (victim network), CuRTAIL first
evaluates the relative vulnerability of each layer based on
the spectral analysis of the DL parameters. It then learns a
set of disjoint redundancy modules to maximally cover the
vulnerable space in the target application while constraining
the number of redundancy modules. The redundancy modules
in CuRTAIL framework are built upon the commonly-used dic-
tionary learning method [23]. Each dictionary targets a certain
layer in the neural network. For each layer, the corresponding
dictionary explicitly characterizes the statistical properties of
input data and DL parameters by learning the pertinent prob-
ability density function (PDF) of the latent variables. Finally,
the learned dictionaries are utilized to analyze the features in
the input and intermediate layers of the DL model and identify
potential adversarial samples.

The security level in CuRTAIL is quantified by a high-
level parameter that can be adjusted to account for various
application-specific requirements. We empirically and ana-
lytically investigate the security of CuRTAIL framework as
a viable countermeasure for adversarial deep learning. We
consider a white-box attack model in which the attacker knows
everything about the victim (DL network) including its model
topology, learning algorithm, and parameters. This threat
model represents the most powerful attacker that can endanger
the real-world machine learning applications. An accompany-
ing CuRTAIL API is provided to ensure its ease of use for de-
ployment of DL applications including several computer vision
tasks, malware detection, and biometric recognition. CuRTAIL
API is devised with an automated customization unit to adjust
the number of modular redundancies in accordance with a
set of user-defined constraints such as real-time data analysis
prerequisites and pertinent security requirements. Note that the
redundancy modules can be parallelized on different hardware

to achieve maximum throughput.
The explicit contributions of this paper are as follows:
• Proposing CuRTAIL, a novel end-to-end framework for

characterizing and thwarting adversarial space in the
context of deep learning. We incept the idea of Modular
Robust Redundancy as a viable security countermeasure
for adversarial machine learning. For a fixed number
of redundancy modules, CuRTAIL carefully learns a set
of complementary dictionaries to maximally cover the
unexplored space in the victim DL model and effectively
reduce the risk of integrity attacks.

• Providing quantitative measurements to characterize the
sensitivity of DL model layers from the statistical point of
view. This is crucial since the number of MRR modules
can be limited in several real-world settings. We uti-
lize the formalized sensitivity measurement to optimally
identify DL layers for which MRR modules should be
established.

• Performing extensive evaluations on well-known DL ap-
plications including MNIST [24], CIFAR10 [25], and Im-
ageNet [26] benchmarks. The results demonstrate the al-
gorithmic practicality and system performance efficiency
of CuRTAIL framework against various attack models
including fast-sign-gradient [12], Jacobian Saliency Map
attack [13], Deepfool [27], and Carlini&WagnerL2 [28].

• Implementing an automated accompanying API to fa-
cilitate adoption/integration of the proposed framework
for the reliable realization of different DL applications.
CuRTAIL incorporates high-level security parameters into
the proposed defense mechanism, allowing users to effec-
tively adjust the robustness of the countermeasure without
requiring them to get involved in the details of the design.

II. BACKGROUND AND PRELIMINARIES

A machine learning model refers to a function f and
its associated parameters θ that are particularly trained to
infer/discover the relationship between input samples x ∈
{x1, x2, ..., xN} and the expected labels y ∈ {y1, y2, ..., yN}.
Each output observation yi can be either continuous as in most
regression tasks or discrete as in classification applications.
Machine learning algorithms typically aim to find the optimal
parameter set θ such that a loss function L that captures
the difference between the output inference and ground-truth
labeled data is minimized:

θ = argmin
θ

1

N

N

Σ
i=1
L(f(xi, θ), yi). (1)

In this paper, we focus our evaluations on the state-of-
the-art deep learning models due to their popularity in the
realization of various autonomous learning systems. Consistent
with the literature in this field, we particularly centralize our
discussions on the classification tasks using DL methodology.
However, we emphasize that the core concept proposed in this
paper is rather more generic and can be used for reliable de-
ployment of different learning techniques such as generalized
linear models, regression methods (e.g., regularized regression
(Lasso)), and kernel support vector machines.



A. Deep Learning

Deep learning is an important class of machine learning
algorithms that has provided a paradigm shift in our ability to
comprehend raw data by showing superb inference accuracy
resembling the learning capability of human brain [2], [3].
A DL network is a hierarchical learning topology consisting
of several processing layers stacked on top of one another.
The schematic depiction of a typical DL network consisting
of convolutional, pooling, fully-connected, and various non-
linearity layers is demonstrated in Figure 1. This type of neural
networks is widely adopted in computer vision and image
processing tasks [6]. Table I summarizes common layers used
in DL neural networks. The state of each neuron (unit) in a DL
network is determined in response to the states of the units in
the prior layer after applying a nonlinear activation function.
In Table I, x(l)i is the state of unit i in layer l, z(l)i is the
post-nonlinearity value associated with unit i in layer l, θ(l)ij
specifies the parameter connecting unit j in layer l and unit
i in the layer l + 1, and k indicates the kernel size used in
2-dimensional (2D) layers.

TABLE I: Commonly used layers in DL neural networks.
DL Layers Description

Core Computations Fully-Connected x
(l)
i =

Nl−1

Σ
j=1

θ
(l−1)
ij × z(l−1)

j

2D Convolution x
(l)
ij =

k
Σ

s1=1

k
Σ

s2=1
θ
(l−1)
s1s2 × z

l−1
(i+s1)(j+s2)

Normalization L2 Normalization x
(l)
i =

x
(l)
i√

Nl
Σ

j=1
|x(l)j |

2

Batch Normalization x
(l)
i =

x
(l)
i −µ

(l)
B√

1
bs

bs
Σ

j=1
(x

(l)
j −µ

(l)
B

)2

Pooling 2D Max Pooling x
(l)
ij = Max(yl−1

(i+s1)(j+s2)
)s1 ∈ {1, 2, ..., k}
s2 ∈ {1, 2, ..., k}

2D Mean Pooling x
(l)
ij = Mean(zl−1

(i+s1)(j+s2)
)s1 ∈ {1, 2, ..., k}
s2 ∈ {1, 2, ..., k}

Non-linearities Softmax z
(l)
i = e

x
(l)
i

Nl
Σ

j=1
e
x
(l)
j

Sigmoid z
(l)
i = 1

1+e
−x

(l)
i

Tangent Hyperbolic z
(l)
i =

Sinh(x
(l)
i )

Cosh(x
(l)
i )

Rectified Linear unit z
(l)
i = Max(0, x

(l)
i )

Training a DL network involves two main steps: (i) for-
ward propagation, and (ii) backward propagation. These steps
are iteratively performed for multiple rounds using different
batches of known input/output pairs (xi, yi) to reach a certain
level of accuracy. In forward propagation, the raw values
of the input data measurements are gradually mapped to
higher-level abstractions based on the current state of the DL
parameters (θ). The acquired data abstractions are used to
predict the inference label in the last layer of the DL network
based on a Softmax regression.1 In backward propagation, an
optimization algorithm such as stochastic gradient descent [29]
is performed to find the gradient direction along which the DL
parameter set θ should be updated to minimize the distance

1Softmax regression (or multinomial logistic regression) is a generalization
of logistic regression that maps a P-dimensional vector of arbitrary real values
to a P-dimensional vector of real values in the range of [0, 1). The final
inference for each input sample can be determined by the output unit that has
the largest conditional probability value.

between network prediction (output of forward propagation)
and the ground-truth label.

Fig. 1: Schematic depiction of a typical neural network used
for computer vision and image processing tasks.

Once the DL network is trained to deliver a desired level of
accuracy, the model is employed as a classification oracle in
the execution phase (a.k.a., test phase). During the execution
phase, the model parameters θ are fixed and prediction is
performed through one round of forward propagation for each
unknown input sample. Attacks based on adversarial samples
target the execution phase of DL networks and do not involve
any tampering with the training procedure as will be discussed
in Section III.

III. ATTACK MODELS

Adversarial machine learning can be cast as a zero-sum
Stackelberg game between the machine learning oracle (vic-
tim) and the attacker. Depending on the attacker’s knowledge,
the threat model can be categorized into three classes:
• White-box attack. The attacker knows everything about

the defender model including the learning algorithm,
model topology, and parameters, but has limited or partial
access to the training data [12], [12], [13].

• Gray-box attack. The attacker only knows the underly-
ing learning algorithm and model topology but has no
access to the training data or the trained parameters.

• Black-box attack. The attacker knows nothing about the
pertinent machine learning algorithm, model, or training
data. This attacker only can obtain the corresponding
inference label for input samples. In this setting, the ad-
versary can perform a differential attack by observing the
output changes with respect to the input variations [30].

A complete taxonomy of adversarial capabilities and goals
are provided in [13], [14], [15]. In this paper, we consider the
white-box threat model as the most powerful attacker that can
appear in real-world machine learning applications.

In an adversarial setting, the attacker aims to find a per-
turbed adversarial sample (xa) such that it incurs minimal
distance from the source sample (xs) while its corresponding
output is sufficiently different to mislead the victim. Figure 2
illustrates an example, where the image on the left is initially
classified correctly as a dog by the victim model while adding
a small amount of perturbation to the original image has
misled the victim to infer it as a black swan (right image).
Clearly, if the source instance is already misclassified by
the victim model (f(xs, θ) 6= y∗), the adversarial problem



becomes trivial. Therefore, we particularly focus on instances
xs that could have been classified correctly by the oracle
before adding structured adversarial noises (f(xs, θ) = y∗).

We define the distance between the machine learning oracle
output and the ground-truth label as follows:

D(f(xa), y∗) = γ0L(f(xa), y∗)− Σf(xa)6=y∗γiL(f(xa), yi),
(2)

where L is the loss function used to train the pertinent
DL model, γ0 ≥ 0 is the weight for the ground-truth and
γi ≥ 0 are the weights for each misleading target. Hence, the
adversarial objective is to find the solution to the following:

argmax
xa

D(f(xa), y∗) s.t. ‖(xa − xs)‖∞ ≤ ε. (3)

To solve for the optimal adversarial sample (xa), the adver-
sary should compute the sensitivity of each DL output with
respect to the changes in the input features. The network sen-
sitivity can be computed in several ways. Figure 3 depicts the
schematic depiction of adversarial attacks. Below we briefly
describe state-of-the-art attack mechanisms against which we
evaluate CuRTAIL. Details about each attack algorithm can be
found in the corresponding paper.

(a) (b)

Fig. 2: An example of (a) source input data, and (b) its
corresponding adversarial sample. The added noise is visually
hard to see but makes the victim misclassify (b).

Fast Gradient Sign (FGS). Authors in [12] suggested the
fast-sign-gradient method that leverages the sign of the loss
function’s gradient with respect to each input feature to craft
the adversarial samples. In this case, the adversarial sample
per input feature (xsi ) is computed as:

xai = xsi + εsign(
∂L
∂xsi

), (4)

which guarantees that the overall perturbation (‖(xai −xsi )‖∞)
does not exceed the threshold ε. The computed gradient in
fast-sign-gradient is similar to the cost evaluated in back-
propagation step in the training phase with a key difference
that the derivative is computed with respect to the input
features (xsi ). Parameter ε determines the closeness of the
crafted adversarial sample to the legitimate input. Higher ε
values result in higher attack success rate with the cost of
more distinguishable additive noise.

Jacobian Saliency Map Attack (JSMA). A different attack
methodology was introduced in [13], which suggested com-
puting the sensitivity map per input feature and iteratively
perturbing each input feature (pixel in the case of images)
based on the sensitivity map. The attack parameters include:
(i) the maximum percentage of the input features that can

Fig. 3: Overall flow of typical adversarial attack methodolo-
gies.

be perturbed, and (ii) the amount of allowed perturbation for
each feature. Please refer to [13] for details about the attack
algorithm.

Deepfool. Authors in [27] have introduced another attack
heuristic called Deepfool that carefully adds perturbations to
minimize the L2 distance of the adversarial sample and the
original data. Deepfool iteratively adds perturbations to all
input features based on a certain update rule. The attack
parameters include the number of iterative updates. Details
about the iterative algorithm can be found in [27].

Carlini&WagnerL2. Another attack [28] is proposed to min-
imize the L2 norm of the perturbation. In this attack, authors
suggest the use of modified cost function with hyper param-
eters that allow trade-offs between attack success rate, the
confidence of the attacked model on the adversarial samples,
and the amount of additive perturbation. During the process
of crafting adversarial samples, the hyper-parameters are tuned
by binary search to improve the quality of adversarial exam-
ples. We refer the reader to the original paper [28] for details
about this attack.

IV. CURTAIL GLOBAL FLOW

Figure 4 illustrates the global flow of CuRTAIL framework.
CuRTAIL consists of two main phases to analyze the vulnera-
bility of a victim DL model and detect the adversarial samples
that might be fed into the underlying network.

(i) Pre-Processing Phase. The pre-processing phase is
performed in three successive steps.

1 Sensitivity Analysis. CuRTAIL framework takes a trained
DL neural network as its input and primarily performs a thor-
ough sensitivity analysis based on a layer-wise spectrum den-
sity evaluation of pertinent model parameters (Section V-A).



Sensitivity 
Analysis

Relative 
Sensibility of 

the Layers

Design 
Customization

Location of 
Required 

Check-Points

Physical 
Constranits

User-Defined 
Security Parameter 

Statistical Dictionary 
Learning

Training 
Data

Modular 
Redundancies

Forward Propagation

Joint 
Probabilistic 
Model Fusion

Legitimacy 
Probability of 

Input Data

DL Network 
Prediction 

Input Victim Network

Adversarial Samples:
- FGS
- JSMA
- Deepfool
- Carlini&WagnerL2

Legitimate Test 
Samples

1

1 2 3

3

Pre-Processing 
Phase

Inference 
Phase

 Validation

2

Victim DL 
Model 

i Online Steps

i Offline Steps

Building 
Blocks

Outputs

User Inputs

Fig. 4: Global flow of CuRTAIL framework including both off-line (pre-processing) and online (inference) phases. The pre-
processing phase includes analyzing the vulnerability of the input neural network (called victim) and learning a set of redundancy
modules (defensive dictionaries) to maximally cover the unexplored space in the victim model. The learned dictionaries are
used in the inference phase to detect potential adversarial samples fed into the victim DL network.

This information is leveraged to find the vulnerable space
of the DL model to the potential adversarial samples and
identify the layers in the neural network for which the modular
redundancies should be learned.

2 Design Customization. There is a trade-off between
the execution runtime and the system reliability in terms of
successful detection rate (Section V-E). CuRTAIL takes user-
defined physical constraints such as real-time requirements
into account and determines the viable number of redundancy
modules (checkpoints) and their appropriate locations based
on the sensitivity of DL layers computed in step 1.

3 Statistical Dictionary Learning. The key building block
of CuRTAIL framework is the dictionary learning unit in
which a set of redundancy modules (checkpoints) are learned
based on statistical properties of the training data and the
victim model parameters. To do so, CuRTAIL first trains
a set of complementary neural networks (defenders) with
the goal of separating data manifolds in each checkpointing
layer by careful realignment of legitimate training data within
each class (Section V-B). The complementary networks pose
an exact structure of the victim model. The key difference
between the defenders and the victim model is the loss
function for which each of these models is optimized. Once the
complementary neural networks are trained, CuRTAIL uses the
probability density function of the acquired features to learn
the corresponding dictionary of each checkpoint location.

Note that the pre-processing phase in CuRTAIL framework
is an off-line process that is only performed once per DL
application. The cost of CuRTAIL pre-processing is amortized
over time as the DL network and its associated defensive
redundancy modules are employed for online DL inference.

(ii) Inference Phase. In the inference phase, the incoming
adversarial samples (Section III) along with the legitimate test
data are simultaneously fed to the victim and defender models.
CuRTAIL goes through three steps to find the inference label
for each incoming data and provides a precise confidence
interval for the network prediction.

1 Forward Propagation. The predicted class for each
incoming sample is acquired through forward propagation
in the main DL network (victim model). CuRTAIL defense
mechanism is devised to provide a confidence interval for
the network prediction. This confidence interval is used for
validation of the input-output pairs in the target application
and does not impact the accuracy of the main model.

2 Validation. CuRTAIL leverages the statistical dictionaries
learned in the previous steps to validate the legitimacy of the
input data and the associated output. In particular, samples
that do not lie in the user-defined probability interval which
we refer to as the Security Parameter (SP) are discarded as
suspicious samples. SP is a constant number in the range of
[0−100] that determines the hardness of adversarial detectors.
For applications with excessive security requirements, a high
SP value should be set to assure full detection of adversarial
samples. A high detection rate (e.g., 100%) may come at the
cost of having several false positives in the detection process
as will be discussed in Section VI.

3 Joint Probabilistic Model Fusion. The outputs of the
redundancy modules (dictionaries) are finally aggregated to
compute the legitimacy probability of the input data and its
associated inference label (Section V-D).



V. CURTAIL METHODOLOGY

The existence of adversarial samples indicates the presence
of small (in the Euclidean distance sense) additive noise
patterns in the input space that can make a large impact on the
model’s output. This phenomenon particularly happens due to
two main reasons:

(i) Linear behavior in high-dimensional spaces. Small amounts
of perturbation in the input space are exacerbated by suc-
cessive projections through different layers of a DL network.
Mathematically speaking, for each input sample x, the output
of a DL network consisting of L successive layers is computed
as follows:

f(X, θ) = fL(fL−1(...f1(x, θ1), θ2)..., θL) (5)

where fl is the mapping operator used in layer l and θl is the
corresponding parameter set of that layer. As such, the overall
instability of the DL system is the multiplication aggregate of
the instability of each layer [11]. In other words,

S =

L∏
Sl

l=1

, (6)

where Sl indicates the instability of layer l. In Section V-A,
we provide quantitative measures to characterize the instability
of each layer normalized to the possible perturbation levels.

(ii) Insufficient regularization in supervised learning. A ma-
chine learning model built upon a limited set of labeled data
is strongly-robust against adversarial samples if and only if
it is trained based on an exact subset of features used by
the perfect oracle (e.g., human annotator) [31]. Although DL
networks with a more complex topology (e.g., a network
with a deeper structure and more number of neurons per
layer) can potentially achieve a better accuracy, they are also
more vulnerable to adversarial attacks due to the larger space
unexplored by such models. Our hypothesis is that a proper
feature representation learning is the key to obtain a learning
model that is both accurate and robust. As we discuss in
Section V-B, adversarial samples can be effectively detected
by careful checkpointing in the intermediate stages based
on probabilistic dictionaries learned from the data and DL
parameter distributions.

A. Spectral Analysis of DL Sensitivity
The perturbation signal in adversarial samples can be cast

as an additive noise added to the input data. In particular, for
each layer Fl we define the instability as:

Sup
r 6=0

‖fl(xl + rl)− fl(xl)‖
‖rl‖

, (7)

where Sup stands for the supremum value, xl is the input to
the lth layer, and rl is the additive perturbation propagated
to the input of that layer. For instance, for a fully-connected
layer with parameter set θl, Eq. (7) is equivalent to:

Sup
r 6=0

‖fl(xl + rl)− fl(xl)‖
‖rl‖

=
‖θl × rl‖
‖rl‖

≤ ‖θl‖, (8)

where the last step is obtained by applying the Cauchy-
Schwarz inequality. The same equation applies to convolu-
tional layers for which the Tensor kernels should be vectorized
to form θl.

The instability of core computation layers (e.g., fully-
connected and convolution layers) is bounded by the spectrum
of their underlying parameters. Considering the principal spec-
trum of the parameter set θl, the upper bound in Equation (8)
is achieved if and only if the perturbation vector r is aligned
with the main Eigenvector of the underlying parameters. To
quantify and compare the instability of various layers in a
DL network, we suggest using the Spectral Energy Factor
(SEF) preserved by the first Eigenvalue as a measurement to
identify most sensitive intermediate layers. The SEF metric is
computed as:

SEF (θl) =
|e1|

min(Nl−1,Nl)

Σ
i=1

|ei|
, (9)

where |ei| is the absolute value of the ith Eigenvalue and Nl
is the number of neurons (units) in the layer l. The sensitivity
of specific non-linearity layers outlined in Table I is upper
bounded by their Lipschitz constant as shown in [11].

B. Training Redundancy Modules For Intermediate Layers
The goal of each intermidiate defender (checkpointing)

module is to learn the pdf of the explored sub-spaces in a
particular DL feature map. The learned density function is
then used to identify the rarely observed regions. We consider
a Gaussian Mixture Model (GMM) as the prior probability to
characterize the data distribution at each checkpoint location.
We emphasize that our proposed approach is rather generic
and is not restricted to the GMM distribution. The GMM
distribution can be replaced with any other prior depending
on the application.

To effectively characterize the explored sub-space as a
GMM distribution, one is required to minimize the entangle-
ment between each two Gaussian distribution (corresponding
to every two different classes) while decreasing the inner-class
diversity. Training a defender module is a one-time offline
process and is performed in three steps:
Step I. Replicating the victim neural network and all its feature
maps. An L2 normalization layer is inserted in the desired
checkpoint location. The normalization layer maps the latent
feature variables, f(x), into the Euclidean space such that
the acquired data embeddings live in a d-dimensional hyper-
sphere, i.e., ‖f(x)‖2 = 1. This normalization is crucial as it
partially removes the effect of over-fitting to particular data
samples that are highly correlated with the underlying DL
parameters. The L2 norm is selected to be consistent with
our assumption of GMM prior distribution. This norm can be
easily replaced by an arbitrarily user-defined norm through our
accompanying API.
Step II. Fine-tuning the replicated network to enforce dis-
entanglement of data features (at a particular checkpoint
location). To do so, we optimize the defender module by



(a) (b) (c)
Fig. 5: (a) Illustration of the optimization objective in each defender module. (b) The distance of legitimate (blue) and
adversarial (red) samples from the corresponding centers Ci before, and (c) after realignment of data samples. In this example,
we consider the LeNet3 model ([32]) trained on MNIST dataset (the checkpoint is inserted in the second-to-last layer) and
adversarial samples are generated by FGS attack with different perturbation levels.

incorporating the following loss function with the conventional
cross entropy loss:

L+ = γ [ ‖Cy
∗
− f(x)‖22︸ ︷︷ ︸
loss1

− Σi6=y∗‖Ci − f(x)‖22︸ ︷︷ ︸
loss2

+ Σi(‖Ci‖2 − 1)2︸ ︷︷ ︸
loss3

]. (10)

Here, γ is a trade-off parameter that specifies the contribution
of the additive loss term, f(x) is the corresponding feature
vector of input sample x at the checkpoint location, y∗ is
the ground-truth label, and Ci denotes the center of all
data abstractions (f(x)) corresponding to class i. The center
values Ci and intermediate feature vectors f(x) are trainable
variables that are learned by fine-tuning the defender module.
In our experiments, we set the parameter γ to 0.01 and retrain
the defender model with the same optimizer used for training
the victim model. The learning rate of the optimizer is set to
1
10 of that of the victim model as the model is already in a
relatively good local minima.

Figure 5a illustrates the optimization goal of each defender
module per Eq. (10). The first term (loss1) in Eq. (10)
aims to condense latent data features f(x) that belong to the
same class. Reducing the inner-class diversity, in turn, yields
a sharper Gaussian distribution per class. The second term
(loss2) intends to increase the intra-class distance between
different categories and promote separability. The composition
of the first two terms in Eq. (10) can be arbitrarily small by
pushing the centers to (Ci ← ±∞). We add the term, loss3, to
ensure that the underlying centers lie on a unit d-dimensional
hyper-sphere and avoid divergence in training the defender
modules.

Figures 5b and 5c demonstrate the distance of legitimate
(blue) and adversarial (red) samples from the corresponding
centers Ci in a checkpoint module before and after retraining.2

As shown, fine-tuning the defender module with proposed
objective function can effectively separate the distribution
of legitimate samples from malicious data points. Note that
training the defender module is carried out in an unsupervised
setting, meaning that no adversarial sample is included in the
training phase.

2The centers Ci before fine-tuning the checkpoint (defender) module are
equivalent to the mean of the data points in each class.

Step III. High dimensional real-world datasets can be repre-
sented as an ensemble of lower dimensional sub-spaces ([33],
[34], [35]). As discussed in ([33]), under a GMM distribution
assumption, the data points belonging to each class can be
characterized as a spherical density in two sub-spaces: (i) The
sub-space where the data actually lives and (ii) its orthogonal
complementary space. We leverage High Dimensional Dis-
criminant Analysis (HDDA) algorithm ([33]) to learn the mean
and the conditional covariance of each class as a composition
of lower dimensional sub-spaces.

The learned pdf variables (i.e., mean and conditional co-
variance) are used to compute the probability of a feature
point φ(x) coming from a specific class. In particular, for
each incoming test sample x, the probability p(f(x)|yi) is
evaluated where yi is the predicted class (output of the victim
neural network) and f(x) is the corresponding data abstraction
at the checkpoint location. The acquired likelihood is then
compared against a user-defined cut-off threshold which we
refer to as the security parameter. The Security Parameter
(SP) is a constant number in the range of [0% − 100%]
that determines the hardness of defender modules. Figure 6
illustrates how the SP can control the hardness of the pertinent
decision boundaries. In this example, we have depicted the
latent features of one category that are projected into the first
two Principal Component Analysis (PCA) components in the
Euclidean space (each point corresponds to a single input
image). The blue and black contours correspond to security
parameters of 10% and 20%, respectively. For example, 10%
of the legitimate training samples lie outside the contour
specified with SP = 10%.

One may speculate that an adversary can add a structured
noise to a legitimate sample such that the data point is moved
from one cluster to the center of the other clusters; thus
fooling the defender modules (Figure 7a). The risk of such
attack approach is significantly reduced in our proposed MRR
countermeasure due to three main reasons: (i) Use of parallel
checkpointing modules; the attacker requires to simultaneously
deceive all the defender models in order to succeed. (ii)
Increasing intra-class distances in each checkpointing module;
The latent defender modules are trained such that not only the



SP=10

SP=20

(a) (b) (c)
Fig. 6: (a) Illustration of the effect of security parameter (SP) on the detection policy. A high SP leads to a tight boundary
which treats most samples as adversarial examples. (b) Example feature samples in the second-to-last layer of LeNet3 trained
for classifying MNIST data. (c) Latent feature samples of the same layer in the defender module after data realignment. The
majority of adversarial samples (e.g., the red dot points) reside in the regions with low density of training samples.

(a) (b)
Fig. 7: An input defender module is devised based on robust dictionary learning techniques to automatically filter out test
samples that highly deviate from the typical PSNR of data points within the corresponding predicted class.

inner-class diversity is decreased, but also the distance between
each pair of different classes is increased (see Equation (10)).
(iii) Learning a separate defender module in the input space
to validate the Peak Signal-to-Noise Ratio (PSNR) level of
the incoming samples as discussed in Section V-C. In the
remainder of the paper, we refer to the defender modules
operating on the input space as the input defender. MRR
modules that checkpoint the intermediate data features within
the DL network are referred as latent defender.

C. Training Redundancy Modules For The Input Space
We leverage dictionary learning and sparse signal recovery

techniques to measure the PSNR of each incoming sample
and automatically filter out atypical samples in the input
space. Figure 7b illustrates the high-level block diagram of an
input defender module. Devising an input checkpoint model is
performed in two main steps: (i) dictionary learning, and (ii)
characterizing the typical PSNR per class after sparse recovery.
(I) Dictionary learning; we learn a separate dictionary for each
class of data by solving:

argmin
Di

1

2
‖Zi −DiV i‖22 + β‖V i‖1 s.t. ‖Di

K‖ = 1,

0 ≤ K ≤ Kmax,

(11)

Here, Zi is a matrix whose columns are pixels extracted from
different regions of input images belonging to category i.
For instance, if we consider 8 × 8 patches of pixels, each

column of Zi would be a vector of 64 elements. The goal of
dictionary learning is to find matrix Di that best represents the
distribution of pixel patches from images belonging to class i.
We denote the number of columns in Di by kmax. For a certain
Di, the image patches Zi are represented with a sparse matrix
V i, and DiV i is the reconstructed patches. We leverage Least
Angle Regression (LAR) method to solve the Lasso problem
defined in Eq. (11).

For an incoming sample, during the execution phase, the
input defender module takes the output of the victim DL model
(e.g., predicted class i) and uses Orthogonal Matching Pursuit
(OMP) routine ([36]) to sparsely reconstruct the input data
with the corresponding dictionary Di. The dictionary matrix
Di contains a set of samples that commonly appear in the
training data belonging to class i; As such, the input sample
classified as class i should be well-reconstructed as DiV ∗ with
a high PSNR value, where V ∗ is the optimal solution obtained
by the OMP routine. During the execution phase, all of the
non-overlapping patches within the image are denoised by the
dictionary to form the reconstructed image.
(II) Characterizing typical PSNR in each category; we profile
the PSNR of legitimate samples within each class and find
a threshold that covers all legitimate training samples. If an
incoming sample has a PSNR lower than the threshold (i.e.,
high perturbation after reconstruction by the corresponding
dictionary), it will be regarded as a malicious data point. In
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Fig. 8: Adversarial detection rate of the latent and input defender modules as a function of the perturbation level for (a)
SP = 0.1%, (b) SP = 1%, and (c) SP = 5%. In this experiment, the FGS attack is used to generate adversarial samples and
the perturbation is adjusted by changing its specific attack parameter ε.

particular, PSNR is defined as:

PSNR = 20log10(MAXI)− 10log10(MSE), (12)

where the mean square error (MSE) is defined as the L2

difference of the input image and the reconstructed image
based on the corresponding dictionary. The MAXI is the
maximum possible pixel value of the image (e.g., 255).

Figure 8 demonstrates the impact of perturbation level
on the pertinent adversarial detection rate for three different
security parameters (cut-off thresholds). In this experiment,
we have considered the FGS attack with different ε values on
the MNIST benchmark. Table II summarizes the DL model
topology used in each benchmark. The latent defender module
(checkpoint) is inserted at the second-to-last layers. As shown,
the use of input dictionaries facilitate automated detection
of adversarial samples with relatively high perturbation (e.g.,
ε > 0.25) while the latent defender module is sufficient to
effectively distinguish malicious samples even with very small
perturbations. We extensively evaluate the impact of security
parameter on the ultimate system performance for various
benchmarks in Section VI.

D. Joint Probabilistic Model Aggregation
The output of redundancy modules in CuRTAIL framework

are combined in a weighted aggregation setting. The weight
of each redundancy module can be easily set by users in
our provided API to account for prior knowledge about the
testing environments of the underlying application. In the
default setup of our API, the contribution (weight) of each
latent defender is set in accordance with the sensitivity of
the corresponding DL layer. Let us denote the contribution
of the ith latent dictionary by φi. As such, φi is primary set
to SEF (θi) where SEF (θi) is defined in Equation (9). The
weights of the latent dictionaries are then scaled such that:

NMRR

Σ
i=1

φi = 1, (13)

where NMRR is the total number of modular redundancies.
The aggregated results of the latent dictionaries for each

sample is used along with the output of the input dictionary

to determine the legitimacy level of an input-output pair in
CuRTAIL framework. In our experiments in Section VI, we
assume an equal contribution for the aggregated latent feature
dictionaries and the input dictionary.

E. Complexity and Reliability Trade-off

There is a trade-off between the computational complexity
(e.g., runtime overhead) of the modular redundancies and the
reliability of the overall system. On the one hand, a high
number of validation checkpoints increases the reliability of
the systems, but it also increases the computational load as
each input sample should be validated by more defender
networks. On the other hand, a small number of checkpoints
degrades the defense mechanism performance by treating ad-
versarial samples as legitimate ones. The execution complexity
of each latent dictionary is equivalent to the cost of one
forward propagation in the target model. This is because each
complementary network has a similar topology as the victim
model. For the input dictionary detector, the complexity of
computing the sparse representation for a single patch of pixels
isO(m×K×Kmax), where Kmax is the number of samples in
the pertinent dictionary, m is the number of input features (i.e.,
pixels in the patch), and K is the desired number of nonzeros
in the sparse representation. Figure 9 demonstrates the utility
and reliability trade-off for analyzing MNIST dataset on LeNet
DL model. The runtime is normalized with respect to the cost
of one forward propagation in the target neural network. In this
experiment, the DL execution is performed sequentially on an
NVIDIA Geforce 980 GPU hosted by an Intel Core-i7 CPU.
We emphasize that MRR computations (different colored bars
in Figure 9) can be run in parallel to minimize the runtime
overhead.

CuRTAIL takes the user-defined runtime constraint for
DL execution of one sample in the target application as
its input. Our framework provides automated subroutines to
perform platform profiling on various CPU and CPU-GPU
hardware. The platform profiling is a one-time process and
takes 10 − 100 msec depending on the hardware platform.
CuRTAIL adjusts the number of viable checkpoints according
to the user-specific runtime constraint and available compu-



Fig. 9: Complexity and reliability trade-off for analyzing
MNIST dataset on LeNet DL model.

tational resource provisioning. The intermediate DL layers
are prioritized based on the instability analysis outlined in
Section V-A. Due to the space limits, we focus our experiments
in Section VI on using only two checkpoints, one in the input
data space and one in the last hidden layer of the neural
network prior to the output layer. This setup corresponds to
the minimum overhead for the proposed defense mechanism
(twice the execution time in the primary network). As shown
in Figure 9, intermediate checkpoints can be used to effectively
improve the detection performance in the target application.

VI. EVALUATIONS

We evaluate CuRTAIL framework on three canonical ma-
chine learning datasets: MNIST [24], CIFAR10 [25], and
ImageNet [26]. Figure 10 illustrates several representative
samples from each dataset.

Fig. 10: Example legitimate samples in each benchmark
dataset. These samples are randomly selected from each of
the target classes in the MNIST (top row), CIFAR10 (middle
row), and ImageNet (bottom row) datasets.

MNIST Benchmark. The MNIST data is a collection of
70000 black and white images of handwritten digits where
the goal is to classify the written digits (0−9) into one of the
potential 10 classes. The images are normalized such that each
pixel takes a real value in the range of 0 to 1. The original data
is split into 60000 training samples and 10000 test samples.
In our experiments for this dataset, we train and use the DL
topology proposed in [32] which is also available in Table II.
CIFAR10 Benchmark. The CIFAR10 data [25] is a collection
of 60000 color images of size 32×32 that are classified in 10

TABLE II: Baseline (victim) network architectures for eval-
uated benchmarks. Here, 128C3(2) denotes a convolutional
layer with 128 maps and 3× 3 filters applied with a stride of
2, MP3(2) indicates a max-pooling layer over regions of size
3× 3 and stride of 2, and 300FC is a fully-connected layer
consisting of 300 neurons. All convolution and fully connected
layers (except the last layer) are followed by ReLU activation
functions. A Softmax activation function is applied to the last
layer of each network.

Benchmark Architecture
MNIST 784-300FC-100FC-10FC

CIFAR10 3× 32× 32− 300C3(1)−MP2(2)− 300C2(1)−MP2(2)−
300C3(1)−MP2(2)− 300FC − 100FC − 10FC

ImageNet 3× 224× 224− 96C11(4)− 256C5(1)−MP3(2)− 128C3(1)−
MP3(2)− 128C3(1)− 128C3(1)−MP3(2)− 1024FC − 1024FC − 10FC

categories: Airplane, Car, Bird, Cat, Deer, Dog, Frog, Horse,
Ship, and Truck. The images are represented in three (red,
green, blue) channels and are normalized such that each pixel
takes a value in the [0 − 1] range. We split the data samples
into a set of 50000 training data and a set of 10000 test data.
In our experiments, we train and use the state-of-the-art DL
topology proposed in [37] for the CIFAR10 dataset. Details
about the architecture are available in Table II.
ImageNet Benchmark. ImageNet [26] is a large database
consisting of over 15 million data samples. The images are
collected from the web and human-labeled using Amazon’s
Mechanical Turk tool. Typically, a subset of images belonging
to 1000 different categories is used by the research community
for learning evaluation of ImageNet data [6]. In our experi-
ments, we train and use a DL architecture inspired by the well-
known AlexNet [6] DL topology for ImageNet classification.
Details about the trained model are available in Table II.
We down-sample ImageNet classes by a factor of 100 for
execution efficiency purposes. The selected classes include
Tinca Tinca fish (a.k.a., Tench), black swan, Chrysanthemum
dog, tiger beetle, academic gown and robe, cliff dwelling, hook
and claw, paper towel, one-armed bandit, and water tower.

A. CuRTAIL Open-Source API

We provide an accompanying end-to-end API to ensure
easy adoption of CuRTAIL framework by data scientists
and engineers3. Our implementations for multi-core CPU
and CPU-GPU platforms are built to work with the highly
popular DL library known as TensorFlow [38]. CuRTAIL
API takes user-specific variables such as DL model and
training data, the desired security parameter SP (which, in
turn, defines the hardness of defensive redundancy modules),
and the underlying physical constraints in terms of runtime
budget for DL execution of one data sample in the target
application (Section V-E). The accompanying API automates
the sensitivity analysis, design customization, and dictionary
learning processes in CuRTAIL framework. The current re-
alization of CuRTAIL framework provides support for DL
sensitivity analysis against state-of-the-art attacks including
fast-sign-gradient (FSG) [12], Jacobian Saliency Map attack

3Codes are available at https://github.com/Bitadr/CurTAIL

https://github.com/Bitadr/CurTAIL


(JSMA) [13], Deepfool [27], and Carlini&WagnerL2 [28]. Our
API is implemented based on an object-oriented design. As
such, new modular redundancies and/or new attack models
can be easily incorporated in our API by simply defining the
desired functionality as a new class.

B. CuRTAIL Performance Against Adversarial Attacks
To illustrate the effect of our defense algorithm, we create

adversarial samples using the four attack scenarios described
in Section III. The parameters for each attack algorithm is
outlined in Table III. We used the open source library4,
which is provided by [39], for implementation of the attack
algorithms. The JSMA attack was too slow on the Imagenet
task, thus, we did not include the results in this study. We
define the False Positive (FP) rate as the ratio of legitimate
test samples that are mistaken for adversarial samples by
CuRTAIL. The True Positive (TP) rate is defined as the ratio
of adversarial samples detected by CuRTAIL.

TABLE III: Details of attack algorithms for each evaluated
application. The FGS method [12] is characterized with a
single ε parameter. The JSMA attack [13] has two parameters:
γ specifies the maximum percentage of perturbed features
and θ denotes the value added to each selected feature. The
Deepfool attack [27] is characterized by the number of iterative
updates, which we denote by niters in this table. For the
Carlini&WagnerL2 attack [28], “C” denotes the confidence,
“LR” is the learning rate, “steps” is the number of binary
search steps, and “iterations” stands for the maximum number
of iterations.

Application Attack Attack Parameters

MNIST

FGS ε ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
JSMA γ = 5%, θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

Deepfool niters ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Carlini&WagnerL2 C ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}
LR = 0.1, steps = 20, iterations = 500

CIFAR

FGS ε ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}
JSMA γ = 5%, θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

Deepfool niters ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Carlini&WagnerL2 C ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}
LR = 0.1, steps = 20, iterations = 500

ImageNet

FGS ε ∈ {0.01, 0.05}
JSMA Attack not successful

Deepfool niters ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Carlini&WagnerL2 C ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}
LR = 0.1, steps = 20, iterations = 500

CuRTAIL Input Dictionaries. The input dictionaries of
CuRTAIL are trained as follows: for each dataset, we learn
separate dictionaries for each class. to learn each dictionary,
we first extract small patches of pictures from the data. For
each input image, we randomly subsample 30 patches and
create a training set of these patches from all training images.
The size of the patches was 7×7 for MNIST, 8×8 for CIFAR-
10, and 16× 16 for Imagenet. We set the number of columns
in each dictionary to 225. The dictionaries are learned as
described in Section V-C. Once the dictionaries are learned, we
can run the OMP algorithm [36] to denoise each input sample
using its corresponding dictionary. The PSNR of the original
sample is then computed as in Eq. 12, and compared against

4 https://github.com/tensorflow/cleverhans

a cut-off threshold to raise alarms for high distortion values.
We set the cut-off threshold value of input defender such that
all the training data are considered legitimate samples.

CuRTAIL Latent Dictionaries. For each application, we
train a complementary neural network (see Section V-B)
with the checkpoint placed at the second-to-last layer. More
specifically, we initialize the weights of the complementary
network using those of the victim model, then retrain the
defender model by adding the extra term to the loss function
with parameter γ set to 0.01 for all applications (see Eq. 10).
For each application, we retrain the model with the same
optimizer used for training the victim model, and we set the
learning rate of the optimizer to 1

10 of that of the victim model.
Once the defender modules are trained, the low dimensional
PCA features and the corresponding Gaussian PDF estimators
are constructed as discussed in Section V-B.

To consider the joint decision metric for each application
and attack model, we evaluate the false positive and true
positive rates for different applications and attack algorithms.
Figure 11 presents the pertinent Receiver Operating Charac-
teristic (ROC) curves for the MNIST application. The ROC
curves are established as follows: first, we consider a latent
defender and change the security parameter (SP) in the range
of [0% − 100%] and evaluate the FP and TP rates for each
security parameter, which gives us the dashed blue ROC
curves. Next, we consider an input defender and modify the
detection policy: a sample is considered to be malicious if
either of the input or latent defenders raise an alarm flag.
The ROC curve for this joint defense policy is shown as
the green curves in Figure 11. The gap between the dashed
blue curve and the green curve indicates the effect of the
input defender on the overall decision policy; as can be
seen, the input defender has more impact for the FGS attack.
This is compatible with our intuition since, compared to the
other three attack methods, the FGS algorithm induces more
perturbation to generate adversarial samples.

We summarize the performance of the CuRTAIL method-
ology against each of the FGS, JSMA, Deepfool, and Car-
lini&WagnerL2 attacks for MNIST, CIFAR10, and ImageNet
in Table IV. The reported numbers in this table are gathered
as follows: we consider a few points on the green ROC curve
(marked on Figure 11), which correspond to certain TP rates
(i.e., 90%, 95%, 98%, and 99%), then report the FP rates for
these points. In all our experiments, the use of only one latent
defender module to checkpoint the second-to-last layer of
the pertinent victim model was enough to prevent adversarial
samples generated by the existing state-of-the-art attacks.

C. Discussion on Transferability of Adversarial Samples

Figure 12 demonstrates an example of the adversarial con-
fusion matrices for victim neural networks with and without
using parallel checkpointing learners. In this example, we set
the security parameter to only 1%. As shown, the adversarial
sample generated for the victim model are not transferred
to the checkpointing modules. In fact, the proposed approach

https://github.com/tensorflow/cleverhans


(a) (b) (c) (d)
Fig. 11: ROC performance curve of CuRTAIL methodology against FGS, JSMA, Deepfool, and Carlini&WagnerL2 attacks.
The diagonal line indicates the trajectory obtained by a random prediction.

TABLE IV: CuRTAIL performance against different attack methodologies for MNIST, CIFAR10, and ImageNet benchmarks.
The reported numbers correspond to the pertinent false positives for achieving particular detection rates in each scenario. The
JSMA attack for the ImageNet benchmark is computationally expensive (e.g., it took more than 20 minutes to generate one
adversarial sample on an NVIDIA TITAN Xp GPU). As such, we could not generate the adversarial samples of this attack
using the JSMA library provided by [39].

Benchmark MNIST CIFAR10 ImageNet
hhhhhhhhhhhAttack

Detection Rate 90% 95% 98% 99% 90% 95% 98% 99% 90% 95% 98% 99%

FGS 1.1% 4.2% 12.4% 2.84% 8.1% 21.1% 62.9% 62.9% 14.2% 26.8% 60.7% 60.7%
JSMA 2.1% 4.2% 8.0% 12.4% 8.1% 14.9% 21.1% 33.0% - - - -
Deepfool 2.8% 5.9% 8.0% 12.4% 12.0% 17.9% 33.0% 40.8% 8.1% 8.1% 14.2% 21.5%
Carlini&WagnerL2 2.8% 4.2% 8.0% 8.0% 12.0% 17.9% 33.1% 40.8% 7.9% 7.9% 14.0% 21.3%

can effectively remove/detect adversarial samples by charac-
terizing the rarely explored sub-spaces and looking into the
statistical density of data points in the pertinent space.

Note that the remaining adversarial samples that are not
detected in this experiment are crafted from legitimate samples
that are inherently hard to classify even by a human observer
due to the closeness of decision boundaries corresponding
to such classes. For instance, in the MNIST application,
such adversarial samples mostly belong to class 5 that is
misclassified to class 3 or class 4 misclassified as 9. Such
misclassifications are indeed the model approximation error
which is well-understood to the statistical nature of the models.
As such, a more precise definition of adversarial samples
is extremely required to distinguish malicious samples form
those that simply lie near the decision boundaries.

VII. RELATED WORK

Securing machine learning models against adversarial sam-
ples is an important step towards building intelligent and
autonomous systems that are reliable and trustworthy [1]. The
existence of adversarial samples and their severe impact on
the integrity of autonomous systems have been shown in the
literature for both shallow [14], [40], [41], [42], [43] and
deep [11], [12], [13], [44] learning models. Depending on the
adversary goals, the adversarial attacks are performed either in
the training process of a model (e.g., [45], [46]) or during the
execution time where an already trained model is leveraged
for data inference (e.g., [12], [40]).

In response to the various adversarial attack methodologies
proposed in the literature (e.g., [12], [13], [27], [28]), several
research attempts have been made to design DL strategies
that are more robust in the face of adversarial examples. The
existing countermeasures can be classified into two categories:
(i) Supervised strategies which aim to improve the general-
ization of the learning models by incorporating the noise-
corrupted version of inputs as training samples ([17], [16])
and/or injecting adversarial examples generated by different
attacks into the DL training phase [18], [19], [12], [11]. The
proposed defense mechanisms in this category are particularly
tailored for specific perturbation patterns and can only partially
evade adversarial samples generated by other attack scenarios
(with different perturbation distributions) from being effective
as shown in [16].
(ii) Unsupervised approaches which aim to smooth out the
underlying gradient space (decision boundaries) by incorporat-
ing a smoothness penalty [47], [28] as a regularization term
in the loss function or compressing the neural network by
removing the nuisance variables [21]. These set of works
have been mainly remained oblivious to the pertinent data
density in the latent space. In particular, these works have
been developed based on an implicit assumption that the
existence of adversarial samples is due to the piece-wise linear
behavior of decision boundaries (obtained by gradient descent)
in the high-dimensional space. As such, their integrity can be
jeopardized by considering different perturbations at the input
space and evaluating the same attack on various perturbed
data points to even pass the smoothed decision boundaries



(a) (b) (c)
Fig. 12: Example adversarial confusion matrix (a) without MRR defense mechanism, and (b) with MRR defense and a
security parameter of (1%). (c) Example adversarial samples for which accurate detection is hard due to the closeness of
decision boundaries for the corresponding classes.

as demonstrated in [22].
To the best of our knowledge, CuRTAIL is the first un-

supervised learning framework developed based upon prob-
abilistic density analysis and dictionary learning to effec-
tively characterize and thwart adversarial samples. As cor-
roborated in Section VI, CuRTAIL is capable of accurate
detection of the state-of-the-art attack models including fast-
sign-gradient [12], Jacobian Saliency Map Attack [13], Deep-
fool [27], and Carlini&WagnerL2 [28]. We emphasize that the
MRR methodology provides a rather generic approach that can
be adapted/modified against potential new attacks that might
be proposed in future.

VIII. CONCLUSION

This paper proposes CuRTAIL, a novel end-to-end frame-
work for characterizing and thwarting adversarial DL space.
We propose a set of novel quantitative measurements to assess
and compare the vulnerability of various DL topologies. CuR-
TAIL introduces the concept of Modular Robust Redundancy
as a viable countermeasure to maximally cover the space
unexplored by the victim DL mode thus reducing the risk of
integrity attacks. The MRR methodology explicitly character-
izes statistical properties of the features within different layers
of the neural network by learning a set of complementary
dictionaries and corresponding probability density functions.
CuRTAIL effectiveness is evaluated against the various attack
models including fast-sign-gradient, Jacobian Saliency Map
Attack, Deepfool, and Carlini&WagnerL2. Proof-of-concept
experiments for analyzing various data collections including
MNIST, CIFAR10, and ImageNet datasets corroborate suc-
cessful detection of adversarial samples with small false-
positive rates. Our proposed framework is devised with an
accompanying automated API to ensure ease of use for de-
ployment of an arbitrarily DL application.
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