DeLight: Adding Energy Dimension To Deep Neural
Networks

Bita Darvish Rouhanit, Azalia Mirhoseini?, Farinaz Koushanfar*
Electrical and Computer Engineering Department
'UC San Diego, ?Rice University
bita@uscd.edu, azalia@rice.edu, farinaz@ucsd.edu

ABSTRACT

Physical viability, in particular energy efficiency, is a key
challenge in realizing the true potential of Deep Neural Net-
works (DNNs). In this paper, we aim to incorporate the
energy dimension as a design parameter in the higher-level
hierarchy of DNN training and execution to optimize for
the energy resources and constraints. We use energy char-
acterization to bound the network size in accordance to the
pertinent physical resources. An automated customization
methodology is proposed to adaptively conform the DNN
configurations to the underlying hardware characteristics
while minimally affecting the inference accuracy. The key
to our approach is a new context and resource aware pro-
jection of data to a lower-dimensional embedding by which
learning the correlation between data samples requires sig-
nificantly smaller number of neurons. We leverage the per-
formance gain achieved as a result of the data projection to
enable the training of different DNN architectures which can
be aggregated together to further boost the inference accu-
racy. Accompanying APIs are provided to facilitate rapid
prototyping of an arbitrary DNN application customized
to the underlying platform. Proof-of-concept evaluations
for deployment of different visual, audio, and smart-sensing
benchmarks demonstrate up to 100-fold energy improvement
compared to the prior-art DL solutions.

CCS Concepts

e Computing methodologies — Neural networks; e
Hardware — Energy metering;

1. INTRODUCTION

Deep neural networks are a set of powerful yet compu-
tationally complex learning mechanisms that have provided
a paradigm shift in the emerging field of machine learning
and data inference [1]. Inspired by neural activities in the
brain, DNNs model data through several successive layers
of complex and non-linear features. While the non-linear
and sophisticated nature of DNNs empowers achieving su-
perb inference capability, it inevitably brings a new set of
challenges concerning the scalability and energy efficiency.

Devising resource efficient DNN methodologies is particu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ISLPED ’16, August 08-10, 2016, San Francisco Airport, CA, USA
© 2016 ACM. ISBN 978-1-4503-4185-1/16/08. .. $15.00
DOL: http://dx.doi.org/10.1145/2934583.2934599

larly of interest from two distinct perspectives. On the one
hand, reducing the overhead of DNNs benefits distributed
training and execution of large DNNs so that more param-
eters could be learned on a single machine. As such, fewer
computing nodes are required to perform a particular learn-
ing task using cloud servers. On the other hand, in many
deep learning applications, training DNN models requires
continuous processing of the evolving data constantly ac-
quired by different sensors available on Internet-of-Thing
(IoT) devices. Customizing DNNs to fit the limits of the un-
derlying hardware enables on-chip processing of sensing data
on constrained embedded platforms such as autonomous ve-
hicles, smart phones, and wearables. This customization, in
turn, evades the requirement to offload personal content to
the clouds, which is especially important in real-world set-
tings where having consistent access to the cloud servers can
be highly expensive or even infeasible.

We propose DeLight, a Lightweight automated Deep
learning framework that enables efficient training and ezx-
ecution of DNNs customized to the underlying energy re-
sources and application data. Our key observation is that
the dimensionality of input data to a deep neural network
has a direct impact on the overall size of the network, which
subsequently dictates resource utilization for training and
execution of the pertinent DNN model. To fulfill this obser-
vation, we introduce a new projection of data to an ensem-
ble of lower-dimensional subspaces that is both aware of the
data context and platform resource constraints. The data
projection yields significant DNN compaction while mini-
mally affecting the inference accuracy.

The proposed projection is an adaptive pre-processing
methodology that incurs linear computational complexity
within a guaranteed approximation error. It highlights the
most informative portions of the data, shrinking the DNN
training and execution workload. Our approach leverages
the degree of freedom in producing several possible projec-
tion subspaces to enable customizing DeLight with respect
to the energy constraints imposed by the platform and/or
application data. We provide a systematic methodology to
perform platform customization as well as projection error
tuning for a target inference accuracy.

DeLight is devised based on a HW/SW co-design ap-
proach. Our proposed performance cost reduction approach
enables training multiple DNN topologies within the con-
fine of the pertinent computational budget and energy re-
sources. The multiple models can be combined together to
further boost the inference accuracy for a target application
and platform. We present practical design experiences of
using DeLight for various smart-sensing and visual under-
standing tasks on the Nvidia Tegra K1 processor. Tegra K1

is a popular embedded processor, widely used in contem-
porary IoT-enabled cars, robots, and smart phones [2]. To
the best of our knowledge, no prior solution for simultane-
ous DNN training and ezxecution on an embedded system
has been reported in the literature. We also design multiple
APIs that can implement DeLight on an arbitrary multi-
core CPU and/or CPU-GPU system for rapid prototyping
of different learning tasks customized to the platform. The
explicit contributions of this paper are as follows:

e Proposing DeLight, the first end-to-end automated
framework that explicitly targets energy efficiency for
training and execution of deep neural networks. De-
Light adaptively reduces the data and circuit footprint
for implementing DNNs, which translate to meaningful
savings in memory, runtime, power, and energy.

e Creating performance models for quantifying the com-

putational costs of DNN’s training and execution. The

quantified cost metrics are used to conform the energy
performance to the underlying platform.

Introducing a context and resource aware data pro-

jection as a pre-processing step to reduce the dimen-

sionality of a DNN input layer. Our methodology
subsequently shrinks the dimensionality of the overall

DNN, resulting in significant performance cost reduc-

tion while delivering the same inference accuracy.

e Devising an automated optimization approach and ac-
companying APIs to ensure ease of adaptation to dif-
ferent set of physical constraints imposed by the plat-
form and/or application data. Evaluations of different
visual, audio, and smart-sensing benchmarks demon-
strate up to two orders-of-magnitude energy improve-
ment compared to the prior-art DNN solutions.

2. RELATED WORK

The existing DNN realizations for resource-limited plat-
forms are mostly cloud-based models that provide, for ex-
ample, speech and object recognition in mobile commercial
services [3]. A number of earlier works have focused on ap-
plying sparsity regularization techniques to reduce the num-
ber of parameters in a DNN model [4] or using approxi-
mate computing for minimizing the energy cost of evaluat-
ing DNNs [5]. Although these approaches yield significant
performance improvement in executing DNNs, they do not
explicitly optimize the energy metric or the impact of plat-
form constraints in training deep neural networks as they
are mainly post-processing techniques that are adopted af-
ter the DNN model has been fully trained. To the best
of our knowledge, DeLight is the first to propose an auto-
mated pre-processing approach to customize both training
and execution of DNNs while optimizing the resulting en-
ergy consumption on the target platform.

The use of auto-encoders or resource aware dimensionality
reduction techniques have been suggested in the literature
for feature extraction or facilitating shallow classification
methods such as nearest neighbor, or support vector ma-
chine [6, 7, 8]. None of the prior works, however, have cus-
tomized data projection as a way to achieve energy efficiency
for training and execution of DNNs in resource-limited set-
tings. DeLight, for the first time, proposes a systematic
approach to optimize the data and DNN circuitry for the un-
derlying energy resources. Our customization leverages the
trade-off between the output solution variations and system
performance to provide an efficient approach for realization

of various sensing and visual understanding tasks within the
limits of the energy resources and computational budget.

3. PRELIMINARIES

Deep learning is an important area of machine learning
that has provided a significant leap in our ability to com-
prehend raw data in a variety of complex learning tasks.
Empirical experimentations have been the driving force be-
hind the success of deep learning mechanisms with theoreti-
cal proofs explaining its behavior yet remaining mainly elu-
sive [1]. Deep Neural Networks (DNNs) and Convolutional
Neural Networks (CNNs) are the two main topologies widely
used in deep learning domain [9]. These two types of neu-
ral networks differ from one another in a sense that a CNN
architecture includes additional convolution layers on top of
fully-connected networks that are the foundation of DNN
topologies. As such, CNNs are better-suited for interpret-
ing data measurements with strong local connectivity (e.g.,
visual data) while DNNs pose a more generic architecture
that is directly applicable to various type of smart-sensing
datasets. In this paper, we focus on DNNs to ensure ease of
adoption for realization of different sensory applications.

Forward Propagation
(Classification)

19hke induy
19Ae7 Indinp

Backward Propagation
(Fine-Tuning)

Figure 1: Schematic depiction of a 4-layer DNN.

Figure 1 demonstrates a 4-layer DNN topology. Training
DNN models includes two main steps that are iteratively
performed for multiple rounds of reprocessing input data
until a certain level of inference accuracy is obtained: for-
ward propagation and backward propagation. In the forward
path, the model’s prediction for the given input data is com-
puted based on the current states of the DNN parameters
per Equation (1):

n(s)
2 = 1WA 67, (1)

Jj=1

where n(*) denotes the number of neurons (units) in the layer

s and zi(s) indicates the state of neuron 4 in the s layer.
Here, we use Wi(js) to specify the weight associated with the
edge connecting unit j in layer s and unit ¢ in the layer s+ 1.
bgs) indicates the additive bias used for computing the state
of unit ¢ in layer s + 1 and f(.) denotes the non-linear ac-
tivation function. In the backward path, a gradient-based
approach is used to fine-tune network parameters in accor-
dance to a specified loss function that is defined to capture
the difference between network inferences (predictions) and
the ground-truth labeled data. As such, for each batch of
training data the network parameters are updated as follows:

)
Wi =w) — n- Zaw(s)’ (2)

Training Phase

JR—
US:::;::‘;"" Hardware Cost "
Constraints Characterization Learning
(] Data
D Projection
Automated
Raw Data A
(Traini jection
‘"IW) Customization

premyoeg

%

uonebedoid

uonebedoid

prowiod gay

Execution Phase

Data Projection

uonebedoid
premioy

Class
Labels

Figure 2: Global flow of DeLight: The raw input data is projected to an ensemble of lower-dimensional embeddings (matrix
C) using a new energy aware methodology that is customized to benefit the subsequent DNN training and execution task.

where b, is the data batch size, (8E<S>/3Wi<j5>) represents the
propagated errors in the layer s, and 1 denotes the learning
rate. Note that backward propagation is a step involved in
the training of a DNN model while the DNN execution only
includes a forward path through data samples.

4. DeLight GLOBAL FLOW

The energy efficiency of DNN training and execution is
explicitly governed by the number of neurons per layer of a
DNN architecture. Traditionally, the input layer size of a
deep neural network is dictated by the feature space size of
the incoming data measurements. DeLight proposes the use
of a new context and resource aware data projection as the
primary step to reduce the dimensionality of the input layer
of DNNs customized to the pertinent resource provisioning
and application data. Our approach subsequently shrinks
the dimensionality of the overall DNN model, resulting in
significant performance cost reduction while delivering the
same inference accuracy.

DeLight’s data projection is a pre-processing step. It
works by projecting the original input data A,,x» to an en-
semble of lower-dimensional embeddings by seeking the best
suited projection basis By, x; and a corresponding coefficient
matrix Cix, such that the required number of neurons per
layer of a DNN topology for delivering a target inference ac-
curacy, is minimized. In other words, DeLight aims to solve
the following objective function:

mzlngrézze (Nnet) s.t. ||A—BC|lr <¢€||Allr (3)
ly —gllr < 6"
where N,e: indicates the size of the underlying DNN topol-
ogy, y is the ground truth data label, and ¢ is the predicated
inference label. Here, || - ||[r denotes the Frobenius norm, €
is an intermediate approximation error that casts the rank
of the input matrix A, and §* implies the user-defined in-
ference error threshold. We use the parameter [to point
out the size of the ambient space spanned by the learned
projection basis B, and parameters m and n to denote the
original feature space size and total number of data sam-
ples, respectively. Note that for a particular data collection,
there are several data representations corresponding to dif-
ferent sizes of the projection subspace (1) that satisfy the
conditions in Equation (3). DeLight leverages the degree of
freedom in producing several possible data embeddings to
customize costly DNN training and execution to the limits
of the energy resources and computational budget. We show
that | < m can be achieved in real-world large datasets.
The overall flow of DeLight for training and execution of
DNN models is illustrated in Figure 2. DeLight’s training
phase includes three major steps: (i) Hardware cost char-

acterization, (ii) Automated projection customization, and
(iii) Training the customized DNN architecture using the
projected data embedding. In the execution phase, DeLight
uses the trained DNN model to classify newly arriving sam-
ples. In Section 5.1, we propose metrics to quantify the
computing cost of DNN training and execution, which di-
rectly impacts the resulting energy consumption. Our au-
tomated customization approach (Section 5.2) uses the per-
formance cost models to tailor the subsequent learning task
in accordance to the underlying energy and computational
constraints while minimally affecting the inference accuracy.
We also provide accompanying APIs to facilitate automation
and adoption of DeLight for rapid prototyping of an arbi-
trary learning task using multi-core CPUs, and/or CPU-
GPU nodes. Our APIs are built to work with Theano, a
highly efficient and popular deep learning library [10].

5. DeLight FRAMEWORK

Algorithm 1 outlines the pseudocode of DeLight frame-
work for training and execution of DNN models.

Algorithm 1 DeLight’s Training & Execution Steps

Inputs: Measurement matrices (Ar,, Arest), Train-
ing labels (yr,), Inference error threshold (6“), Tun-
ing portion (p), Initial DNN network size (NY,,), and

n
Energy constraints (E* = [Energyy,., Energy% 1)
Output:

Projection basis B, DNN parameters
DN Nparam, and Predicted class labels (yrest)-.

B < empty

: [Ary, Yrr] < DataPartitioning(p, Arr, y1r)
HWspee < HW Characterization()

[Nmax T) + EnergyCharacterization(HWspec, N

_net > - net?
[Nnet, 1] < NetCustomization(Ary, §rr, NTLG*)
DNNj2it <« RandomlInitialization(Nnet)

[Crr, B] < DataProjection(Ary,, B,1)
DN Nparam <~ DNN(Crr, yrr, DNNj2E 6, T)

Ev)

AT RWE

9: i+ 0

10: while (true) do)

11: C" < DataProjection(A%.. ., B)

12: .y%*esé — DNme‘um,rd(Clv DNNparam)

13: i4—3+1
end while

The core of our APIs is Algorithm 1. Lines 1-8 represent
the steps involved in training a DNN model using DeLight,
and lines 9-13 outline the required computational operations
in the execution phase. Our APIs take the pertinent energy
constraints (Energyy, and Energyg,.) into consideration
and customizes the framework accordingly to adhere to the
physical limitations imposed by the platform and/or the
learning application. The user-defined algorithmic inputs
of our APIs include: the raw data matrix A, training labels
yrr, inference error threshold ¢“, and the initial DNN topol-

ogy Ny.i. Ny is a vector of integers whose first element
indicates the feature space size of the raw input data (m),
and its last element shows the desired number of inference
classes. Any number in between the first and last elements
denotes an approximation of the number of neurons per hid-
den layer in the chosen DNN topology. The outputs of our
APIs are the learned projection basis B, DNN parameters
DN Nparam, and predicted class labels for test data yrest.

DeLight finds an estimation of the underlying hardware
specifications by running a micro-benchmark that emulates
basic operations involved in the forward and backward prop-
agation. It uses the acquired platform specifications to pro-
vide bounds on the total number of neurons per DNN model
(N72¢®) and the number of training iterations (7") that can
be performed within the confine of the given energy re-
sources (Section 5.1). DeLight leverages the output of en-
ergy characterization as guidelines to customize the data and
DNN circuitry to fit the hardware platform while minimally
affecting the inference accuracy. It uses a small subset of
the input data (e.g., p = 5%) to model the underlying data
dependencies and approximate the solution of Equation (3)
(Section 5.2). Once DNN parameters are trained to meet
the desired level of inference accuracy, the execution pro-
cess only includes a forward path (Equation (1)) for each
projected data sample. Note that for DNN execution, the
input test data is transformed to the new subspace using
the already learned projection basis B. Steps 7-8 can be
repeated to adjust the DNN model over time and accommo-
date for newly added training samples.

5.1 DeLight Energy Characterization

The overall energy consumption for training a DNN model
can be characterized as:

Energy”" ~ T(Energy™” + Energy®"), (4)
where T denotes the total number of training iterations for
each batch of input data, and Energy™® and Energy®?
indicate the energy cost of Forward Propagation (FP) and
Backward Propagation (BP), respectively. Note that this
performance model is reduced to Energy™” for DNN exe-
cution. In the following, we model the energy cost of both
forward and backward propagations in terms of the dedi-

cated number of arithmetic operations and communications.

Computation Cost. The cost of arithmetics is a direct
function of the number of floating-point operations involved
in the training and execution of a DNN model. In the for-
ward path, the state of each neuron is computed according to
Equation (1). For processing a data batch of size bs, DeLight
approximates the energy cost of a forward propagation as
Energytomp = bs(agiop oy nnCt 4 aoee 355, 0,
where S denotes the total number of hidden layers, and n(*
is the number of neurons in the layer s. «yiop indicates
the energy cost of one multiply-add operation, and aqct is
the energy cost of computing the non-linear activation func-
tion f(.) for a scalar on the target platform. Commonly
used activation functions include Logistic Sigmoid, Tangent-
hyperbolic (Tanh), and Rectified Linear Unit (ReLu).

In the backward path, DeLight approximates the en-
ergy cost of processing a data batch of size bs as
bs (2 f10p Zf;ll n®ntt) Lo, Zle n(), where the first
term reflects the cost of multiplications and additions that
should be performed to update the network parameters and
the second term denotes the energy cost of computing the

pertinent propagation error in each neuron. Note that in
a distributed setting, the aforementioned performance mod-
els represent the cost of computations for a local network.
Thereby, the overall Energyﬂ,ﬁlp and Energyﬁ,ﬁlp should be

computed as the sum of all local energy models.

Communication Cost. In a distributed or multi-core set-
ting, the number of required communications in each for-
ward and backward path is dominated by the number of
shared weights between different nodes. Let us denote the
number of shared parameters by Ng’;‘;;ﬁﬁg. The communi-
cation cost of forward and backward propagations can be
modeled as WN;’;{;;@, where 7 characterizes the impact of
the operational memory bandwidth in the target platform.
DeLight finds an estimation of the effective afiop, @act, Cerr,

and v by running a micro-benchmark on the target platform.

As shown, the energy consumption for DNN training and
execution is governed by the overall size of the underlying
DNN model. DeLight uses the proposed cost metrics to
determine a bound on the total number of training itera-
tions (T), as well as the overall size of the possible networks
(N;2¢®) that could be performed within the specified en-
ergy constraints for DNN training (Energyf,) and execu-
tion (Energyp,.). These energy constraints can be either
dictated by the arriving rate of sensor measurements or the
maximum power that an embedded platform can provide.
Our performance model is applicable to DNN training and
execution both on distributed and multi-core platforms. Due
to the space limits, we only include the evaluation results for
an embedded multi-core processor in Section 6.

5.2 DeLight Automated Customization

Given the non-linear ad-hoc nature of DNNs, it is a com-
putationally complex problem to find the explicit solution
of the objective function defined in the Equation (3). Many
complex large datasets that are not inherently sparse or low-
rank can be modeled by an ensemble of lower-rank subspaces
[8]. Let A be a data with an ensemble of lower-rank data
embeddings. As we experimentally verify in Section 6, a
close estimation of the underlying data dependencies can be
achieved by using a small random subset of the data. We
leverage this data property to find the best-suited projection
basis B and the corresponding data embedding C' optimized
for the pertinent DNN configuration imposed by the plat-
form resources. In particular, DeLight approximates the
solution of Equation (3) by using a small subset of the raw
input data to interpret the convergence rate corresponding
to different data embeddings (e.g., different projection sub-
space sizes [) and customize the framework for the underly-
ing energy resources while minimally affecting the accuracy.

.
IBB"B)” B” Anew —Anewl2 -
— o <th n

Anew 12 =P =

IBBTB) " B Anew—Ancw 2
— = 7 > th
- [B | e

Figure 4: Adjusting projection subspace for dynamic data.

Dynamic Data. In many applications, the dataset A may
dynamically grow over time. DeLight adjusts its data pro-
jection to accommodate for the new structural trends that
might be added by the newly arriving data samples. As
shown in Figure 4, DeLight first computes the approxima-
tion error achieved by projecting the newly added samples

Hyperspectral Imaging

Smart-Sensing

Speech Recognition

" mﬁ
D

60

IC, 1= 0.05xIC,

40 40

20

Validation Accuracy %

Validation Accuracy %

IC,,, 1= 0.05xIC |

IC, = 015xIC, I
0.3

0

Validation Accuracy %

0
0 50 100 150 200 0 100 200
Size of Projection Subspace (1)

Figure 3:

into the subspace spanned by the current projection basis B.
If the approximation error is less than a threshold (th,), it
implies that the existing subspace ensemble is good enough
to present that batch of data samples. Otherwise, DeLight
expands the projection basis to include the new data struc-
tures suggested by the recently added data measurements.
To do so, it adds the normalized value of the new samples to
the projection matrix B and updates the coefficient matrix
C to fit the new projection subspace while avoiding the cost
of re-applying the projection for the entire dataset. We use
thy, = 0.1 in our evaluations presented in Section 6.

Model Aggregation. To further boost the inference accu-
racy, DeLight uses the achieved performance gain to train
multiple DNN models each customized for a specific lower-
dimensional embedding of the data. Let N. denote the num-
ber of DNNs trained for a particular task. N, should be
determined such that the sum of iterations to train these
networks ZkNgl T} as well as the associated number of pa-

N, S—1_(s), (s+1)
rameters » ., %, > - g ny
resource constraints.

6. EVALUATIONS

Hardware Setup. In our evaluations, Nvidia Tegra K1
development kit is used as the hardware platform [2]. The
Nvidia TK1 is an embedded processor designed for realiz-
ing different computer vision, robotics, security, automotive,
and mobile sensing applications. It includes 192 CUDA cores
and a 4-Plus-1 quad-core ARM Cortex A15 CPU with a 2
GB memory. We leverage all the available CPU cores on the
specified platform to perform data projection using standard
Message Passing Interface (MPI), while the DNN training
and execution have been conducted using the CUDA cores.
We adopt stochastic gradient descent with momentum [11]
for back propagation and Tanh as the activation function
for hidden layers. N. = 1 is used in our evaluations.

meet the hardware physical

Application Data. We based our evaluations to perceive
knowledge from three classes of data.

(i) Imaging [12]: Hyperspectral imaging is a promising
tool for classifying man-made and naturally occurring ma-
terials on the earth’s surface using reflectance spectra. Given
the large size of hyperspectral data, it is highly desirable to
locally classify these images using system-on-chips of satel-
lites rather than transferring large amounts of data to the
earth’s stations. We target hyperspectral imaging classifica-
tion as one of our practical design experiences.

(ii) Smart-Sensing [13]: Analysis of smart-sensing data
collected by many sensors embedded in IoT platforms, such
as accelerometers and gyroscopes, is a common step in the
realization of various learning tasks. We base one of our
applications to evaluate DeLight’s performance in analyzing
such data to classify daily and sport activities.

(iii) Speech Recognition [14]: Processing audio data is
another indispensable mechanism involved in devising dif-

300

Size of Projection Subspace (1)

0 w
400 500 0 100 200 300 400 500 600
Size of Projection Subspace (1)

An effective estimation of the underlying data structure can be obtained using only a small subset of the data.

ferent voice activated learning tasks that appear in mobile
sensing, robotics, and computer vision applications. As our
third application, we corroborate DeLight’s practicability to
analyze audio datasets. Our data consists of approximately
1.25 hours of speech collected by 150 speakers.

6.1 DeLight Physical Performance

Pre-processing Overhead. The size of the ambient space
spanned by the projection matrix B is one of the key tunable
parameters that characterizes DeLight’s energy performance
and accuracy. Figure 3 illustrates the validation accuracy
as a function of the projection subspace size [for different
subsets of each dataset. As shown, there is an optimal [that
maximizes the inference accuracy for a given input data and
platform. DeLight customizes the projection subspace size
[for the underlying physical constraints by using only a
small subset of the data as explained in Section 5.2. Note
that a higher inference accuracy is obtained when more data
samples are used for training. This in turn enables making
the acquired model more accurate as training data evolves
over time. We use |Csyup| to denote the number of samples
in each subset of the data and |Crotqi| to indicate the total
number of training samples.

Table 1: DeLight’s pre-processing energy and time overhead.

Lo Imaging Smart-Sensin, Speech Recognition
Application | o, xgszjw) (5625 x 9120? " (617 x 77%7)
(m x n) Time | Energy | Time | Energy | Time Energy
Tuning 34.7s | 138 J | 914 s 8226 J | 31.1s | 18.6 J
Projection | 6.1s | 25 J 11.9s [952J |47s |25 J
Overal 40.8 s | 16.3 J | 103.3 s | 91.78 J | 35.8 s | 21.1 J

Table 1 shows DeLight’s total pre-processing time and en-
ergy overhead, which accounts for both tuning the algorith-
mic parameters and projection of data. The tuning is per-
formed using a small random subset of each dataset. Once
the optimal parameter [is found in each application, the
remaining data including training and testing samples are
projected using the customized projection basis. As such,
the data projection incurs a linear overhead with respect to
the number of data samples n. The selected value [for the
imaging, smart-sensing, and audio data is 70, 100, and 78,
respectively (Figure 3). The dimensionality m reported in
Table 1 denotes the original feature space size in each appli-
cation. Note that hardware characterization is a one-time
process with a fixed, negligible overhead.

Performance Improvement. Table 2 details the perfor-
mance improvement achieved by DeLight compared to the
state-of-the-art tmplementation currently used for solving
deep learning problems in which Dropout technique is used
to avoid over-fitting [15] and the raw data is used for DNN
training with no pre-processing.

To process the hyperspectral data within 10% inference
error, it takes 42.1 minutes and 2394 Joules to train a DNN
of size (200 x 230 x 230 x 9) using the state-of-the-art Theano
implementation. DeLight reduces this time and energy over-

Table 2: Performance improvement achieved by DeLight
over the state-of-the-art deep learning approach.

Applicati Training | Training | Execution | Memory
pplication Runtime | Energy Runtime | Footprint
Imaging 3.6x 5.7x 2.6x 2.8%
Smart-Sensing 20.9x 99.6x 108.3x 40.3x
Speech Recognition | 2.8x 4.3 6.2% 7.3%

head to less than 11.6 minutes and 417 Joules on the same
platform by reducing the DNN size to (70 x 160 x 160 x 9)
while delivering the same level of accuracy. In the same con-
text, 2.8 times reduction in the pertinent memory footprint
is achieved. We note that the inference accuracy achieved by
DeLight is comparable to that of a CNN-based implementa-
tion; e.g., authors in [16] report achieving 9.8% inference er-
ror in classifying the hyperspectral data using a CNN-based
model. However, DeLight’s data and platform aware ap-
proach allows us to train and use a DNN model with 13.4
times less parameters to deliver the same inference accuracy.

To train a DNN of size (5625 x 2000 x 500 x 19) for clas-
sifying daily and sport activities within 5% inference error,
it takes 138 minutes and 33948 Joules using the prior-art
solution. However, our pre-processing approach makes it
feasible to deliver the same level of accuracy with less than
7 minutes and 341 Joules on the same platform by scal-
ing down the required number of neurons per DNN layer
(100 x 500 x 100 x 19). This model compaction enables
DeLight to gain two orders-of-magnitude (99.6) savings in
energy consumption and 40.3 times reduction in the mem-
ory footprint. As mathematically discussed in Section 5, our
customization results in more improvement when applied to
datasets with a larger number of input features m.

In processing the audio data within 5% inference error,
DeLight gains 2.8 and 4.3 times savings in the training run-
time and energy consumption. In the same context, DeLight
also achieves 7.3 times reduction in the required memory
footprint. The selected topology for this dataset is a 3-layer
DNN with 50 neurons per hidden layer and 26 units in the
output layer. For this application, [= 78 is used for data
projection, while the raw samples each have 617 features.

Discussion. One may speculate that classic data projec-
tion methods such as Principal Component Analysis (PCA)
or Singular Value Decomposition (SVD) can replace our pre-
processing step and result in comparable performance. How-
ever, in our evaluations, we observed poor performance when
PCA is used as the primary dimensionality reduction tech-
nique before training the DNN. For instance, a test error of
72.6% is obtained with a DNN of size (100 x 500 x 100 x 19)
when the smart-sensing data is transformed using PCA
(DeLight achieves 5% inference error with the same DNN
configuration). Besides the poor performance in terms of
accuracy, there are three main limitations with PCA or
SVD: (i) The computational complexity of such methods
is quadratic, which makes them costly choices for project-
ing large datasets. (ii) These data projection techniques
are not well-suited for evolving data where it dynamically
grows over time. (iii) Unlike our data projection, such meth-
ods are oblivious to the coarse-grained parallelism existing
in the data. Thereby, they are not flexible to be customized
for different energy constraints imposed by the platform.

7. CONCLUSION

We present DeLight, an automated end-to-end framework
that is devised to perform DNN training and execution cus-
tomized to limited energy and computational resources. It

adaptively leverages data geometry and platform customiza-
tion to improve energy efficiency using our proposed data
projection as a pre-processing step. The accompanying APIs
provided by DeLight enables data scientists to easily adopt
our framework for rapid prototyping of an arbitrary learn-
ing application on multi-core CPU, and/or CPU-GPU plat-
forms. We demonstrate three contemporary practical design
experiences on a state-of-the-art IoT platform. Our experi-
ments demonstrate up to 100-fold energy improvement com-
pared to the best known prior solutions.

Acknowledgments. This work was supported in parts by
the Office of Naval Research grant (N00014-11-1-0885).

8. REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, 2015.
https://developer.nvidia.com/jetson-tk1, “Jetson tk1,”
2015.

[3] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide,

M. Seltzer et al., “Recent advances in deep learning for
speech research at microsoft,” in IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2013.

[4] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky,
“Sparse convolutional neural networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

(5] J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware
digital feedforward neural network platform with
backpropagation driven approximate synapses,” in
IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED). IEEE, 2015.

(6] A. Mirhoseini, B. Rouhani, E. Songhori, and F. Koushanfar,
“Performml: Performance optimized machine learning by
platform and content aware customization.” Design
Automation Conference (DAC), 2016.

[7] B. D. Rouhani, E. M. Songhori, A. Mirhoseini, and
F. Koushanfar, “Ssketch: An automated framework for
streaming sketch-based analysis of big data on fpga,” in
Field- Programmable Custom Computing Machines
(FCCM), 2015 IEEE 23rd Annual International
Symposium on. IEEE, 2015, pp. 187-194.

[8] A. Mirhoseini, E. Dyer, E. Songhori, R. Baraniuk, and
F. Koushanfar, “Rankmap: A platform-aware framework
for distributed learning from dense datasets,”
Preprint:1503.08169, 2015.

[9] L. Deng and D. Yu, “Deep learning: methods and
applications,” Foundations and Trends in Signal
Processing, vol. 7, no. 3—4, 2014.

[10] J. Bergstra, O. Breuleux, G. Bastien, J. Turian,

D. Warde-Farley, and Y. Bengio, “Theano: a cpu and gpu
math expression compiler,” in Proceedings of the Python for
scientific computing conference (SciPy), 2010.

[11] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the
importance of initialization and momentum in deep
learning,” in Proceedings of the 30th international
conference on machine learning (ICML-13), 2013.

[12] http://www.ehu.es/ccwintco/index.php/Hyperspectral
Remote_Sensing_Scenes, “Remote sensing,” 2015.

[13] https://archive.ics.uci.edu/ml/datasets/Daily+and+
Sports+Activities, “UCI machine learning repository,” 2015.

[14] https://archive.ics.uci.edu/ml/datasets/isolet, “Uci
machine learning repository,” 2015.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent
neural networks from overfitting,” The Journal of Machine
Learning Research, vol. 15, no. 1, 2014.

[16] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep
convolutional neural networks for hyperspectral image
classification,” Journal of Sensors, vol. 501, 2015.

2

