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ABSTRACT
Accurate characterization of spatial variation is essential for statis-
tical performance analysis and modeling, post-silicon tuning, and
yield analysis. Existing approaches for spatial modeling either as-
sume that: (i) non-stationarities exist due to a smoothly varying
trend component or that (ii) the process is stationary within regions
associated with a predefined grid. While such assumptions may
hold when profiling certain classes of variations, many studies now
suggest that spatial variability is likely to be highly non-stationary.
In order to provide spatial models for non-stationary process varia-
tions, we introduce a new hybrid spatial modeling framework that
models the spatially varying random field as a union of non-overlap-
ping rectangular regions where the process is assumed to be locally-
stationary. To estimate the parameters in our hybrid spatial model,
we introduce a host of techniques for efficient detection of regions
over which the process variations are locally-stationary. We ver-
ify our models and results on measurements collected from 65nm
FPGAs.
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1. INTRODUCTION
Over the past few decades, scaling of CMOS to nanometer fea-

ture sizes has been the main driving force behind improvements
in the performance and functionality of integrated circuits. De-
spite the obvious advantages of miniaturization of ICs, nanoscale
devices exhibit a considerable amount of process variations, caus-
ing the device features and performance metrics including power
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and timing to deviate from their nominal values. Accurate model-
ing of variations is important for several reasons, including design-
time analysis, manufacturing yield maximization, and also for post-
silicon optimization. The latter is especially important for reconfig-
urable devices where variation-aware post-silicon tuning methods
have shown to be effective [21].

Recent years have witnessed an explosion of statistical models
for CMOS process/performance variations [1, 3, 4, 5, 8, 10, 13, 14,
15, 19, 23]. Whereas early methods characterized process fluctu-
ations as sum of inter-die (global) and independent intra-die (ran-
dom) variations [4], later models extended this work by assuming
the intra-die variation to be spatially correlated [1, 5]. Studies of
spatially correlated process variations on a single die can be placed
into one of two categories. In grid-based approaches [1, 5, 6], one
assumes that the process variations are stationary within regions
defined by a pre-specified grid, e.g., uniform, non-uniform, or a
quadtree decomposition. The other class of methods assume that
the process variations can be modeled as a stationary zero mean
random field with an additive baseline component that accounts for
systematic shifts in the mean of the process. In this case, non-
stationarities are assumed to arise solely from smooth variations in
the baseline component across the extent of the die.

While such assumptions may hold when profiling certain classes
of variations, many studies now suggest that spatial variability across
the extent of the wafer and within a single die are likely to be highly
non-stationary [7]. Furthermore, transitive shifts in the mean of the
process variations have been observed in contact plug resistance
[2] and in timing variability on FPGAs [16], invalidating the as-
sumption that non-stationarities arise from a smooth baseline com-
ponent.

In order to provide a compact spatial model for non-stationary
process variations, we introduce a new modeling framework that
aims to bridge the gap between previous work where either a con-
tinuous model or a discrete grid-based model is employed. Our
proposed hybrid spatial model provides a succinct representation
of the spatially varying random field by modeling it as a union of
non-overlapping regions wherein the process can be assumed to be
locally-stationary.

To detect the intervals (time-series data) or the regions (2D ran-
dom fields) over which the process is locally-stationary, change-
point detection is typically employed. However, these methods re-
quire an estimate of the distributions that the process is assume to
switch between. Furthermore, these methods assume that the num-
ber of change points is known a priori.

In this paper, we develop a set of techniques for efficient change-
point detection when the number of change points and the under-
lying distributions of the process is unknown. In contrast to gen-
eral change-point detection problems, in the case of modeling pro-



cess variations, there are many settings where layout and mask-
dependent variations will naturally produce a partitioning of the
space into disjoint regions. For instance, when the spacing between
logic blocks exceeds a threshold, a step-wise transition occurs in
the mean of the variations across this boundary and the resulting
processes in each region can be treated as independent. In this case,
the points where transitive shifts in the mean of the process occur
can be used to specify regions where the process may be assumed
to be locally-stationary.

We introduce a robust technique for extracting sharp transitions
in the mean of the process by solving a total variation (TV) mini-
mization problem that finds the minimum number of transitions that
can explain the variations within some appropriate range of fidelity.
Following this, we introduce a clustering method for partitioning
the chip into a number of non-overlapping regions by exploiting
the structure of the signal extracted by the TV minimization proce-
dure. Finally, we present methods for obtaining quantitative mea-
sure of stationarity within a random field in order to test the degree
to which the process is stationary over a particular region. To the
best of our knowledge, our work is the first to propose a procedure
for efficient change-point detection in order to find an anisotropic
grid over which the process can be assumed to be stationary.

To demonstrate the power of our proposed modeling framework,
we study process variations resulting from timing variability in
65nm FPGA technology. We find that detecting transitions in the
process mean is sufficient to provide an sufficient statistic needed
to detect the change-points in our random field.

Our explicit contributions are as follows: (i) the introduction of
a hybrid modeling framework that weds previous continuous and
grid-based approaches, (ii) the development of a variational method
for detecting sharp transitions in the process mean, (iii) methods for
partitioning the chip into non-overlapping regions, (iv) the develop-
ment of a quantitative measure of stationarity in a random field.

2. BACKGROUND
Process variations arise from imperfections that lead to both ran-

dom and spatially uncorrelated variations on wafer as well as sys-
tematic and correlated variations. The uncorrelated random vari-
ations are typically caused by the fundamental intrinsic atomic-
scale randomness of the devices and materials. Systematic cor-
related components comprise the identifiable portion of the vari-
ations that arise from unintentional shifts in processing conditions
such as mask errors, lithographic off-axis focusing, and reticle step-
per alignment errors. Line edge roughness, variations in channel
length and width, variations in gate oxide thickness, energy level
quantization belong to this category [17].

There has been a large body of research on modeling process
variations. Existing spatial models for process variations can be
categorized as either continuous or discrete models. In discrete or
grid-based models, the die area is divided into square regions over
which the variation is assumed to be constant. Principal compo-
nent analysis [5], Quad-tree [1], and grid based methods [6] are
among the discrete modeling approaches. The work in [6] intro-
duces a grid-based approach where each grid contains a few devices
(gates). The parameter variation of devices within the same grids
are completely correlated, while those in adjacent grids are highly
correlated and those in non-neighboring grids are uncorrelated.

In contrast, continuous models treat the entire die as a contin-
uous random field.These models assume that all non-stationarities
in the random field are due to a drift or baseline component that
smoothly varies across the extent of the die. This suggests that
once the mean or the baseline component is removed, the resulting
process is stationary. In [14], the author models the systematic vari-

ations as the sum of a first order plane and a spatially correlated 2D
gaussian process, and a truly random component. The first order
plane accounts for the long range trend component of systematic
variation. Any additional trends in the data are later removed with
a median polishing algorithm. A Generalized Least Square fitting
framework is then used to fit all of the parameters in the model. In a
similar attempt in [20], the correlated within-die variation is repre-
sented by a two dimensional quadratic polynomial surface, and the
model is applied to the timing data collected from an array of ring
oscillators on FPGA. The authors in [11] introduce a method for
extracting spatial correlation by investigating which spatial corre-
lation functions result in a positive semidefinite correlation matrix.
They assume the systematic variation can be predicted with the full
knowledge of process steps and instead focus on modeling the ran-
dom correlated portion of the variation.

In a recent study on measured data from 45nm wafers, the au-
thors demonstrate that different locations on the chip may have very
different means and variance, and such variations are more appar-
ent with increasing the chip size [7]. Furthermore, they demon-
strate that the correlated variation is mainly due to across-wafer
variation and across-field variations on the scale of a single die. To
further support claims that process variations exhibit non-stationary
behavior, it has been observed that components that lie within the
center of the chip exhibit lower variance than components at chip
boundaries due to variability in process control.

3. HYBRID MODELS FOR
NON-STATIONARY RANDOM FIELDS

In this section, we introduce a novel framework for modeling
non-stationary random fields. Let us begin by modeling a contin-
uous random field Z ∈ R2 as consisting of two additive compo-
nents, Z = A + N, where A is an additive component containing
systematic variations in the mean of the process andN is a spatially
correlated zero-mean random field that could exhibit non-stationary
behavior. From this point forward, we will refer to A as the base-
line, trend, or drift component.

Whereas previous approaches have assumed that after estimation
and removal of the baseline component A, the resulting random
field is stationary, we assume that the non-stationary behavior of
process variations can be attributed to both: (i) systematic shifts in
the mean of the process and/or (ii) non-stationarities in the spatially
correlated random field. To provide a compact model to account for
both of these sources of non-stationarity, we model the continuous
random field as a union of non-overlapping regions where the pro-
cess is locally-stationary within each of the regions. In contrast to
grid-based approaches that assume the process is stationary within
a square (isotropic) region in the grid, here, we will assume that
the chip can be divided into a number of anisotropic regions (with
edges at either 0◦ or 90◦). We will refer to this type of model as a
hybrid spatial model.

In order to model the continuous random field Z, we first collect
a set of samples from the field at discrete points in space. For a
particular point in space with coordinates (xi, yi), we obtain a sin-
gle measurement zi = Z(xi, yi) ∈ R. If we sample the field on
a grid of n1 × n2 points in space, this collection of measurements
can either be written as a matrix Z ∈ Rn1×n2 or we can reorder
the entries and stack them into a vector, which we will denote as
z ∈ Rn, where n = n1n2. We will use this vector and matrix
notation interchangeably.

To estimate the parameters that specify our hybrid model, we
must first estimate (i) the minimum number of regions required to
provide an accurate characterization of the field, (ii) the bound-



aries for all k regions in our model {Ri}ki=1, and (iii) the mean
and autocorrelation of the random field within each of the spec-
ified regions. Upon estimating these parameters our final hybrid
spatial model can be expressed as, H(Z) = {Yi,Ri}ki=1, where
each local process is defined according to its mean and autocor-
relation, Yi = (µi,Σi), and µi and Σi are the mean and auto-
correlation for the local process Yi defined over the region Ri.
Due to our assumption that all of the regions are non-overlapping,
Ri ∩Rj = {∅}, ∀i 6= j.

4. VARIATIONAL METHODS FOR DRIFT
ESTIMATION

In the previous section, we introduced our hybrid model for non-
stationary process variations. The first step in specifying this model
is to detect sharp transitions in the process mean that could be due
to layout-dependent effects as well as variability introduced by the
mask structure. In this section, we will introduce a method for
estimating these change points in the mean by assuming that the
baseline of our variations exhibit 2D piecewise constant structure.

To extract the 2D baseline component from a set of measure-
ments Z, we propose the use of regularized TV norm minimiza-
tion. This method has been used in a number of settings where
piecewise smooth signal components must be separated from noise
[18] and also in geometric separation tasks where natural image
content must be extracted from images consisting of a combina-
tion of image content and periodic texture [12]. More recently, TV
minimization has been applied to the recovery of images from com-
pressive measurements [22]. In all of these settings, knowledge that
the signal of interest has a sparse gradient field can be leveraged to
recover an approximation to the signal from incomplete or noisy
measurements.

To motivate the use of total variation for drift estimation, we
point the reader to Figure 1 where we show a piecewise constant
signal in black and the same signal with additive noise in red. Above
this plot, we also show the result of a differencing operation over
each of these signals, where the difference signal g(y) can be writ-
ten as:

g(y) = y(i+ 1)− y(i), ∀i = {1, . . . , n− 1}, (1)

for a vector y ∈ Rn. We see that the non-zero elements of the dif-
ference signal g(y) are sparse, with non-zeros only occurring at the
step-like transition points. Thus, we say that the original piecewise
constant signal x exhibits a 2-sparse difference vector g(x), where
the non-zero entries correspond to the locations where transitions
occur. When no noise is present, finding the change points from
the difference signal is easy. However, when noise is introduced
into the piecewise constant signal, the resulting difference vector
is no longer 2-sparse but has two large non-zero components and a
number of smaller non-zero components.

In order to find an approximation to a noisy signal y that also
exhibits a sparse difference vector (small total variation), we aim
to tradeoff the error in our final representation with the sparsity of
the difference vector for our estimate. Finding the sparsest approx-
imation of our signal (as measured by the `0-norm or number of
non-zero coefficients in the signal) in NP hard, however, we may
replace the `0 penalty with an `1 norm, resulting in a convex prob-
lem that has a unique and global minimizer.

By adding a sparsifying penalty to our objective function, we aim
to minimize a combination of the `2 error and the total variation of
the signal,

x̂ = arg min
x
‖y − x‖22 + λ‖g(x)‖1, (2)
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Figure 1: 1D piecewise-constant signal (black) with additive
Gaussian noise (red). The approximations obtained by TV-
minimization for different choices of regularization parameter
λ, where λ = 0.1, 0.5 for the green and blue curves respec-
tively. On the top of the figure, we show the resulting gradient
obtained from each the signals in the bottom figure, where it
is easy to see that for piecewise constant signals, the gradient
vector is extremely sparse.

Here, a standard least-squares term is added to a scaled `1 penalty
on the absolute differences between successive coefficients, where
λ is known as the regularization parameter.

More explicitly, the `2 term measures the total error incurred by
approximating the signal y ∈ Rn by x and the term ‖g(x)‖1 en-
courages solutions that exhibit sparse absolute differences, where
‖g(x)‖1 =

∑n−1
i=1 |x(i+ 1)−x(i)| is referred to as the total vari-

ation (TV) norm of x because it provides a measure of the total
variation within a particular signal. One great advantage of the op-
timization above is that it has a convex form for a particular value
of the regularization parameter λ, where λ can be chosen by cross-
validation or by employing any number of information criterion for
model selection. We note that in many cases, choosing this param-
eter can be challenging; however, in practice, the sparse gradient
fields recovered by this algorithm tend to be quite robust across
different choices of λ.

Upon solving problem 2 for the noisy signal in Figure 1 for dif-
ferent values of λ, we obtain approximations to the noisy signal that
have small TV norm. These approximations are shown in blue and
green for higher and lower regularization parameters respectively.
We find that for sufficiently large λ we obtain an approximation
of the underlying piecewise constant signal that corresponds very
closely to the original signal.

Now that we have motivated the use of TV minimization for re-
covering piecewise-constant signals, we now extend the TV min-
imization problem defined for 1D signals to the two-dimensional
setting. In this case, we can define the anisotropic TV norm of an
arbitrary matrix X ∈ Rn1×n2 as:

TV (X) =

n2−1∑
j=1

n1−1∑
i=1

|Xi,j −Xi+1,j |+ |Xi,j −Xi,j+1|, (3)

where Xij is the (i, j)th entry of the matrix X.
In words, the anisotropic total variation of a 2D function mea-

sures the amount of absolute variation between the intensity at sin-
gle point in space and points directly below and to the right. By
treating the variation in each direction independently, we obtain a
measure of the anisotropic total variation of the images. We note
that due to the rectangular packing of chips, the anisotropic total



variation produces a more accurate estimate of the baseline signal,
however, there is an equivalent definition for the isotropic TV in 2D
that can be used to recover smoothly varying trend components.

To find an approximation to a piecewise constant 2D signal A
from a collection of observations Z = N + A, we can regularize
the growth of the TV norm—to encourage the selection of signals
with sparse gradient fields—while trading off the total `2 error in
the approximation by varying λ. To do this, the following convex
optimization problem can be solved for a particular value of the
regularization parameter λ:

â = arg min
a
‖z− a‖22 + λ TV (A), (4)

where the `2 term measures the total point-wise error incurred by
approximating the measured signal z ∈ Rn by â and the TV term
regularizes (penalizes) growth in the anisotropic TV of the esti-
mated 2D baseline component Â. We note that λ provides an addi-
tional degree of freedom in the solution of this convex problem. As
λ increases, the resulting approximation has lower total variation
and hence a sparser gradient field.

5. METHODS FOR GRID DETECTION
In the previous section, we demonstrated that TV minimization

can be used to obtain robust estimates of the change-points in the
process mean. The next step is to use the baseline signature ex-
tracted by our TV procedure to provide a partitioning of the chip
into non-overlapping regions. To do this, we employ a standard
clustering procedure called k-means. Following this, we introduce
a method for obtaining a quantitative measure of stationarity within
each region obtained from the clustering procedure.

To determine a partitioning of the chip, we cluster the TV signa-
ture for different values of k, where k corresponds to the number
of regions the chip is divided into. An upper limit to the num-
ber of regions can be set by simply rejecting a clustering when the
number of pixels per region is very small because in this case, the
autocorrelation function can not be computed accurately. For a rea-
sonable range of number of regions, for k = 1, . . . , kmax we can
determine how good the partitioning is by measuring the station-
arity within each region. In Figure 2, we show raw data collected
from a FPGA, its TV signature, and the clusterings obtained for
k = {2, 3, 4, 5}. After obtaining these possible partitions for dif-
ferent values of k, we select the partition that produces the highest
measure of stationarity across all blocks. Now, we will describe a
method for computing the stationarity of the field a particular re-
gion.

Although tests for stationarity are very common in 1D time-
series data, deriving an optimal test for the stationarity of a random
field is more challenging. We propose an approach that leverages
the fact that for a stationary process, the autocorrelation function
should remain constant over shifts in the origin.

To compute the 2D spatial autocorrelation function, first the 2D
power spectral density (PSD) must be computed. If we assume
that the field is stationary over the entire region, then to obtain an
unbiased estimate of the PSD we employ the Welch-Bartlett pro-
cedure. The procedure is as follows: (1) the region of interest is
either divided into overlapping blocks of equal size, (2) the PSD
is computed for each window, and then (3) the local estimates are
averaged according to the number of sub-blocks that are selected.
After averaging the PSD estimates, the inverse FFT is taken to pro-
duce the final autocorrelation estimate.

Here, we wish to use the intuition behind this procedure to ob-
tain a quantitative measure of stationarity. In particular, for non-
stationary random fields, local PSD estimates obtained in each sub-

(a) (b) (c)

(d) (e) (f) (g)

Figure 2: Optimal Grid Detection: (a) Raw FPGA data with
optimal grid overlaid in black, (b) TV signature for λ = 0.1, (c)
Absolute differences in x and y (showing transitions in TV sig-
nature), and in (d), (e), (f), (g) we show the partitions obtained
with k-means clustering for k = {2, 3, 4, 5}.

block will vary as we sweep across the region of interest. Thus, we
can study the diversity of autocorrelation estimates obtained at dif-
ferent sub-blocks to understand the degree of stationarity within
the region. To do this, we compute local PSD estimates by sweep-
ing a window over the region of interest as in the Welch-Bartlett
procedure. However, instead of averaging each of these estimates
and then taking the inverse FFT, we take the inverse FFT over each
sub-block and measure the similarity between the measured auto-
correlation matrices obtained within each block in the region.

To make this precise, for each region, we sweep am×m rectan-
gular window across the region and collect p autocorrelation ma-
trices each of dimension (2m − 1) × (2m − 1). We can then
reorder the resulting autocorrelation matrices and stack their en-
tries into vectors, ci ∈ RN , whereN = (2m−1)(2m−1), for all
i = {1, . . . , p}. To measure the similarity between the autocorrela-
tion vectors computed for all sub-blocks within the region, we take
normalized inner-products and stack them into a similarity matrix
G, where the (i, j)th entry of the similarity matrix is given by:

Gij =
|cTi cj |

‖ci‖2‖cj‖2
. (5)

Finally, a quantitative measure of the stationarity for a region R
with similarity matrix G ∈ Rp×p, is defined as:

s(R) = min
i

1

p

( p∑
j=1

Gij

)
. (6)

In other words, a measure of the stationarity of the field is defined
with respect to the sub-block that has minimal correlation with all
other p− 1 sub-blocks in the region.

6. EXPERIMENTAL RESULTS
For our evaluations, we measured the timing variability of twelve

different FPGA Virtex 5 devices. To extract the delay measure-
ments, we use the delay characterization system presented in [16].
In our implementation, we place a 32×32 array of at-speed delay
test circuits on 12 Virtex 5 FPGA chips. Each test circuit is inserted
inside two slices with a single CLB. The test circuit measures the
effective delay of circuit under test which consists of 4 cascaded
inverters. To measure the delay of the circuit under test, the clock
frequency is continuously increased until the test circuit captures
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Figure 3: Diversity of local autocorrelation structures for dif-
ferent sub-blocks within an array of CLBs on Virtex 5 FPGA.
On the left, we show the autocorrelation computed for each cir-
cled sub-block. On the right, we demonstrate that within re-
gions defined by our grid detection algorithm, the autocorrela-
tion functions are very similar within a block.

timing failure at a rate of 50%. We use an ordinary desktop func-
tion generator to sweep the clock frequency from 10− 15MHz and
shift the base frequency 34 times using the PLL inside the FPGA.
The measured effective delays have a accuracy of±3 pico seconds.

After scanning across the entire array of CLBs, we obtain a
32 × 32 array of delay measurements, which we denote as Z ∈
Rn1×n2 , where Zi,j corresponds to the mean delay of the circuit
inside the (i, j)th CLB. This array of non-zero real numbers can
also be written as a vector, z ∈ R1024, by simply reordering the
rows or columns of the matrix. In Figure 5, we show delay mea-
surements obtained for six different Virtex 5 FPGAs.

After collecting the raw timing measurements, to solve prob-
lem (2) we used CVX, a package for specifying and solving con-
vex programs [9] for λ = {0.02, 0.03, . . . , 0.1}. We selected the
TV signature that had the smallest TV norm but still contained
enough structural information about regions on the chip, in this case
λ = 0.1. Finally, we performed k-means clustering on the TV sig-
nature for k = {2, 3, 4, 5}. The results of this clustering procedure
is shown in Figure 2. We note that a number of different regular-
ization parameters yield very similar TV signatures and hence will
produce very similar partitions. A more systematic selection of the
regularization parameter should be studied further.

If we look at the physical layout of the chip, a number of the
transitions that we detect with our algorithm actually correspond to
locations where CLBs are spaced farther apart on the chip. This
suggests that when the distance between logic blocks exceeds a
certain threshold, this results in a sharp transition in the mean and
variance of process variations as you traverse the boundary. This
observation is in stark contrast to previous assumptions that the cor-
relation between any two points in the random field is only depen-
dent upon their distance. In addition to layout-dependent effects,
we also observe transitions at points in the array that cannot be pre-
dicted by the layout. For the example in Figure 2, when the number
of regions is set to 2, the resulting boundary exactly corresponds to
a point where the spacing between CLBs is higher. When we con-
sider 3 regions, we obtain a boundary that is not layout-dependent.
Finally for 4 regions, we obtain another boundary that is layout-
dependent. We note that although it may seem obvious that layout-
dependent effects could induce sharp transitions in the variations
within the circuit, we are not aware of any spatial models that ex-
ploit this fact. Furthermore, we hypothesize that for application-
specific ICs that exhibit less regularity in their layout than FPGAs,
one would observe even more transitions that are independent of

 

 

20

40

60

80

100

120

140

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

(b) Similarity between autocorrelation 
matrices in a single grid region

(a) Similarity between autocorrelation 
matrices over entire chip 

 

 

5

10

15

20

0.6

0.65

0..7

0.75

0..8

0.85

0..9

0.95

1

Figure 4: Autocorrelation matrices for 10×10 sub-blocks (left)
across the entire chip, (right) within a region (highlighted in
Figure 3) identified by our grid detection algorithm.
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Figure 5: Timing measurements collected from a 32×32 array
of CLBs on six different Virtex 5 FPGAs.

the layout of the chip.
To demonstrate the fact that process variations can exhibit di-

verse autocorrelation structures, in Figure 3 we show the autocor-
relation computed for six different sub-blocks of size 10×10 across
different points in space. In the labeled regions (1) and (3) on the
left, we see that each of these sub-blocks contain very similar auto-
correlation structure (nearly white noise) and lie in the same region
specified by our proposed grid detection methods. In region (2), we
see that as the block is shifted to the left and is placed in between
two distinct regions with different mean and variance, the autocor-
relation exhibits very different structure. This last example demon-
strates that when using a grid-based approach on a non-optimal
grid, any estimates of the mean or variance within a suboptimal
block will be biased. On the right, in regions (5) and (6), we show
two sub-blocks with similar autocorrelation, even though block (5)
has been slightly shifted outside of the region detected by our algo-
rithm. However, when we look at region (4), we see that even for a
small shift (2 CLBs) out of a region detected by our algorithm, we
obtain a very different estimate of the autocorrelation.

To obtain a measure of the stationarity of the process within each
of the mi ×mj regions specified by our clustering procedure, we
swept a q × q pixel window at 2 pixel shifts over each region of
interest, where q = min(mi,mj , 10), and computed the autocor-
relation within each sub-block. For all p sub-blocks, we reordered
each of the autocorrelation matrices to obtain p autocorrelation vec-
tors each of dimensionN , whereN = (2q−1)(2q−1). Following
this, we computed the normalized inner products between the cor-
relation vectors in accordance with Equation 5.

In Figure 4, on the left, we show the similarity matrices com-
puted for 10 × 10 blocks shifted across the entire chip and on the



right, we show the similarity between the autocorrelation functions
computed within one of the larger blocks detected by our algorithm
(the region containing sub-block (6) in Figure 3). We note that for
autocorrelations computed over the entire chip, many of the cor-
relation functions have very low correlation (i.e., 0.2) but for the
autocorrelations computed within a single region, the correlations
are much higher. When we compute the score as in 6 for each of
these similarity matrices, we obtained scores of s(R) = 0.7059
and s(C) = 0.3703, where s(R) is the stationarity measure for
the region outlined in black and s(C) is the stationarity measure
computed for the entire chip.

7. CONCLUSIONS
In this paper, we presented a novel framework for modeling non-

stationary spatial correlations in process variations. To overcome
the limitations of previous models, we develop a hybrid model that
takes into account non-stationarities arising from systematic vari-
ations and from non-stationarities in the residual spatially corre-
lated random field. We go on to develop a TV denoising method
for baseline estimation that exploits the transitive nature of process
variations to recover a piecewise constant 2D baseline signal. After
extracting this unique stepwise signature, we presented a method
for optimal grid detection that leverages the fact that sharp transi-
tions in the process mean are correlated with change-points in the
variance of the process as well.

We validate our model on a study of timing variability across a
family of Virtex 5 FPGAs. In this study, we find that there is a great
deal of structure inherent in the timing process variations across
different regions of the chip. In particular, the chip can be eas-
ily divided into a number of non-overlapping anisotropic regions
of different sizes, where in each region, the delays vary around a
nearly constant value. We apply our proposed methods for change-
point and grid detection to this data and find that the partitions
we recover correspond to regions where the process variations are
locally-stationary. Although we have only observed these trends in
timing data collected from FPGAs, we expect that a discrete grid-
like structure would also be observed in other types of process vari-
ations and for other CMOS technologies due to the rectangular lay-
out of chips and mask-dependent effects. If step-wise structure is
a ubiquitous feature of process variations on ICs, then the develop-
ment of methods for automatic extraction of this type of structure is
essential for the computation of accurate and robust spatial models
for process variations. To the best of our knowledge, this work is
the first to address modeling non-stationary random fields arising
from process variations and to provide methods for change-point
detection in this setting.
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