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Abstract—Wireless ad hoc sensor networks have recently emerged as a premier research topic. They have great long-term economic

potential, ability to transform our lives, and pose many new system-building challenges. Sensor networks also pose a number of new

conceptual and optimization problems. Here, we address one of the fundamental problems, namely, coverage. Sensor coverage, in

general, answers the questions about the quality of service (surveillance) that can be provided by a particular sensor network. We

briefly discuss the definition of the coverage problem from several points of view and formally define the worst and best-case coverage

in a sensor network. By combining computational geometry and graph theoretic techniques, specifically the Voronoi diagram and graph

search algorithms, we establish the main highlight of the paper—an optimal polynomial time worst and average case algorithm for

coverage calculation for homogeneous isotropic sensors. We also present several experimental results and analyze potential

applications, such as using best and worst-case coverage information as heuristics to deploy sensors to improve coverage.

Index Terms—Sensor networks, coverage, maximal breach, maximal support, best-case coverage, worst-case coverage.
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1 INTRODUCTION

ASour personal computing era evolves into a ubiquitous
computing one, there is a need for a world of fully

connected devices with inexpensive wireless networks.
Improvements in wireless network technology interfacing
with emerging microsensors based on MEMs technology [2]
is allowing sophisticated, yet inexpensive, sensing, storage,
processing, and communication capabilities to be unobtru-
sively embedded into our everyday physical world. More-
over, embedded Web servers [1], [3] can be used to connect
the physical world of sensors and actuators to the virtual
world of information, utilities, and services. Consequently,
a flurry of research activity has commenced in the sensor
networks domain, especially in wireless ad hoc sensor
networks. Although many of the sensor technologies are not
new, certain physical and technological barriers of perform-
ing wireless communications have limited the feasibility of
such devices in the past. Some of the benefits of the newer,
more capable sensor nodes are their abilities to form large-
scale networks, implement sophisticated protocols, reduce
the amount of communication (wireless) required to per-
form tasks by distributed and local computations, and
implement complex power saving modes of operation

depending on the environment, the application, and the
state of the network.

Due to the above-mentioned advances in sensor network
technology, more and more practical applications of
wireless sensor networks continue to emerge. As an
example, consider the millions of acres that are lost around
the world, due to forest fires every year. In all fires, early
warnings are critical in preventing small harmless brush
fires from becoming monstrous infernos. By deploying
specialized wireless sensor nodes in strategically selected
high-risk areas, the detection time for such disasters can be
drastically reduced, increasing the likelihood of success in
early extinguishing efforts. Also, since the nodes are self-
configuring and do not need constant monitoring, the cost
of such a deployment may be minimal compared to the
huge losses incurred in large blazes.

In addition to the new applications, wireless sensor
networks provide a viable alternative to several existing
technologies. For example, large buildings contain hun-
dreds of environmental sensors that are wired to central air
conditioning and ventilation systems. The significant wiring
costs limit the complexity of current environmental controls
and the reconfigurability of these systems. However,
replacing the hard-wired monitoring units with ad hoc
wireless sensor nodes can improve the quality and energy
efficiency of the environmental system while allowing al-
most unlimited reconfiguration and customization in the
future. In many instances, the savings in the wiring costs
alone justify the use of the wireless sensor nodes.

One of the fundamental issues that arise naturally in
sensor networks is coverage. Due to the large variety of
sensors and their applications, sensor coverage is subject to
a wide range of interpretations. In general, coverage can be
considered as a measure of the quality of service of a sensor
network. For instance, in the previous fire detection sensor
network example, one may ask how well the network can
observe a given area and what the chances are that a fire
starting in a specific location will be detected in a given
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time frame. Furthermore, coverage formulations can try to
find weak points in a sensor field and suggest future
deployment or reconfiguration schemes for improving the
overall quality of service.

Here, we focus our attention to the isotropic class of
sensors, deployed in a field to detect certain activities. An
example of such a scenario may be seismic or acoustic
sensors deployed in a battle field to detect enemy move-
ments. Throughout our discussions, we use the term agent
to denote the phenomenon being detected by the sensors
(for example, an enemy tank moving in the field). In order
to approach the coverage problem here, we formulate the
worst and best-case coverage and present algorithms for
their calculations. In the worst-case coverage problem, we
want to find the closest distance to sensors that an agent
traveling on any path in the sensor field must encounter at
least once. The main idea here is that the closest distance to
sensors is one metric by which sensor coverage of the field
can be characterized. The scheme is “worst-case” since we
determine the closest distance to sensors even if the agent
tries to optimally avoid the sensors.

In the analogous best-case coverage problem, we want to
find the farthest distance to sensors that an agent traveling
on any path in the sensor field must have from sensors,
even if it tries to stay as close to sensors as possible. Clearly,
at some points, the agent must move away from sensors in
order to be able to traverse the field. Although the two
problems seem similar (they are duals in some sense), they
solve two problems which have very different physical
interpretations.

From the conceptual and algorithmic point of view, the
main contribution is provably optimal polynomial time
algorithm for best and worst-case coverage calculation in a
sensor network. As we discuss in Section 5, we combine
existing computational geometry techniques and constructs
such as the Voronoi diagram, with graph theoretical
techniques. The use of Voronoi diagram, efficiently and
without loss of optimality, transforms the continuous
geometric coverage problem into a discrete graph problem.
Furthermore, it enables direct application of search techni-
ques in the resulting graph representation.

1.1 Organization

The remainder of this article is organized as follows: In the
next section, we summarize the related work. In Section 3,
we survey several key technologies that are fundamental to
our study of coverage. Section 4 contains a brief overview of
deterministic sensor deployment and coverage. In Section 5,
we present formal definitions of the worst (breach) and
best-case (support) coverage and propose optimal poly-
nomial-time algorithms for solving each case. Section 6
presents some empirical results followed by a brief
discussion of future research directions and the conclusion.

2 RELATED WORK

The increasing trend in research efforts in the areas referred
to as smart spaces or pervasive computing are directly
related to many problems in sensor networks. Although
many researchers in the sensor network area have men-
tioned the critical notion of coverage in the network, to our
knowledge this is the first time that an algorithmic approach
combined with computational geometry constructs was

adopted in the context of ad hoc sensor networks. Kang
and Golay [11] describes a general systematic method for
developing an advanced sensor network for monitoring
complex systems such as those found in nuclear power
plants, but does not present any general coverage algo-
rithms. The Art Gallery Problem [12] deals with determining
the number of observers necessary to cover an art gallery
room such that every point is seen by at least one observer. It
has found several applications in many domains such as for
optimal antenna placement problems for wireless commu-
nication. The Art Gallery problem was solved optimally in
2D and was shown to be NP-hard in the 3D case. Marengoni
et al. [12] proposes heuristics for solving the 3D case using
Delaunay triangulations. Sensor coverage for detecting
global ocean color where sensors observe the distribution
and abundance of oceanic phytoplankton is approached in
[7] by assembling and merging data from satellites at
different orbits.

Perhaps the most related works are the attempts on
coverage of an initially unknown environment for mobile
robots [4], [6]. However, when the geometry of the
environment is known in advance, coverage becomes a
special case of path planning [10]. Both of these problems
are solved using generalized Voronoi diagrams.

Radar and sonar coverage also present several related
challenges. The radar and sonar netting optimization is of
great importance in networking technologies and the
optimal distribution of detection and tracking in a surveil-
lance area [15]. Based on the measured radar cross sections
and the coverage diagrams for different radars, [16]
proposes a method for optimally locating the radars to
achieve a satisfactory surveillance area with limited radar
resources.

Coverage studies to maintain connectivity in wireless
networks have also been the focus of study. For example,
[13] and [14] calculate the optimal number of base stations
required to achieve a system operator’s service objectives.
When base stations are present, connectivity is achieved
through mobile client attachments to a base station.
However, the connectivity coverage is more complex in
the case of ad hoc wireless networks since the connections
are peer-to-peer. Haas [9] shows the improvement in
network coverage due to multihop routing features of ad
hoc networks and optimizes the coverage constraint subject
to a limited path length.

In the best and worst-case sensor coverage formulations
we present here, the distance of an agent to the closest
sensor is of importance while in exposure-based methods
presented in [19], the detection probability (observability) in
the sensor field is represented by a path dependent integral
of multiple sensor intensities. It is interesting to note that in
both of these schemes, the types of actions that an agent
performs impact the coverage metric. For example, the
sensor field may have a different coverage level if an agent
is traveling west to east as opposed to north to south, or
along any other arbitrary paths.

3 PRELIMINARIES

3.1 Topology of the Network and Sensor Model

Generally, wireless sensor networks are targeted to the
extremesofminiaturization, availability, accuracy, reliability,
and power savings. This requires a networked infrastructure
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with small physical nodes, low power consumption, and low
cost that, in turn, limits communications to the immediate
proximity of each node. There are several existing models of
sensor behavior each with varying degrees of complexity.
However, most models share one aspect in common in that,
generally, sensingability isdirectlydependantondistance. In
all of our subsequent discussions, we assume that sensor
sensitivity to a phenomenon decreases as the distance
separating the two increases. Furthermore, we restrict our
coverage formulation to the relatively broad isotropic class of
sensors. As mentioned in Section 2, exposure, a more generic
scheme for characterizing and computing coverage, can be
used to address more general sensing models [19].

3.2 Location Discovery Techniques and Algorithms

Geographical information is an integral attribute of any
physical measurement. Thus, knowledge of node locations
is often crucial in proper operation of sensor networks. The
ad hoc nature of such networks necessitates that each node
determines its location through a location discovery
process. The Global Positioning System (GPS) is one
method that was designed and is controlled by the United
States Department of Defense for this purpose. The GPS
system consists of at least 24 satellites in orbit around the
earth, with at least four satellites viewable from any point,
at a given time, on Earth. They each broadcast time-
stamped messages at periodic intervals. Any device that can
hear the messages from four or more satellites can estimate
its distance from each satellite and, thus, perform trilatera-
tion to compute its position.

Although GPS is an elegant solution to the location
discovery process, it has several limitations that hinder its
use in wireless sensor network applications. First, GPS is
costly both in terms of hardware and power requirements.
Second, GPS requires line-of-sight between the receiver and
the satellites and, thus, does not work well when obstruc-
tions such as buildings, trees, and mountains block the
direct “view” to the satellites. Consequently, other techni-
ques have been proposed to dynamically compute the
locations of the nodes. In several location discovery
schemes, the received signal strength indicator (RSSI) of
RF communication is used as a measure of distance
between nodes. In other schemes, the time difference in
arrival of RF and acoustic (ultra-sound) signals are used to
approximate node distances. Once nodes have the ability to
estimate distances between each other (ranging), they can
then compute their locations by trilateration. In order for a
trilateration to be successful, a node must have at least three
neighbors who already know their locations. This requires
that at least a subset of nodes determine their locations
through other means such as by using GPS, manual
programming, or deterministic deployment (placing nodes
at specified coordinates). Savvides et al. [17] provide a
detailed discussion on such location discovery techniques
and algorithms. In our subsequent discussions, we assume
that node locations are known.

3.3 Computational Geometry: Voronoi Diagram and
Delaunay Triangulation

The Voronoi diagram has been reinvented, used, and
studied in many domains. According to [5], it is believed
that the Voronoi diagram is a fundamental construct
defined by a discrete set of points. In 2D, the Voronoi

diagram of a set of discrete sites (points) partitions the plane
into a set of convex polygons such that all points inside a
polygon are closest to only one site. This construction
effectively produces polygons with edges that are equidi-
stant from neighboring sites. Fig. 1 shows an example of a
Voronoi diagram for a set of randomly placed sites.
Aurenhammer [5] presents a detailed survey of Voronoi
diagrams and their applications.

Another structure that is directly related to Voronoi
diagrams is the Delaunay triangulation [8]. The Delaunay
triangulation can be obtained by connecting the sites in the
Voronoi diagram whose polygons share a common edge. It
has been shown that among all possible triangulations, the
Delaunay triangulation maximizes the smallest angle in
each triangle. In addition, a Delaunay triangulation must
satisfy the empty circle property, which states that there is a
circle containing the end points of a Delaunay edge and no
other points (edges). Also, neighborhood information can
be extracted from the Delaunay triangulation since sites that
are close together are connected. In fact, the Delaunay
triangulation can be used to find the two closest sites by
considering the shortest edge in the triangulation. We use
the properties of the Voronoi diagram and Delaunay
triangulation to solve for best and worst-case coverage. In
Section 5, we will show how the Voronoi diagram and the
Delaunay triangulation serve as the underlying structures
to limit our search space for agent ”paths” in a sensor field.

The lines at the boundaries of the Voronoi diagram
extend to infinity. However, since here we are dealing with
a finite area, we must clip the Voronoi diagram to the
boundaries of the field. Since traveling along the bounds of
the sensor field also constitutes a valid path, we introduce
extra edges in the Voronoi diagram corresponding to the
bounds. In subsequent discussions, when we refer to the
Voronoi diagram, we are actually referring to the bounded
diagram.

3.4 Implementation: Centralized versus Distributed

Multihop communication is one of the main enablers in
reducing power consumption in ad hoc sensor networks. The
energy required for communication between two arbitrary
nodes A and B is strongly dependent on the distance d
between the two nodes. More precisely, the energy can be
modeled as E ¼ B � dy, where y > 1 is the path loss exponent
depending on the RF environment andB is a proportionality
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constant describing the overhead per bit. Given this super
linear relationship between energy and distance, generally
using several short intermediate hops to send a bit is more
energy efficient than using one longer hop.

However, an incorrect conclusion would be to use an
infinite number of hops over the smallest possible distances.
In reality, this is impractical for two reasons:

1. The number of intermediate hops is limited by the
number of nodes between A and B.

2. The energy is not limited to the energy radiated
through the antenna; there is also energy dissipated
in the radio for receiving a bit and readying a bit for
retransmission.

For applications such as coverage calculations, the energy of
computations per node is also a component of the energy
metric. It is important to note that technology scaling will
gradually reduce the processing costs, with the transmis-
sion cost remaining relatively constant. Using compression
techniques, one can reduce the number of transmitted bits,
thus reducing the cost of transmission at the expense of
more computation. This communication-computation trade
off is the core idea behind low energy sensor networks.
From this discussion, it is apparent that a good algorithm
designed for wireless sensor networks will require a
minimal amount of communication. This is in sharp
contrast with classical distributed systems [18] where the
goal generally is maximizing the speed of execution. This
renders the classical distributed algorithm irrelevant for
developing wireless sensor networks algorithms.

The most relevant metrics in wireless networks is power.
Experimental measurements indicate that the communica-
tion cost in wireless ad hoc networks can be two orders of
magnitude higher than computation costs in terms of
consumed power [22]. Note that the coverage problem
presented in this paper is intrinsically global in the sense
that lack of knowledge of location of any node may result in
the problem not being solved correctly. Therefore, any
algorithm which aims to provide the correct solution must
inherently use all location data.

Throughout our discussions, we assume a centralized
model of computation. Recently, Li et al. [20] proposed a
localized approach for solving a variation of the best-case
coverage (maximal support) in sensor networks. In addi-
tion, a variation of the localized exposure algorithm
presented in [21] can be used to solve the worst-case
coverage problem locally. However, a detailed treatment of
this topic is beyond our scope here.

4 DETERMINISTIC COVERAGE

In order to achieve deterministic coverage, a static network
must be deployed according to a predefined shape. The
predefined locations of the sensors can be uniform in
different areas of the sensor field or can be weighted to
compensate for the more critically monitored areas. An
example of a uniform deterministic coverage is the grid-
based sensor deployment where nodes are located on the
intersection points of a grid. In this case, the problem of
coverage of the sensor field reduces to the problem of
coverage of one cell and its neighborhood due to the
symmetric and periodic deployment scheme.

Examples of weighted predefined deployment are the
security sensor systems used in museums. The more
valuable exhibit items are equipped with more sensors to
maximize the coverage of the monitoring scheme. Another
deterministic deployment scheme can be found in the 3D
Art Gallery Problem heuristics solutions discussed in [12].
Our proposed coverage algorithm can be used in all
predefined (deterministic) deployment schemes to deter-
mine the coverage in the sensor field.

5 STOCHASTIC COVERAGE

In many situations, deterministic deployment is neither
feasible nor practical. Another deployment option is to
cover the sensor field with sensors randomly distributed in
the environment. The stochastic random distribution model
can be uniform, Gaussian, or any other distribution based
on the application at hand. In the simulation studies for this
paper, we have generally assumed uniform sensor distribu-
tion, although our algorithm is applicable to any other
deployment scheme of the sensor nodes.

5.1 Worst-Case Coverage and Maximal Breach Path

In order to introduce the worst-case coverage problem, we
first formally define breach for a path in the sensor field.

Given: A field A instrumented with sensors S, where for
each sensor si 2 S, the location ðxi; yiÞ is known; areas I
and F corresponding to initial (I) and final (F ) locations
of an agent.

Definition: Breach. Given a path P connecting areas I and F ,
breach is defined as the minimum Euclidean distance from P
to any sensor in S.

Thus, the worst-case, breach-based, coverage problem
discussed above can formally be stated as:

Problem: Maximal Breach Path. Identify a Maximal Breach
Path PB, in A, connecting the areas I and F .

The regions I and F are arbitrary regions determined by the
task at hand and may be located anywhere inside or outside
the sensor field.

Theorem 1. At least one Maximal Breach Path must lie on the
line segments of the bounded Voronoi diagram formed by the
locations of the sensors in S.

Proof. Since by construction, the line segments of the
Voronoi diagram maximize distance from the closest
sites, a Maximal Breach Path PB, must lie on the line
segments of the Voronoi diagram corresponding to the
sensors in S. If any point p on the path PB deviates from
Voronoi line segments, by definition, it must be closer to
at least one sensor in S. tu

The following steps outline the algorithm for finding PB:

1. Generate Voronoi diagram D for S.
2. Apply graph theoretic abstraction by transformingD

to a weighted graph.
3. Find PB using binary-search and breadth-first-

search.
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The first part of this algorithm, detailed in Algorithm 1,
generates the Voronoi diagram corresponding to the sensors
in S. The weighted, undirected graph G is constructed by
creating a node for each vertex and an edge corresponding to
each line segment in the Voronoi diagram. Each edge in
graph G is assigned a weight equal to its minimum distance
from the closest sensor in S. The algorithm then performs a
binary search between the smallest and largest edge weights
inG. In each step, breadth-first-search (BFS) is used to check
the existence of a path from I to F using only edges with
weights that are larger than the search criteria called
breach_weight. If a path exists, breach_weight is increased to
further restrict the edges considered in the next search
iteration. If a path is not found, breach_weight is lowered to
relax the constraint on the search. Upon completion, the
algorithm has found a Maximal Breach Path, which is a path
from I to F with its smallest weighted edge being as large as
possible.

As an example, consider the random sensor network
instance depicted in Fig. 2 with areas I and F shown. Fig. 3
shows the weighted, Voronoi diagram corresponding to this
network. Note that each edge in the Voronoi diagram is
labeled with its weight in graph G, namely, its closest
distance to a sensor. Fig. 4 shows an intermediate step in the
search algorithm for finding PB, where the breach_weight
threshold is set at 40. Consequently, all edges with weights

less than 40 are ignored in the search and are thus shown as

dotted lines. As can be seen, a path can be found from I to F

in this case, indicating that the search threshold should be

increased. Finally, Fig. 5 shows the result at the termination

of the algorithm. The optimal breach_weight has been found

to be 57. The critical edge is marked in bold and the

Maximal Breach Path connecting I and F can be seen as a

bold dotted line.
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Fig. 3. Weighted Voronoi diagram of the sensor network in Fig. 2.

Fig. 4. Maximal Breach Path algorithm iteration: Edges with weights less

than 40 are ignored.



We must note here that the Maximal Breach Path is
not unique. In fact, in general, there are many paths that
can qualify as a Maximal Breach Path. However, they all
use edges with weights that are larger or equal to the
breach_weight determined in the binary search phase of
the algorithm, with at least one edge that has a weight
equal to breach_weight.

The breach_weight found by this algorithm is the
minimum distance from sensors that an agent traveling
on any path through the field A, from I to F , must
encounter at least once. If new sensors can be deployed or
existing sensors moved such that this breach_weight is
decreased, then the worst-case coverage is improved. Thus,
breach_weight can be used as a measure of the coverage level
provided by a sensor field.

5.2 Best-Case Coverage and Maximal Support Path

Similar to the worst-case (breach) coverage formulation, we
first define support in order to formulate the best-case
support-based coverage problem.

Given. A field A instrumented with sensors S where for
each sensor si 2 S, the location ðxi; yiÞ is known; areas I
and F corresponding to initial (I) and final (F ) locations
of an agent.

Definition: Support. Given a path P connecting areas I and F ,
support is defined as the maximum Euclidean distance from
the path P to the closest sensor in S.

Problem. Identify PS , the Maximal Support Path in S, starting
in I and ending in F .

Theorem 2. At least one Maximal Support Path must lie on the
edges of the Delaunay triangulation (with the exceptions of the
start and end points connecting PS to I and F ).

We observe that a Maximal Support Path can consist of
straight line segments connecting sensors. For the proof
regarding the use of the Delaunay triangulation, we ignore
the details pertaining to connecting the path to I and F . In
our algorithm, we connect I and F to their closest sensors,
respectively. Also, note that PS is not unique. The only
requirement is that the distance from the farthest point on PS

to the closest sensor is minimized. Hence, we only need to

prove that the edgewith the point farthest away from sensors

in PS , must lie on the Delaunay triangulation; we are free to

use any other line segments in constructing the path, as long

as they are closer to sensors than this critical edge.

Proof. Suppose that the edge farthest away from sensors in

PS is not in the Delaunay triangulation. Call the end

points (sensors) of this edge a and b. as shown in Fig. 6.

The figure also shows the circles with radius equal to the

distance between a and b centered at a and at b and their

corresponding Voronoi edge shown as a solid line.
There cannot be any sensors in the shaded region in

Fig. 6. If there is a point in the shaded region (call it p),
then edge ab can be replaced with the two shorter edges
ap and pb, implying that PS is not a Maximal Support
Path (ab is not the critical edge with a point farthest from
sensors).

If no sensor can exist in the shaded region, then there
exists a circle containing both a and b and no other
points. Then, a and b must be connected by a Delaunay
edge (definition) which contradicts our supposition. tu

The algorithm for finding PS is very similar to the breach

algorithm above, with the following exceptions:

1. The Voronoi diagram is replaced by the Delaunay
triangulation as the underlying geometric structure.

2. Each edge in graph G is assigned a weight equal to
the largest distance from the corresponding line
segment in the Delaunay triangulation to the closest
sensor.

3. The search parameter breach_weight is replaced by
the new parameter support_weight and the search is
conducted in such a way that support_weight is
minimized.

In this case, the maximal support path may also not be
unique. However, the support_weight found in the search
phase of the algorithm is indicative of the best-case coverage
of the network. Here, support_weight is the maximum
distance from the closest sensors that an agent traveling on
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any path through the field A, from I to F , must encounter at
least once. If additional sensors can be deployed or existing
sensors moved such that support_weight is decreased, then
the best-case coverage is improved.

5.3 Complexity

Given n sensors, the best known algorithms for the
generation of the Voronoi diagram have Oðn log nÞ com-
plexities. In 2D, Voronoi diagrams are essentially linear
complexity in terms of vertices and edges. So, for n points,
jV j and jEj (vertices and edges) in the Voronoi graph are
both OðnÞ. So, the resulting graph used later in the search
phase of the algorithm is OðnÞ in terms of the edges. Thus,
the BFS and binary search phase has a complexity of
Oðn log rangeÞ, where range is the difference between
highest and lowest weighted edge in the Voronoi graph.
In practice, the complexity of the algorithm is dominated by
the Voronoi diagram generation procedure which has a
large constant factor in its complexity.

6 EXPERIMENTAL RESULTS

6.1 Experimentation Platform

The coverage algorithms presented here have been im-

plemented and used in several studies as stand-alone

C packages. In this section, we present several results and

try to provide an overview and analysis of the applications.
Fig. 7 shows an instance of the coverage problem where

30 sensors are deployed at random. The Maximal Breach

Path (PB) and the corresponding edge with breach_weight
depicts where the breach takes place in the field. The
Maximal Support Path (PS) and the corresponding edge
with support_weight are also shown.

Fig. 8 shows the underlying bounded Voronoi diagram

for the same problem instance depicted in Fig. 7. Extra
edges with 0weight are used to connect the I and F regions

to the structure so that all possible paths can be considered
in the search algorithm. The 0-weight edges are drawn

between all points where Voronoi edges intersect the

boundary of the field and the corresponding point (I or
F ). Fig. 9 shows the corresponding Delaunay triangulation.

In this case, only two extra edges are introduced to connect
I and F to the closest sensors in the structure.

6.2 Sensor Deployment Heuristics

The edges corresponding to breach_weight described in
Section 5 can be used as a guide for future sensor
deployments. Since breach_weight corresponds to the edge
in the breach path where PB is closest to the sensors,
deploying additional sensors along that edge can be used as
a heuristic to improve overall coverage.

Fig. 10 shows theaverage improvement inbreach coverage
when up to four additional sensors are introduced succes-

sively in the network, according to the heuristic described

above.Note that after each additional sensor deployment, the
algorithm was repeated to find the new breach region. The

results represent average improvements over 100 random
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Fig. 7. Sensor field with Maximal Breach Path (PB) and Maximal Support

Path (PS).

Fig. 8. Sensor field with Voronoi Diagram and a Maximal Breach Path.

Fig. 9. Sensor field with Delaunay triangulation and a Maximal Support

Path (PS).

Fig. 10. Average worst-case coverage (breach) improvement by

additional sensor deployments.



deployments. It is interesting that, even after deploying
100 sensors, breach coverage can be improved by about
10 percent by deploying just one more sensor.

Similarly, the support_weight and the midpoint of the
corresponding edge in the Delaunay triangulation can be
used as a heuristic for deploying additional sensors to
improve support coverage. As shown in Fig. 11, on average,
a 50 percent improvement can be achieved in support
coverage by adding one additional sensor when five nodes
have already been randomly deployed. After deploying 100
random sensors, on average, a 10 percent support coverage
improvement can be expected by using the heuristic to
deploy one more sensor.

6.3 Stochastic Deployment—Asymptotic Behavior

The graph in Fig. 12 shows how the coverage of randomly
placed (uniform) sensor nodes in a field varies as the
number of sensors is changed. The results shown in the
graph represent the average field breach and support
coverages for 1,000 random sensor placements. For each
placement, two uniform random variables X and Y are used
to determine the coordinates ðxi; yiÞ of each sensor si in a
unit square field. Fig. 12 demonstrates the asymptotic
nature of these metrics from the sensor field operator’s
point of view who wants to minimize breach and maximize
support (minimize support_weight). Thus, for clarity, the
figure shows a normalized plot of breach_weight (values
closer to 0 preferred) and 1-support_weight (values closer to 1
preferred) as a function of the number of sensors.

Given the unit square field and using the distance-based
sensor model described earlier, on average, after deploying
about 100 sensors, additional random sensors do not

improve coverage very significantly. This asymptotic nature
of breach and support coverage suggests that by analyzing
a given field and selecting the proper number of sensor
nodes, certain levels of coverage can be expected even if
sensor deployment cannot be performed according to an
exact plan.

7 FUTURE RESEARCH DIRECTIONS

Although our algorithm was developed for a wireless ad
hoc sensor network, we have assumed a centralized
computation model. A natural course of study would be
to compare the centralized coverage algorithm to localized
ones in terms of power consumption, cost, performance,
and accuracy. Here, we have assumed identical sensor
sensitivity models where the coverage depends only on the
Euclidean distances from sensors. In practice, other factors
influence coverage such as obstacles, environmental condi-
tions, and noise. In addition to nonhomogeneous sensors,
other possible sensor models can deal with nonisotropic
sensor sensitivities, where sensors have different sensitiv-
ities in different directions. The integration of multiple
types of sensors such as seismic, acoustic, optical, etc., in
one network platform and the study of the overall coverage
of the system also presents several interesting challenges.

In addition, the general problem of where to deploy
additional sensors to improve the coverage remains open.
Although we have introduced heuristics based on this
coverage model that may perform well for single-sensor
deployment, it is interesting to investigate methods of
optimally deploying multiple sensors at a time.

8 CONCLUSION

We presented best and worst-case formulations for isotropic
sensor coverage in wireless ad hoc sensor networks. An
optimal polynomial time algorithm that uses graph theore-
tic and computational geometry constructs was proposed
for solving for best and worst-case coverages. Experimental
results show some applications of the theoretic coverage
formulations and algorithms specifically for solving for
Maximal Breach (worst-case coverage), Maximal Support
(best-case coverage), additional sensor deployment heur-
istics to improve coverage, and stochastic field coverage.
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