Post-Silicon Timing Characterization by
Compressed Sensing

ABSTRACT

We address post-silicon timing characterization of the
unique gate delays and their distributions on each manu-
factured IC. Our proposed approach is based upon the new
theory of compressed sensing that enables efficient sampling
and reconstruction of sparse signals using significantly fewer
measurements than previously thought possible. The first
step in performing timing measurements is to find the sensi-
tizable paths via traditional testing methods. Next, we show
that variations are sparse in wavelet domain. Then, using
the compressed sensing theory, our method estimates the de-
lay distributions by a small number of timing measurements.
We discuss how the post-silicon characterization method can
enable a range of new and emerging applications including
improved simulation models, post-silicon optimization, and
IC fingerprinting. Experimental results on benchmark cir-
cuits show that using compressed sensing theory can char-
acterize the post-silicon variations with a mean accurately
of 95% in the pertinent sparse basis.

1. INTRODUCTION

Modern integrated circuits are variable and complex.
Continuous CMOS scaling has made possible integration of
billions of gates into a single multi-layer chip. Scaling to
the physical device limitations and mask imprecisions have
created nondeterminism in the chip’s characteristics. In the
new regime, traditional models, design, and test methods
have a limited effectiveness.

Process variations may be die-to-die (inter-die), or within
one die (intra-die). A number of process parameters such as
transistor width/length maybe spatially correlated, whereas
other parameters, e.g., oxide thickness, may not show such
structural relationships. Furthermore, with miniaturization
of devices beyond 65nm, the impact of intra-die variations
and the spatial correlations are becoming more prominent
[1]. Several key areas have been impacted. For example
the number of critical paths is increasing with variations,
rendering the traditional test methodologies based on a few
critical paths inexpressive [2]. As another example, in sta-
tistical static timing analysis (SSTA), instead of the single
valued delays utilized in traditional models, delay probabil-
ity distributions and their correlations were used [3,4].

The models and analysis produced by SSTA are pre-
silicon. They are utilized for determining the impact of
component variations on the circuit response to optimize the
design to be robust to variations [5]. Recently, a post-silicon
timing analysis of chips was proposed [6]. The method works
by collecting data from a few on-chip test points (e.g., via
ring oscillators), and integrating this data with the SSTA
models to form the chip-specific distribution of the delays.

Our objective is to perform post-silicon timing character-
ization of each specific chip. Our method uses the revolu-
tionary theory of compressed sensing [7,8] and the set of the
sensitizable paths known from the testing phase to perform
post-silicon delay modeling with very few measurements.
Traditional sampling methods were based on Nyquist den-
sity which states that a signal must be sampled at a rate
at least twice its highest frequency. Compressed sensing
theory has shown that it is possible to reconstruct signals
that are sampled by a rate far smaller than the Nyquist
theorem, such that the pertinent signals can be most of-
ten reconstructed accurately, and even sometimes exactly.
We demonstrate how this method can be used for testing
the chips, such that the narrow and specific distribution
of the chip’s timing can be estimated by a few number of
post-silicon measurements. Compressed sensing exploits the
sparsity of the distribution matrix [4], to translate the com-
pressed analog sample measurements to a reconstructed in-
formation. Our contributions are as follows:

e We introduce the first post-silicon timing characteriza-
tion method that is based on the compressed sensing. Our
method does not add on-chip test structures and relies on
external tests to keep the number of measurements low.

e We create a systematic method for exploiting the sparsity
of the timing variations for post-silicon characterization.

e The approach does not impose any restrictions on the
shape of the process parameter distribution, except for spar-
sity which has been extensively used in the modeling and
validation of timing variations [3,4].

e We present modifications to the original compressed sens-
ing framework that is based upon regular grid-based sam-
pling, so it can include the irregularities of the spatial place-
ment and thus spatial correlations of the gate delays.

e The method exploits the correlations to approximate the
timing variations of the gates that are unobservable and
uncontrollable because of their placement on insensitizable
paths. The key for post-silicon gate characterization is the
delay variations’ sparsity.

e We demonstrate how the extracted features are insensitive
to the selected inputs. This can be explained by the nature
of the compressed sensing theory, that can find accurate
solutions for random independent measurement inputs.

e Knowledge of the within-die correlation models will be
readily available via our method, producing a feedback from
manufacturing to SSTA. In turn, it may increase the perfor-
mance yield by lessening the timing models pessimism.

e We discuss a number of emerging applications that are
enabled by the proposed method.



The remainder of the paper is as follows. Sections 2 and 3
discuss related works and preliminaries. We introduce vari-
ation estimation by delay measurements in Section 4. In
Section 5, we use sparsity of the variations in the wavelet
domain to recover variations with a small number of delay
measurements. Applications and Evaluation results are pre-
sented in Sections 6 and 7. We conclude in Section 8.

2. RELATED WORK

SSTA is a method that performs pre-silicon analysis of
timing variations of the full chip under the assumption of
the process parameter uncertainty. The proposed models
range from simple to sophisticated ones, including nonpara-
metric and higher order models [3,4,9-11]. A recent study
compared compared 5 different SSTAs and their associated
correlation models on real chip measurement data [1]. A
group of Intel researchers studied the benefits of changing
from STA to SSTA for optimizations that target gate siz-
ing [5]. They concluded that under the current variation
models, the power reduced only by 2%. They emphasize
that to achieve 4-6% power reduction, process variation need
to increase by a factor of 2x and 4x respectively.

The recent post-silicon statistical approach predicts the
delays by collecting data from a small number of on-chip test
sensors and then combining this information to find the nar-
row and die-based timing distributions [6]. They report that
their method extracts the variability-based distribution with
83.5% smaller on average than the SSTA results. While our
approach also concentrates on post-silicon optimizations, it
is not based on insertion of additional sensors/circuitry.

A suit of new post-silicon tests have been developed by the
testing community with the objective of integrating the im-
pact of variations in traditional timing and functional tests.
A number of methods have utilized the long-known relation
that under certain mild assumptions, the delay of each path
in the circuit can be expressed as a linear combination of
others [2,12-14]. In this work, we use the linear dependence
of the paths and the functionally sensitizable paths that are
extracted by testing methods.

In the past four year, the compressed sensing theory has
emerged [7,8,15]. According to the class Shannon/Nyquist
theory, the number of required samples for a signal to be
reconstructed without error - the length of the shortest in-
terval containing the support of the pertinent signal. Com-
pressive sensing has shown that compressible images and
signals can be reconstructed from far fewer measurement
samples. The new theory suggests that the analog data (say
a scene) is readily captured into its compressed form. The
class of compressible signals are referred to by sparse.

3. PRELIMINARIES
3.1 Variation Model and Delay Model

Variations in an IC are categorized as systematic vari-
ations and random variations [16]. Systematic variations
refer to the variations caused by imperfectness of fabri-
cation tools. Since the properties of fabrication tools are
known, systematic variations are deterministic and they are
known beforehand. Random variations include inter-die and
intra-die variations. Inter-die variations represent the vari-
ation among various dies in a wafer and intra-die variations
represent variation among different devices in a die. Note

that systematic variation can also divided into inter-die and
total

intra-die variations. Thus, total variation, 1,, , in a gate
gu will be [16]

wthOtal :¢Lnter+w1untra+Fu/3 (1)
Where winter and wintra represent inter-die and intra-

die variation, respectively. wtntra is a multivariate Gaus-

sian random vector. F,[3 models systematic variations ;
if (Ty,yu) is the location of the gate g, on the IC, then
F =[1,24,y.)" and 3 is a 3 x 1 constant vector.

Transition delay is usually modeled as a linear function
of transistor feature size variations [4,17,18]. For example,
consider a NAND2 gate that one of its inputs is 1 and the
other input, at time ¢ = 0, transits from 0 to 1. Because of
propagation delay of the NAND2 gate, output transit from 1
to 0 at time ¢t = d,.. When there are variation in the feature
size of the transistors, rising propagation delay, d,, varies
among different NAND2 gates in the IC. i.e. [17]

ar (1% = + ap 2)

where a is a constant.

Note that, even if we model the propagation delay
quadratic (or higher order) [19], we can use the same ap-
proach by assuming new variables for higher order parame-
ters.

3.2 Sensitizable Paths

A path in an IC is defined as a sequence of logic gates from
an input of the IC to one of its output pins. To find propa-
gation delay in a path, one should find an appropriate input
vector to the IC. If such an input vector exists, the path is
called sensitizable; otherwise it is called unsensitizable.

To find sensitizable paths, we use the path selection
method that is introduced by Murakami et al. [20]. This
method is based on finding inconsistent transitions in paths.
The method provides a list of potentially sensitizable paths.
While a potentially sensitizable path might not be sensitiz-
able, they show about 99% of potentially sensitizable paths
are sensitizable. Without loss of generality, we use poten-
tially sensitizable path in this paper; one can exhaustively
run ATPG algorithms [21] to find list of all sensitizable
paths.

3.3 Compressed Sensing

Compressed Sensing is a recently emerging signal acqui-
sition method that exploits sparse signal models to reduce
the signal acquisition burden [7,15]. Specifically, we assume
that the signal of interest is a K-sparse vector x in an N-
dimensional space, i.e., that it only has K non-zero compo-
nents. Using compressed sensing we can sample and recon-
struct this vector by acquiring only M = O(K log(N/K))
linear measurements.

p=Ax+e, (3)

where A denotes the measurement matrix, of dimension M x
N, p denotes the M-dimensional measurement vector, and
e denotes the measurement noise.

Despite the dimensionality reduction and the rank defi-
ciency of A, we can reconstruct the sparse vector of interest,
x from the measurement vector p using the following convex
optimization:

min [[x||: + Allp — Ax][3, (4)
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Figure 1: Global flow.

in which ) is a parameter chosen according to the noise vari-

ance and ||x||, = (vazl |xl|)% If the measurement matrix
A satisfies certain conditions, we can show that the recon-
struction using Equation 4 is exact [7].

The compressed sensing model is robust even when the
acquired vector x is approximately sparse, often referred to
as compressible. A vector is compressible if it has very few
(say K) coeflicients with large magnitude and the remaining
coefficients are approximately 0. Compressible vectors can
be approximated very well using the best K-term approx-
imation, i.e. using the K most significant coefficients and
setting the remaining to 0. An often used class of compress-
ible vectors are the vectors lying in a weak ¢, ball, where
p < 1. These vectors have the property that their sorted
coefficients follow a power law decay:

x| <ri F,1<i <N, (5)

in which x(;) is i-th largest coefficient of the vector x [7].

In most practical applications, such as in this paper, a
vector is not compressible in the canonical domain. Usually,
in practice, a sparsity inducing basis W is necessary to ex-
pose the sparsity. The theory accommodates this case using
the basis expansion

s = Wx, (6)

in which case W is the sparsity inducing transform, and the
basis expansion vector s is sparse instead of the vector of
interest x. In this case Equation 3 becomes

p=AW 's+e. (7)

This is the same formulation as Equations 3 and 4, with only
a change of variables. We now aim to recover a sparse rep-
resentation s from the measurements y, which are acquired
with a measurement matrix AW ™', The signal is subse-
quently recovered from the representation using Equation
6.

3.4 Global Flow

Figure 1 shows the global flow of the work. At the first
step, we feed the circuit with a number of input vectors
that provide sensitizable paths. In step 2, propagation de-
lay is measured for every sensitizable path. Based on the
measured propagation delays, we construction a System of
Linear Equations (SLE) with gate variations as its unknown
parameters. Then, we estimate variations by two methods
(4a and 4b). The first method is based on the traditional
{2-norm minimization (4a.) In the second method, we show
sparsity of the variations in wavelet domain and we use com-
pressed sensing (¢1-norm regularization) to estimation vari-
ation more efficiently.

4. DELAY ESTIMATION BY
MINIMIZATION

In this section, we propose a method for post-silicon gate
delay estimation by measuring the input/output path de-
lays. First, we measure the signal propagation delays of a
number of sensitizable paths. Then, based on the measured
delays, we construct linear equations with the scaling fac-
tors of gate delays (defined in Section 3.1) as the unknown
parameters. Finally, using the linear equations, we estimate
the gate variations by solving for the scaling factors. In
Section 5, we utilize the variations in spatial correlations to
improve the scaling factor estimations.

An example of path delay analysis is shown in Figure 2.
Lines labeled by a, b, ¢, and d are the circuit’s primary inputs
and the line n is the circuit’s primary output. We want to
sensitize the delay of the highlighted path, Pi: (a-g1-z-e-gs-f-
ga-s-ge-k-g7-n). This is because as we discussed in Section 3,
we can only find the delays on the sensitizable paths. Thus,
we need to find an input vector that guarantees a transition
in input @ that would propagate through the path. Let us
assume a rising transition in a (input a transits from 0 to 1).
To allow propagation through the gate g1, we need to set b
to be equal to 0. Then, there would be a falling (1 — 0) and
a rising (0 — 1) transition in lines e and f, respectively. If g
is equal to 1 and m is equal to 0, then the rising transition
propagates in the lines s, k and n. To guarantee that g is
equal to 1 and m is equal to 0, we just need to set the input
c=0.

The input assignments above allow the transition in input
a to propagate through the path P, :a-gi-z-e-gs-f-g4-s-ge-k-
g7-n. Thus using the delay bounding method introduced
in [13], one can measure the total delay of the underlying
path. i.e., we can measure the time difference between the
transitions in line @ and in line n. Let us denote the total
delay of the path P for the rising transition by d.(Py).

The total path delay is an additive composition of the
delays of its elements. For example, delay of the path P;
can be written as the summation of the delays in line a,
gate g1, line k, line e, gate g3, and so on. i.e.,

O -NORM

d-(P1) = d(a)+dr(g1)+d(k) +d(e)+d(e)
+ dy(gs) +d(f) + di(ga) +d(s ) + ds(gs)
+ d(k)+dr(g7) +d(n), (8)

where d(z) is the delay of the line z; dr(g;) and d¢(g:) are
rising and falling delay of the gate g;, respectively.

In this paper we assume interconnect delays (line delays)
are zero. This assumption is just to keep the clarity of the
presentation and the approach. The proposed method can
be easily extended to cases with non-zero interconnect de-
lays. Note that, it maybe the case that variations in the
interconnects have a separate statistical representation. In
such scenarios, one may consider compressed sensing meth-
ods that address the summation of two distinct distributions
in one framework [15]. Assuming zero interconnect delays,
equation 8 reduces to:

dr(P1) = dvr(g1) + ds(g3) + dr(ga) + ds(gs) + dr(g7). (9)

In Section 3, we illustrated that because of the process
variation, delays of the gates deviate from their nominal
values, i.e. [17],

dy(g:) = dRominal gy L e 1, (10)
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Figure 2: A sensitizable path from input to the output. Inputs to the circuit are set such that a rising
(falling) transition in input ¢ can propagate to the output b.

Gate Rising (pS/um) | Falling (pS/um)
Inverter | 86.9 40.77

NAND2 | 176.9 507.7

NOR2 95.4 1106.2

Table 1: Transition propagation rate for different
gates. The rising and the falling transitions do not
enforce the same delay rates.

where d?ommal(gi) is the nominal delay for rising transition
and lg; is the scaling factor of the variation for the gate g;;
and &4, is a constant coefficient. Table 4 shows the con-
stant coefficient for NAND2 gate. Similarly for the falling
transition,

dr(g) = d2omnal gy e oy, (11)

Thus, Equation 9 becomes

nomlnal

dr(Pl) g1) + &g lgy

)
nommal 93) + Er.slo
94) + &r.galos
dnommal 96) + £5.90Log
)

97) + &r.g7lg7, (12)

(
(
nommal (
(
dnommal (

+ o+ 4+ o+

or
fhgl lgl + §f,93lgs + fT,94lg4 + ff,gal% + 5%97197 = bPl

d'r (Pl) _ d?ominal (gl) _ d?ominal (93)

= d?ominal (g7)

bp, =

dnominal (g4) — d}lominal (g6
bp, is a constant. Thus, each sensitizable path in the circuit
leads to a linear relation among the variation elements, Ig,.
The falling and rising coefficient (£ 4, and & 4, ) are known
and our goal is to estimate the variations, Iy, .

Assume that Py, P> ... Py are M sensitizable paths in a
general combinational circuit C with N gates. For each path
P;, if it is stimulated by a rising transition,

Z ap, (xr(py.g:).g:lar = b} (13)
where
. | 1 if g; belongs to the path Pj;
ar, (i) = { 0 otherwise,

f if g; has a falling transition when path P;
is stimulated by a rising transition;
r otherwise.

AT(PJVZ') =

Similarly for a falling transition,

Z ap; (D€xs(p Pj,9i), giloi = b]f,' (14)
where

f if g; has a falling transition when path P;
MNPy i) = is stimulated by a falling transition;

r otherwise.

To write Equations 13 and 14 in a compact form, we define
matrix A and measurement vector b and variation vector 1
as follows.

ap, (N)fw‘(qugN)vgN
ap, (N)§>\T(P2a9N)79N

O‘Pl(l)f)\r(Plvgl)vén
ap, (1)£>\T(P2791),91

apy (N)Exr (Pys,gn ) on
apy (N)gkf(Pl JIN)IN
ap, (N)gkf(Pz,gN),gN

A= aPM(l)g)\T(PM,gl),gl
O‘Pl(l)f)\f(Pl,gl),m
AP, (1 gkf(Pzwgl),gl

APy (1)5)\10(131\4,91)191 Py (N)gkf(PM,gN)qu

= (b7, b5, ... bhg, b1, 0], .. b5 )T,

and
1= (l,lz...1x)".

Finally, we use following optimization to estimation vari-
ation, 1.

min || Al — b||3. (15)

We call this method 2 minimization method.

Note that it may not be possible to find the variation of
all gates by this method. For example in Figure 2, if we
want to find another sensitizable path that includes g4, we
should fix f = 1 (none-controlling value) causing e = 0 and
g = 1. Thus, the transition cannot propagate on the line g
and path P, is the only path that includes the gates gs, g1
and gs. As a result, there is at most two equations (falling
and rising) that includes variation of the gates gs, g4 and
ge; it is impossible to find the variation of the three gates
separately. We refer to such cases as ambiguous gates.
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Figure 3: Left: Spatial variation in a typical IC.
Right: wavelet transform of the variation. Because
of the spatial correlation the variation is sparse in
the wavelet domain.

S. DELAY ESTIMATION USING COM-
PRESSED SENSING

Section 4 presents a system of linear equations to estimate
variations of the gates. However, the optimization problem
in Equation 15 does not consider the spatial correlation of
the delay variations. Incorporating the spatial correlation
in the model significantly improve the results and allows
resolving the ambiguities described in the previous section.
This section incorporates sparsity in the wavelet domain as
a model for the spatial correlation of the timing variation.
Thus we can use compressed sensing theory to measure and
estimate the variation.

5.1 Sparse Representation of Variations

To describe the form of spatial correlation of the varia-
tions we use a wavelet basis expansion. Wavelet basis ex-
pansions have a number of significant advantages that make
them suitable for the problem at hand [22]. Specifically,
wavelet expansions are very efficient to compute using well-
studied fast algorithms. Furthermore they are very good in
sparsely describing smooth functions, such as spatial cor-
relations. Figure 3 demonstrates the effectiveness of the
wavelet transform in representing spatial variation. The left
side of the figure is the image plot of the variation in a typ-
ical IC, generated using the Gaussian model in [16]. The
spatial correlation is evident in the figure. The right side of
the figure represents the wavelet transform of the left hand
side. Most of the transform coefficients are zero. Only the
top-left part of the figure has a dense amount of significant
non-zero elements.

Figure 4 presents the decay rate of the wavelet coefficients
for a number of different wavelet transforms. A transform
appropriate for compressed sensing should have a fast decay
rate. The faster the decay, the sparser the signal under this
transform, and the fewer the measurements necessary to ac-
quire the variation vector. The figure demonstrates that the
(3,5) Biorthogonal wavelet basis best describes the spatial
variations. We use this wavelet basis for the remainder of
this paper.

5.2 Gates on the Regular Grids

The derivations in this section assume that all the gates
are located on a regular grid. This assumption is relaxed in
Section 5.3 where the general case is considered.

When gates are located on a regular grid, the two-
dimensional wavelet transform of the variation, s, can be
expressed as the product of the variation vector, 1, with the
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Figure 4: Sorted wavelet coefficients for different
bases. bio3.5 bases results in the most sparse repre-
sentation.

Figure 5: When gates are placed on irregular grids,
we cover the circuit with a fine grid and map the
gates to the point on the fine grid.

wavelet transform matrix W.
s = WL (16)

As discussed in Section 5.1, s is assumed sparse because
of the spatial correlation in the variation. We enforce the
sparsity prior by regularizing Equation 15 using the /1 norm
of s, as described in Section 3.3:

min||Al—b||§+)\HS||1 (17)
or, equivalently,
min |[[AW 's — b3 + \|Is|1, (18)

where A\ is the regularization coefficient. Sparsity of the
variations wavelet transformation,s , provide a new piece of
information; Equations 17 and 18 essentially add the knowl-
edge of sparsity to the optimization. We call this method ¢
regularization method.

5.3 Gates on the Irregular Grids

In practice, gates are not placed on a regular layout grid.
Thus, in this section, we extend the proposed delay charac-
terization method to irregular grids.



Figure 5 shows an example of an IC in which gates are
placed on an irregular grid. To address the irregular place-
ment, we cover the IC with fine regular grids. Then, using
procedure 1, each gate is assigned to a point on the regular
grid. At the first step of Procedure 1, we label all the regu-
lar grid points unmarked. It means that none of the regular
points is assigned to any gate. In the second step, for ev-
ery gate, we find its closest regular point that is unmarked.
Finally, in 2.c, to prevent multiple selection, we mark the
selected regular grid.

In procedure 1, each gate is uniquely assigned to its closest
regular grid that is not assigned to any other gate.

PROCEDURE 1
Mapping from irregular gates to fine regular grids

(1) Set all the regular grid points unmarked

(2) for all gates, g;
a. p = the closest grid point to the gates that is unmarked
b. assign gate g; to p
c. it Mark regular grid point p

Then, we assign auxiliary variables to the points in the
fine grid that are not assigned to any gates. We also modify
the measurement matrix A to be consistent with the fine
regular grids. i.e., for each auxiliary variable, we add an
appropriate zero column to the matrix A. Since the coeffi-
cients of auxiliary variables in the measurement matrix are
zero, they do not affect the optimization.

6. APPLICATIONS

The proposed timing characterization method is effective,
inexpensive, and fast. A range of technical applications can
profit from the extracted post-silicon delay characteristics.
The emerging applications includes:

(1) Post-silicon optimization. Fast and noninvasive IC char-
acterization, enables application of chip-specific optimiza-
tion, e.g., post-silicon adaptive body bias [6] [23] [24].

(2) Improving simulations. The post-silicon models can be
integrated within the simulation platforms to enable more
efficient and accurate simulations.

(3) Improving SSTA methods. The aggregate statistics gath-
ered from post-silicon characterization can also be used to
enhance the quality of the pre-silicon models, such as SSTA.

(4) Manufacturing process characterization. The processes
and technologies of the state-of-the-art silicon manufactur-
ing facilities are considered classified information that are
not typically available to the users. The new noninvasive
characterization method could make accurate post-silicon
estimation of a number of important process parameters.

(5) IC identification. Since the variations are unique and
unclonable for each manufactured IC, they can be used as
the chip’s ID/fingerprint.

7. EVALUATION RESULTS

In this section, we evaluate the performance of the pro-
posed variation estimation methods on the MCNC bench-
marks.

7.1 Measurement Matrix and Estimation in
Subspaces

0.2
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Figure 6: Singular values of the measurement ma-
trices decay very fast.

As mentioned in Section 4, due to the existence of ambi-
guities (path dependencies), it may not be possible to find
variations of all the gates in the circuit. Thus, the measure-
ment matrix, A, is not necessary a full-rank matrix. Most
often the measurement matrix is ill-conditioned and its sin-
gular value decay very fast. Figure 6 shows singular values
of the measurement matrix for C880 and C432 circuit. The
singular values are normalized to have the maximum value
equal to 1. The singular values decay to 5% of the first one
after 34-th (C432) and 75-th (C880) singular values. Note
that C432 and C880 have 206 and 353 gates, respectively.

Hence, it is not possible to find the variations of all gates.
We measure estimation error in the space of singular values.
The estimation error is minimum at the direction of the sin-
gular vector corresponding to the largest singular value and
so on. We say estimation subspace is n., when we project
estimation error to the space of the first n. singular vectors
(singular vectors are sorted based on their corresponding
singular values).

7.2 Variation Estimation Evaluation

To evaluate the performance of the proposed methods, we
simulate the variation model (Section 3.1) on a number of
MCNC benchmark circuits. A total of 12% random varia-
tions is assumed. Correlated intra-die variation is 60% of
the total variation [25] [26]; 20% of the total variation is
uncorrelated intra-die variation and the remaining variation
is allotted to the inter-die variation.

We used SIS software to map the benchmark circuits to
NAND2, NAND3, NAND4, NOR2, NOR3, NOR4, and in-
verter gates. Then, using Dragon, a placement software
package [27], gates are placed on the IC. Since various gates
cover different areas on the IC, gates are located on irregular
grids.

To calculate the falling and rising coefficients (£#,4, and
&r,g. in Equation 13), we implemented all the gates with
65nm CMOS transistor technology. Then, we used the
HSPICE software to fit the linear model for all the gates.

Figure 7 shows variation estimation error for ¢ minimiza-
tion and ¢; regularization methods. The horizontal axis
is delay measurement noise and the vertical axis is vari-
ations estimation error. ¢; regularization causes a 100%



Circuit properties 3% noise 6% noise 9% noise
name | #gates | #inputs | #meas og 1/ = subspace | £; error | {2 error | {2 error | {2 error | £; error | {5 error
C432 | 206 36 309 0.035 | 26 3.76 6.82 4.34 12.86 5.23 17.25

52 6.57 12.58 7.75 21.22 9.5 30.846
C499 | 532 41 798 0.045 | 67 4.05 4.78 4.74 6.91 5.70 9.35
135 11.52 12.28 12.48 15.11 13.80 18.60
C880 | 353 60 529 0.043 | 44 2.65 5.45 4.27 10.61 5.99 22.49
89 5.34 11.56 7.93 21.71 10.9 36.5
C1355 | 517 41 775 0.038 65 2.55 4.11 4.17 7.87 5.90 11.69
131 5.22 7.10 8.21 13.19 11.41 19.47
C1908 | 615 33 992 0.052 78 2.56 2.77 4.05 71.61 5.68 100
156 4.78 5.25 7.57 70.94 10.58 97.21
C2670 | 900 233 1350 0.019 | 114 2.26 3.03 3.48 5.54 4.84 8.17
229 5.22 7.27 7.66 13.29 10.51 19.60
alu2 360 10 540 0.0519 | 45 2.54 10.69 3.74 21.30 5.17 38.78
91 4.88 25.70 7.89 51.28 11.28 78.55
alud 733 14 1099 0.036 | 93 3.63 12.79 6.01 100 9.76 100
186 6.42 20.41 10.22 102.93 15.76 102.93
comp 163 32 244 0.061 20 1.16 1.78 1.71 3.11 2.34 4.51
41 2.63 4.43 3.81 8.05 5.19 11.87
cordic | 102 23 153 0.099 13 3.37 5.11 5.04 9.41 6.93 13.90
26 8.38 15.93 13.10 29.89 16.91 44.17
b9 113 41 169 0.15 14 1.62 11.19 2.13 22.34 2.75 33.50
28 3.17 13.13 4.11 25.48 5.24 38.01
c8 165 28 247 0.22 20 2.32 9.43 4.12 18.72 5.85 28.03
41 5.10 14.09 9.33 27.95 13.10 41.84

Table 2: Performance of {2-norm minimization and ¢;-norm regularization for a number of MCNC benchmark

circuits.
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Figure 7: Variation (delay) estimation error vs.
measurement error.

improvement over f2 minimization. The estimation sub-
space is 52 and 89 for C432 and C880 circuits, respectively.
When measurement noise is small, delay measurements pro-
vides enough information to estimate variations accurately.
As measurement noise increase, sparsity provides more irre-
dundant information. Thus, performance of ¢; regulariza-
tion over ¢> minimization increases as measurement noise
increases.

The effect of the number of measurements is illustrated
in Figure 8. The horizontal axis is the number of delay
measurements divided by the number of the gates. Again,
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Figure 8: Variation (delay) estimation error vs. the
number of measurements.

£ regularization performs about 100% better than £2 mini-
mization. On the figure, the estimation subspace is 52 and
89 for C432 and C880 circuits, respectively.

Finally, Table 7.1 shows results of variation estimation on
12 benchmark circuits. After the benchmarks’ name, the
first, the second and the third columns are the number of
gates, the number of inputs in the circuit, and the number of
delay measurements, respectively. The fourth column is the
ratio of the N/4-th singular value to the first singular value
in the measurement matrix (N is number of gates.) This
column shows how fast singular values decay; or how the



measurement matrix is well conditioned. The fifth column is
the estimation subspace. The rest of the columns represent
the estimation error (in percent) for £2 minimization and ¢,
regularization with 3%, 6%, and 9% percent measurement
noise.

8. CONCLUSION

We have introduced a novel approach for post-silicon cir-
cuit timing characterization. The approach leverages the
new theory of compressed sensing for accurate estimation
of the sparse delay characteristics and distribution by using
only a few noninvasive measurement data. To implement
the approach, our compressed sensing-based framework em-
ployed the set of sensitizable paths (identified during the
testing phase), sparse representation of the delay variations,
structural logic relations, and methods to account for irregu-
larity of the gate layouts. Experimental results demonstrate
that by using the method, the post-silicon timing of the
benchmark circuits could be characterized with an average
accuracy of 95% in the pertinent subspace.
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