


ABSTRACT

Large-Scale Privacy-Preserving Matching and Search

by

M. Sadegh Riazi

The past few decades have witnessed considerable e↵orts for achieving a Privacy-

Preserving Computing (PPC) scheme where the input data of each engaging party

is not revealed to any other party. PPC, in fact, prevents any data leakage or in-

vasion of privacy. While there exist provably secure solutions, they su↵er from high

communication overheads and therefore they cannot scale for large-scale datasets.

This thesis proposes several novel techniques to overcome this limitation and opens

a new door for real-world applications. In this thesis, we focus on two of the most

important branches in this area which are matching and search. In the process of

matching, two groups of individuals are interested to be matched with each other

given certain rules and based on their preference list while keeping all preference lists

private. In the process of search, a user holding a query wants to find the most

similar profile (with a specific similarity metric) in a bank of profiles while keeping

both query and bank private. Our approach is based on a well-known protocol called

Garbled Circuit (GC) protocol which can securely evaluate any function of choice.

Previous works su↵er from immense overheads and lack of scalability. In this the-

sis, we introduce a new set of techniques that makes the GC-based protocols more

e�cient and make them scalable. We also study a new paradigm which is based on

Randomized Embeddings to develop a new framework for a faster privacy-preserving



search that can deliver unprecedented speed up. We have developed a framework that

introduces a privacy/accuracy trade-o↵ and can process search query for Millions of

users in real-time, an infeasible task prior to this work. Proof-of-concept evaluations

on large-scale datasets prove the practicality and scalability of our approach. For the

matching case, we evaluate our proposed solution on a bank of one million di↵erent

genomes. Privacy-preserving stable matching is performed on a set size as big as

National Residency Matching Program (NRMP). The last experiment is performed

on the largest MovieLens dataset which contains hundreds of thousands di↵erent user

profiles that is used to recommend a movie to a user based on the most similar profile

without compromising the privacy of user and profiles in the dataset.
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Chapter 1

Introduction

This thesis aims at developing new solutions for privacy-preserving computing and

looks at di↵erent approaches to reach its goal. The contribution of this thesis as

two folds: (i) introducing a novel set of techniques that makes Garbled Circuit (GC)

protocol more e�cient and scalable. GC protocol is one of the well-known Secure

Function Evaluation (SFE) protocols that can securely evaluate any function. Due to

the high computational and communication cost of this protocol, it has limited prac-

tical usage. The first two part of this thesis explain how we can make the GC protocol

more e�cient. To demonstrate the e↵ectiveness of our techniques, we have studied

one of the hardest problems in this domain, called Stable Matching (SM). We will

define SM and how to achieve a privacy-preserving version in Section 1.1. The results

are published in the Proceedings of the Privacy Enhancing Technologies Symposium

(PoPETs) 2017 [1]. We also introduce GenMatch, a secure DNA compatibility test-

ing system. GenMatch allows a person holding her binary DNA information to find

an organ donor that has compatible DNA in a case of organ transplant. GenMatch

preserves both the privacy of person’s sensitive DNA information and all other organ

donors that have their DNA information in the genome bank. We explain this system

in Section 1.2. The results are published in Hardware Oriented Security and Trust

(HOST) 2016 [2]. (ii) Introducing a new framework that can translate state-of-the-art

sub-linear near-neighbor search algorithms into a secure version [3]. Near-neighbor

search is defined as: for a given query input, finding the most similar entity in the
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database. Locality Sensitive Hashing (LSH) is an algorithm that enables sub-linear

near-neighbor search and is based on Randomized Embeddings. This framework

called Secure LSH (S-LSH) has taken its name from the fact that it can translate any

LSH algorithm into a secure version one. In Section 1.3, we will define near-neighbor

search and we will explain our framework. This is a powerful framework since it

enables real-time search for millions of users for the first time. The computational

complexity of this scheme is sub-linear in contrast to other SFE methods that are

linear.

1.1 Privacy-Preserving Stable Matching

Stable Matching (SM) has substantial real-world applications: The National Resi-

dency Matching Program (NRMP) matches around 32k graduating medical students

to residency programs in the US every year [4, 5]. The New York City Department of

Education (NYCDOE) matches over 90k entering students to public high schools [6].

Also there are many financial applications that require SM, such as vertical networks

and their application in supply chains [7]. In SM, there are two groups of individuals,

e.g., men and women. Each individual ranks the members of the other group in a list

sorted based on preference. The goal is to assign the members of these two groups

to each other while satisfying the following post-match condition: there shall be no

pairs from the two groups such that they prefer each other more than their already

assigned partners.

SM use cases typically involve sensitive preference lists which have to be kept pri-

vate. The current practice to ensure data privacy in SM is by exposing the personal

preferences to a third party server and relying on its trustworthiness to perform a

secure matching. However, relying on the trusted third party might be unacceptable
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because there is still a high risk of information leakage and data abuse by the third

party. Even if a third party server is indeed trustworthy, it can accidentally expose

the user’s private data in the event of a compromise. In addition to information

leakage, multiple studies [8, 9, 10] show that if certain individuals in a SM problem

know the input of others, they could leverage this information to manipulate the

results [11, 12]. Golle proposed a privacy-preserving SM system based on the Ho-

momorphic Encryption [13]. Franklin et al. then improved this system and made it

more e�cient using an e�cient multi-party indirect indexing [14, 15]. However, most

of the previously proposed protocols for secure SM use a large number of expensive

public-key operations and have not been implemented yet. The only solution based

on symmetric key encryption is proposed by Keller et al. [16]. They reported that

their approach can solve secure SM for 8 192 pairs (1/4 of the size of the NRMP) in

1.5 · 1012 seconds, i.e., almost 47 000 years! (see Table 7.1 in Section 7.1 for a detailed

comparison).

This thesis introduces the first scalable secure SM system. Our approach leverages

a well-known SFE protocol, called Yao’s Garbled Circuit (GC) [17], which is mainly

based on e�cient symmetric cryptographic operations. The input to this protocol

is a Boolean circuit description of the function that needs to be evaluated securely.

The total cost of the GC protocol is the total number of gates in the Boolean circuit.

The conventional approaches in the GC protocol mainly relied on a combinational

(directed acyclic) circuit description. In contrast, we utilize a recently proposed ap-

proach in [18] to describe the SM functionality as a compact sequential circuit. The

size of the sequential circuit is less than the combinational circuit but it has to be

evaluated for multiple iterations. Therefore, the total cost of the GC protocol is the

product of the number of iterations and the size of the sequential circuit. We reach to
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an unprecedented level of e�ciency for solving secure SM by two sets of innovations.

(i) We propose the first compact and e�cient circuit with sub-linear size with respect

to the number of pairs in SM (n). The size of our circuit is O(log3 n) which signif-

icantly improves over O(n2 log n) for the näıve sequential circuit. (ii) We present a

novel technique, called early termination, to significantly decrease the computation

time by reducing the total number of iterations that the SM sequential circuit needs

to be evaluated. For example, for the set size 8k, early termination results in three

orders of magnitude improvement in computation time and communication (reduc-

ing the execution time from 5.62 years to 1.25 days). Although our focus is on SM

algorithm, our methodology can be applied to other memory intensive algorithms

by adapting our novel early termination technique and creating sub-linear sequential

circuit.

As an application, we look at the NRMP which assigns around 32k medical stu-

dents to residency programs each year in the US. Our approach can perform this

assignment securely, for the first time, with a reasonable timing and communication

budget: 23.47 days computation and 272.2 TB total communication.

1.2 Secure DNA Compatibility Testing

Whole genome sequencing is a scientific process that is used to determine the complete

DNA sequence of an organism [19]. A lot of progress has been made in this area in the

past couple of decades. In fact, e↵orts are being made to commercialize this process

because of the potential applications. A number of companies are competing for the

market share of cost-e↵ective platform for full genome sequencing [20].

The availability of embedded platforms capable of the full sequencing of a genome

with on-board storage of the data in digital hardware, introduces new applications,
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challenges, and opportunities. On one hand, several new and exciting applications can

be realized at a fraction of today’s cost. One such emerging application is personalized

medicine where the e↵ect of a drug on a person can be tested genetically to determine

the drug’s compatibility with the person. This can also lead to reducing the risks

of side e↵ects and adverse reactions. Another application is genetic compatibility

which determines agreeableness of genomes between an organ donor and a recipient.

The first generation sequencing companies have mostly failed in this type of testing,

mainly due to the high cost associated with these procedures. Furthermore, in the

earlier commercial solutions, both partners had to send genome samples to the testing

company, which was both inconvenient and privacy invasive.

On the other hand, the privacy requirements for handling sensitive genome data

arise serious challenges. Not only the sensitive DNA data reveals important personal

information about the individual, but also, the process is irreversible and could cause

lifelong irreparable damages to the DNA owner and her relatives sharing similar genes.

As a result, it is necessary to devise methods that protect the privacy of individuals

interacting with third party companies or research organizations handling genome

data. Earlier work in this area explored ways of preserving privacy by anonymizing

the data or formulating secure protocols. The current literature falls within one of the

two categories: (i) heuristic solutions that lack strong security proofs or guarantees

within the standard model [21, 22] or (ii) provably secure solutions that have limited

scalability on real DNA datasets [23].

Our work explores practical privacy-preserving DNA testing based on Yao’s

provably secure Garbled Circuit (GC) protocol. Specifically, we consider Human

Leukocyte Antigen (HLA) analysis which is a crucial test in organ transplantation

[24, 25, 26, 27]. First, the raw genome data of the organ receiver (or donor) is
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processed to obtain required HLA information for performing the privacy-preserving

genome test. (In our case, we used the raw genome data from the Human Genome

Project [28] database.) Then, the GC protocol is used to compare this HLA data with

an existing HLA database of donors (or receivers) to compute the best match for the

HLA data while preserving the privacy of all parties involved. We adopt the Tiny-

Garble platform [18] to implement the GC protocol. TinyGarble takes a sequential

circuit description of the function that needs to be evaluated securely. We formulate

a sequential circuit for performing the HLA data compatibility test and show that it

can be e�ciently implemented using Verilog.

1.3 Privacy-Preserving Near-Neighbor Search

Near-neighbor search is one the most fundamental and important tasks in many

di↵erent applications. In this problem, given a D dimensional query q and a database

F containing n di↵erent D dimensional points, we are interested to find any “near”

points in F to the q. The term near can be defined as several metrics such as euclidean

distance, Jaccard similarity (resemblance), cosine similarity and etc. However, in

many crucial applications, it is critical that the q is not revealed to the server and

also the points in the database do not get revealed to the query holder. This problem

is called privacy-preserving near-neighbor search (PP-NNS). PP-NNS is necessary

for privacy-preserving face recognition [29], secure biometric authentication [30, 31],

privacy-preserving speech recognition [32] and private recommender systems [33].

The focus of this section will be on “e�cient” privacy-preserving near-neighbor

search “scalable” to modern big-data. With the increased emphasis of algorithms

on strong privacy of the user information, this simple task of near-neighbor search

becomes less straightforward. Previous arts have broken down the PP-NNS problem
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into two sub-problems: first, private calculation of pairwise distances between query

and all points in the dataset and second, finding the minimum of these distances

securely.

Privacy-preserving near-neighbor search is a very well studied topic due to its

significance and impact. There are di↵erent methodologies addressing this critical

problem in a variety of diverse settings. Primarily, methodologies for PP-NNS can

be classified into three broad categories: 1) Computational privacy, 2) Information-

theoretic privacy, and 3) Randomized embeddings.

First group uses various cryptographic primitives to securely compute the pairwise

distances by performing the computation on encrypted version of data. The security of

this approach just like cryptographic tools, is based on the hardness of some problems

in number theory (e.g. factorization of large numbers) which makes it intractable

for an adversary with limited computational resource. Since every single bit in the

computation is encrypted, these solutions are impractical and unscalable to modern

big-data. The second group, unlike the first group, is information-theoretic secure

meaning that no adversary even with unlimited computational power can comprise

the data. This approach is based on sharing some secret information to perform the

secure computation. Securely computing pairwise distances is a relatively easy task

for these schemes. However, comparing distances for finding the minimum requires

comparison which cannot be performed using secret-sharing alone and needs a number

of cryptographic blocks [34, 35] which then limits the overall scalability.

The third group relies on randomized embeddings. Embedding is a transformation

that maps the data into another space (usually lower-dimensional) while preserves the

distance between any pair of points, with high probability. The new representation

does not reveal direct information about the original attributes [36]. These method-
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ologies typically are based on Jonson-Lindenstrauss [37] or Locality Sensitive Hashing

(LSH). We argue that the securely finding all pairwise distances is su�cient but not

necessary for the task of near-neighbor search. In fact, if we are only interested in

the task of near-neighbor search, being able to estimate distance between all pair of

points (even points which are not close) compromises privacy and are susceptible to

“triangulation” attack (see Section 5.1 for details).

In this thesis we address all shortcomings of previous works by introducing new

embedding. Our proposal is a novel transformed embedding on the top of LSH embed-

ding, we call it as Secure-Locality Sensitive Hashing (S-LSH), where only distances

between close enough points are preserved. Our embedding further ensures that

non-neighbor distances are indistinguishable from a random point. Therefore, it is

impossible to estimate their distances if they are not among the neighbors. Thus,

we avoid the unnecessary leak in information, making our proposal secure against

triangulation attacks. This added security comes at no price and our proposal retains

all the nice guarantees for sub-linear near-neighbor search.

Note that there has been successful progress of di↵erential privacy [38]. The

idea behind di↵erential privacy is to perturb the distance estimates (or the vectors

themselves) using smartly tailored noise to trade-o↵ privacy with utility. But the

security model of di↵erential privacy is di↵erent from us. They assume a trusted

server that holds all sensitive data and the goal is to provide statistical information

while preserving the privacy of users’ data in the database. This is in contrast with

our security model where we do not trust the server or any party engaging in the

computation.
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1.4 Contribution

The explicit contributions of this thesis are as follows:

1.4.1 P3SM

• We introduce the first feasible, scalable, and e�cient secure SM for real-world

set sizes.

• We design the first sequential circuit for the SM algorithm for Yao’s GC pro-

tocol. The compactness achieved by the sequential description (as opposed to

prior combinational one) reduces the circuit size fromO(n4 log n) toO(n2 log n).

• We design the first sub-linear size circuit (w.r.t. the SM set size). This circuit

achieves unprecedented computation and communication e�ciency compared

to the prior art by integrating sub-linear ORAM and various memory access

strategies.

• We introduce mathematical and statistical methodologies for early protocol

termination which allows us to trade-o↵ between security and e�ciency.

• We demonstrate a proof-of-concept implementation of our approach for di↵erent

secure SM settings with various set sizes. We benchmark the state-of-the-art

sub-linear ORAM schemes and report the best solution for di↵erent range of

set size.

1.4.2 GenMatch

• Introduction of the first e�cient, practical, and scalable methodology for se-

cure organ and tissue transplantation compatibility test. Our method leverages
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hardware synthesis techniques to formulate the genome matching algorithm for

the GC protocol. The low memory footprint of our method allows the first

implementation of provably secure matching on embedded devices.

• Design of the first sequential circuit for the purpose of organ compatibility

testing. The circuit performs a comparison with one entity in the database at

each sequential clock cycle and incurs a circuit size of logarithmic complexity

which can scale well for big database sizes.

• Creation of special computational blocks customized for the GC-based DNA

matching applications. We also suggest a new method for a cumulative addition

where the output bit-length increases with each stage.

• Proof-of-concept implementation of privacy-preserving organ and tissue trans-

plantation compatibility test and demonstrating the scalability of our work by

performing a compatibility test on a database in the order of million user pro-

files.

1.4.3 S-LSH

• We propose Secure-Locality Sensitive Hashing (S-LSH), the first of its kind, a

generic transformation which makes any given locality sensitive hashing scheme

secure by preventing the leakage of information completely unnecessary for the

task of near-neighbor search. This advantage comes at no additional cost and

we retain all the advantages of locality sensitive hashing required for sub-linear

search.

• Our proposed protocol is simple to implement, massively parallelizable and leads

to provably sub-linear search algorithm for privacy-preserving near-neighbors
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search, making it ideal for massive datasets.

• Experimental evaluations on largest MovieLens dataset supports our theoretical

claims and clearly demonstrates the practicality of our approach.

• Our framework is flexible and can incorporate di↵erent distance thresholds and

accuracy tolerance.

• We provide the formal analysis of our approach and show information theoretic

bounds.
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Chapter 2

Preliminaries and Background

In this chapter, we bring some background information that are necessary for bet-

ter understanding the terminologies used throughout this thesis. In Section 2.1, we

explain what is Secure Function Evaluation (SFE). In the follow up section, we de-

scribe one of the popular protocols in SFE, called Garbled Circuit (GC) protocol. In

Section 2.3, we describe Stable Matching (SM) algorithm and its variants. The basic

information about human genome and DNA are covered in Section 2.4. Last section,

defines approximate near neighbor search and Locality Sensitive Hashing (LSH).

2.1 Secure Function Evaluation

SFE allows to evaluate a function on private inputs from multiple parties where each

party wants to keep her own inputs private. More formally, suppose given number of

participants, p
1

, p
2

, ..., p
N

, each having a private data, x
1

, x
2

, ..., x
N

, respectively.

They are interested to find the value of publicly known function f(.) on their inputs,

f(x
1

, x
2

, ..., x
N

), while no information is revealed to other parties other than what

can be inferred from output. In fact, p
i

learns nothing about {x
j

| j = 1...N, j 6= i}.

Perhaps the most famous example is Yao‘s Millionaire problem introduced in

1985 by Andrew Yao. In this problem, two millionaires want to know which one has

more wealth while not telling anyone their actual wealth. The general version of this

problem is solving inequality without revealing the actual values. The Millionaire’s
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problem is one of the important problems in cryptography where its solution is used

in e-commerce and data mining.

We can categorize di↵erent SFE protocols into two inherently di↵erent approaches:

(i) computational security and (ii) information-theoretic security. Figure 2.1 shows

di↵erent protocols for SFE. The first group uses various cryptographic primitives and

preserves the privacy of inputs by performing the computation on encrypted version

of data. The security of this approach just like cryptographic tools is based on the

hardness of some problems in number theory (e.g. factorization of large numbers)

which makes it intractable for an adversary with a limited computational resource.

Since every single bit in the computation is encrypted, these solutions are impracti-

cal and unscalable to modern big-data. The second group, unlike the first group, is

information-theoretic secure meaning that no adversary even with unlimited compu-

tational power can comprise the data. This approach is based on sharing some secret

information to perform the secure computation. However, secret-sharing by itself is

not capable of solving Millionaire’s problem and therefore some cryptographic pro-

tocols are needed if the function in SFE protocol needs a secure comparison of two

numbers.

Information-Theoretic Secur i ty

Secure Function Evaluation 
(SFE)

Garbled Cir cui t (GC) Goldreich-Micali -Wigderson (GMW)Homomorphic Encr yption (HE)

Computational Secur i ty

Figure 2.1 : Di↵erent SFE protocols.
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The three most practical protocols in computational security are Homomorphic

Encryption (HE), Garbled Circuit (GC), and Goldreich-Micali-Wigderson (GMW).

HE is mostly based on computationally expensive public key encryption. On the

contrary, GC mainly uses symmetric key encryption which is far less expensive and

this makes GC protocol to be more promising and has been used more in real-world

applications. GC protocols takes as input a Boolean circuit description of a function

that needs to be evaluate securely. GMW, similar to GC needs Boolean description

of the function. GMW is more e�cient than GC protocol when the depth of the

circuit is relatively small. Today, the common drawback of SFE protocols is their

low e�ciency, mainly due to the communication. Therefore, for SFE protocols to be

widely adopted, it is crucial to devise methodologies that increase the e�ciency.

2.2 Garbled Circuit Protocol

Yao’s GC protocol [17] is one of the most promising solutions for two-party SFE.

In this protocol, two parties (Garbler and Evaluator) jointly evaluate a function on

their inputs while keeping their own data private. The function is represented as

a Boolean circuit. The GC protocol consists of three algorithms: circuit garbling

which is done only by the Garbler, data exchange which involves both parties, and

evaluation which is done only by the Evaluator. First, Garbler assigns two random

keys to each Boolean value in the circuit and then encrypts the truth table of each

gate using the keys. Garbler sends the encrypted tables to the Evaluator together

with the keys corresponding to her inputs. Evaluator revives the keys corresponding

to his inputs from the Garbler through 1-out-of-2 Oblivious Transfer (OT) protocol,

without letting her to know his inputs. Then, Evaluator decrypts the tables, one by

one, using the received keys until he reaches the output keys. Finally, Garbler reveals
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the mapping of the keys to the semantic values to Evaluator in order to achieve the

final result in plain-text.

2.2.1 Optimizations

We benefit from the state-of-the-art optimizations for the GC protocol. We utilize

Free-XOR technique [39] which makes the cost of garbling an XOR gate virtually

zero. Therefore, the cost of GC protocol can be measured only in terms of the num-

ber of AND gates in the circuit. We also use garbling with a fixed-key block-cipher

[40] together with the half gates technique [41] for e�cient evaluation of AND gates.

For OT required in the initial data exchange of the GC protocol, we use the OT

Extension method [42, 43]. We use TinyGarble [18], an automated framework for

generating optimized Boolean circuits for the GC which is based on logic synthe-

sis tools. It optimizes the generation of a Boolean circuit for the GC protocol by

customizing the flow of the logic synthesis tool. It uses a customized technology li-

brary consisting of logical descriptions of basic gates. The library also includes the

corresponding parameters like timing and area. In the case for the GC, the timing

parameter is not needed as the GC depends only on the size of the circuit. The area

parameter of an XOR gate is set to 0 and all other two input gates to 1. TinyGarble

also proposes to use sequential circuits that are more compact than the conventional

combinational circuits. However, sequential circuit has to be evaluated for multiple

iterations. Sequential circuit stores the state of the computation in memory elements

(registers). Unlike combinational circuit, the output of the sequential circuit depends

both on the input to the circuit and the value of the registers. Sequential description

reduces the memory footprint of the GC protocol.
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2.2.2 Oblivious RAM

Goldreich and Ostrovsky [44] proposed a two-party mechanism that lets a client store

her data on a remote server while hiding her data and access pattern from the server.

They also showed that the lower bound for the cost of accessing a single entry in the

memory is sub-linear with respect to the size of the memory. A näıve implementation

of ORAM linearly scans the entire memory for each access such that the client can

choose the desired entry using multiplexer (MUX) which is called Linear ORAM.

There are several improvements on the original idea of ORAM including [45, 46, 47]

which reduced the amortized per-access complexity to O(log3 n). Gordon et al. [48]

proposed to use ORAMmechanism inside two-party SFE (e.g., GC) in order to reduce

the amortized cost of accessing a memory entry from linear to sub-linear. So far, the

best asymptotic complexity for ORAM inside SFE is Circuit ORAM proposed by

Wang et al. [49]. A recent paper [50] presents Square-Root ORAM, an alternative

ORAM structure that has lower initialization cost than Circuit ORAM. Despite the

fact that it has higher asymptotic complexity, it outperforms Circuit ORAM for

medium-sized memory.

2.2.3 Adversary Model

The GC protocol, on which we base our implementation, is secure against honest-

but-curious (also known as semi-honest or passive) adversaries which means that all

parties should follow the protocol but they may be curious to extract additional data

from the data which they are receiving. Although this security model is not the

strongest attack model, it is a first step towards being secure and it is commonly

used in the literature. Also there are several reasons for having this security model:
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• According to [51] there are some scenarios in which this security model is ac-

ceptable: when parties are reasonably trusted like hospitals and companies but

they need to obscure their private information for legal reasons or to prevent

future break-ins. For example when the parties are government agencies, they

can assure each other that they will follow the protocol.

• When only one party, evaluator, will receive the results and the other party or

parties will not get any result including the successful completion of protocol. In

this case if we use the oblivious transfer (OT) that is secure against malicious

adversaries we would achieve full security. Notably, no one learns anything

about other parties’s inputs except what the evaluator can conclude by knowing

the output.

• Since we design Boolean circuits that are evaluated with Yao’s GC protocol, the

very same circuits can be evaluated with (less e�cient) protocols that provide

security against stronger active/malicious adversaries, e.g., [52, 53, 54, 55].

• Many useful privacy-preserving applications inherently have the properties that

let them fit well into our protocol. For instance, when all parties have an

incentive to generate flawless outcomes like financial fraud detection when banks

pull together all of the data to detect corrupt accounts or personalized medicine

when a patient and drug company collaborate to find the best medicine, they

are basically interested to reach the correct result and hence they will adhere

to the protocol steps.

However, revealing the output itself could inevitably leak some information. A

simple example is a circuit that evaluates one AND gate to which each party provides

an input. When one party knows that its own input is x = 1 and after finishing the
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protocol sees that the output is x ^ y = 1 it can infer that the other party’s input

has been y = 1 as well. This information leakage is not a flaw of the protocol, but

an inevitable property of the function that is being computed securely. Knowing how

much private information is leaked by the output itself is a crucial and challenging

problem, but out of the scope of this work.

2.3 Stable Matching

In this section, we illustrate the detailed description of the SM problem. A number

of researchers have focused on addressing the SM problem, but Gale and Shapley [56]

were the first to formalize the SM algorithm. They centered their work on the special

case of the marriage problem. In this case, there is a set of men and a set of women.

They introduced an algorithm which resulted in stable marriage. Gale and Shapley

also proved that the stable match always exists. However, they showed that there

can be more than one stable assignment and so the stable matching is not a unique

assignment. Roth [11] demonstrated that there is always a stable match preferred by

men (male-optimal) and there is always a stable match preferred by women (female-

optimal). The algorithm which Gale and Shapley proposed consists of a number

of rounds in which the men propose and the women review these proposals. This

algorithm always produces a match which is preferred by men and thus is male-

optimal. (For more detail, see [9].)

In a general SM problem we have two groups of individuals that can represent

various types of entities. Thus, for simplicity, we call these two groups women and

men. We denote the size of the group of women by |W | and that of men by |M |. In

general the cardinality of these two sets can be di↵erent. We assign an ID from 0 to

|W |�1 to each woman and 0 to |M |�1 to each man; ID is unique among each group.
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Each woman and man ranks the members of the other group as she/he prefers which

we call vector of preferences. Each woman can rank up to K
w

men and each man can

rank up to K
m

women. Generally, K
w

and K
m

can be di↵erent from |M | and |W |

respectively. For simplicity we will show the complexity of our protocol in terms of

n throughout this thesis, where n = |M | = |W |. The preference vectors altogether,

will form a preference matrix. Thus we have one preference matrix for the women’s

group and one for men’s in which each row represents the preference vector of each

member of that group, see Figure 2.2 for an example: If woman #1 ranks the men

as [1, 2, 0], this means that she prefers man #1 over man #2 and so on.

0 1 0 2
1 1 2 0
2 0 1 2

Higher → Lower
PriorityWoman ID

(a) Women

0 2 0 1
1 2 1 0
2 0 1 2

Higher → LowerMan ID Priority

(b) Men

Figure 2.2 : Example of preference matrices.

Therefore the preference matrix is of size |W |⇥K
w

for women and |M |⇥K
m

for

men. These two matrices are the only input to the SM algorithm. After the algorithm

is finished, the result is a stable match, meaning that there are no two individuals

that they both prefer to be matched to each other but are not already assigned.

Figure 2.3 shows one stable match and one unstable match. The match in Fig-

ure 2.3a is stable because it satisfies the above definition and the match in Figure 2.3b

is unstable because man #0 prefers woman #2 over woman #1 and also woman #2

prefers man #0 over man #1 and this violates the definition of SM.
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Woman ID Man ID
0 2
1 1
2 0

(a) Stable

Woman ID Man ID
0 2
1 0
2 1

(b) Unstable

Figure 2.3 : Example of stable and unstable match.

A stable match is called optimal for men or women if every member of that group

is matched to the best person he/she prefers that could have been matched in any

other stable matches. Roth [11] showed that this specific version of SM can always

be found for one of the sets but not for both.

2.3.1 General Stable Matching

The first algorithm relates to the case when each individual ranks all of the members

from the other group. More specifically, K
m

= |W | and K
w

= |M |. There is a list of

size |W | which holds the up-to-now assigned partner to each woman. This temporary

assignment will become finalized when the algorithm terminates. We have the notion

of free and engaged persons during the execution of the algorithm. Engaged persons

are those who have a partner up to that round and free persons are those who do

not. Each man could become engaged and after that free and again engaged and so

on. But as soon as a woman gets engaged, she remains engaged until the end of the

matching process. The algorithm consists of R proposals. In each proposal, a free

man proposes to the woman he prefers the most and he has not proposed to yet. Then

if that woman who is proposed to is free, they become engaged. If she is engaged, she

looks at her preference list and sees whether she prefers the proposing man over her
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already assigned partner or not; if yes, she becomes engaged to the new man and the

previous man becomes free and if she does not prefer, she rejects the proposal and the

man remains free. The algorithm runs until all men are engaged. Algorithm 1 shows

the pseudo-code of the limited SM algorithm where w  ! m denotes assigning man

m to woman w and pc is the proposal counter for men.

Algorithm 1 General Stable Matching

while |free men| 6= 0 do

m choose from free men

w = most preferred woman that m has not yet proposed to

if w is free then

w  ! m

else

m0  man who is currently engaged to w

if w prefers m over m0 then

w  ! m

m0 gets free

end if

end if

end while

Gale and Shapley showed that this algorithm takes at most R
max

= n2 � n + 1

proposals (R  R
max

), where n is the size of each participating group. As proven by

Gale and Shapley, a stable match always exists and the algorithm terminates with

the male-optimal stable match.
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2.3.2 Limited Stable Matching

In the following, we describe a variant of the SM algorithm where each person ranks

only a subset of the other group. More specifically, K
m

< |W | and K
w

< |M |. This

version is called limited SM. In this case, each person ranks up to a certain number,

meaning that he/she prefers to be unmatched rather than being assigned to a person

who is not in the list. Algorithm 2 is the pseudo-code for limited SM where the

only di↵erence to Algorithm 1 is that there is a limit on the total number of listed

preferences.

Algorithm 2 Limited Stable Matching

initialize pc[i] = K for i 2 {0, |M |� 1}

while 9man : pc[man] > 0 ^man is free do

m choose that free man

w = most preferred woman that m has not yet proposed to

pc[m] pc[m]� 1

if w is free then

w  ! m

else

m0  man who is currently engaged to w

if w prefers m over m0 then

w  ! m

m0 gets free

end if

end if

end while
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The number of proposals in this case is not flexible and in fact is fixed to R =

K
m

·|M |. Although this algorithm limits the number of choices, it takes a fixed number

of proposals which is far smaller than that of the general version: R
general

2 O(n2)

whereas R
limited

= K
m

· |M | 2 O(n) for constant K
m

.

2.4 Human Genome and DNA

A human genome is the complete set of genetic and biological information of a person.

It consists of about 3 billion nucleotides of types guanine (G), adenine (A), thymine

(T), or cytosine (C). Several active research projects aim at analyzing the genome

data to extract specific information or finding a correlation between genome patterns

and physical/mental traits.

We focus on a specific part of DNA called the Human Leukocyte Antigen (HLA).

HLA genes are the human equivalents of Major Histocompatibility Complex (MHC)

genes found in most vertebrates. HLA genes encode proteins that are responsible for

regulation of the immune system in humans. In other words, HLA is responsible for

determining whether a tissue is native or foreign. HLA is present in chromosome 6 of

the genome. There are several classes of this part of the DNA and they have di↵erent

functions.

The HLA genes that are inherited by an individual on a single chromosome con-

stitute a “haplotype” [57]. Each person receives a pair of HLA genes, one from each

of the parents. An example of HLA data of a person is shown in Figure 2.4.

HLA mismatch in case of organ transplant is a major cause of transplant rejec-

tions and graft-versus-host-disease. Therefore, it is important to match HLA data

before transplantation. It should also be noted that HLA data can reveal information

about genetic ancestry and predisposition of the person towards certain autoimmune
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Paternal inheritance Maternal inheritance
HLA-A*01:01 HLA-A*02:01
HLA-B*07:02 HLA-B*08:01
HLA-C*07:01 HLA-C*16:01
HLA-DQA*02:01 HLA-DQA*05:01
HLA-DQB*02:01 HLA-DQB*02:01
HLA-DRB*03:01 HLA-DRB*07:01

Figure 2.4 : Sample HLA template for an individual.

diseases. Apart from this, HLA can also be used for genetic compatibility testing. It

was observed that married couples were less likely to share HLA alleles [58].

2.5 Approximate Near-Neighbor Search and Locality Sensi-

tive Hashing (LSH)

A popular technique for approximate near-neighbor search, uses the underlying theory

of Locality Sensitive Hashing (LSH) [59]. LSH is a family of functions, with the

property that similar input objects in the domain of these functions have a higher

probability of colliding in the range space than non-similar ones. In formal terms,

consider H a family of hash functions mapping RD to some set S.

Definition 1 Locality Sensitive Hashing (LSH) Family A family H is called

(S
0

, cS
0

, p
1

, p
2

)-sensitive if for any two point x, y 2 RD and h chosen uniformly from

H satisfies the following:

• if Sim(x, y) � S
0

then PrH(h(x) = h(y)) � p
1

• if Sim(x, y)  cS
0

then PrH(h(x) = h(y))  p
2
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For approximate nearest neighbor search typically, p
1

> p
2

and c < 1 is needed. An

LSH allows us to construct data structures that give provably e�cient query time

algorithms for approximate near-neighbor problem.

2.5.1 Popular LSH 1: Minwise Hashing and Resemblance Similarity

One of the most popular measures of similarity between web documents is resem-

blance (or Jaccard similarity) R [60]. This similarity measure is only defined

over sets which can be equivalently thought of as binary vectors over the universe,

with non-zeros indicating the elements belonging to the given set. The resemblance

similarity between two given sets x, y ✓ ⌦ = {1, 2, ..., D} is defined as

R =
|x \ y|
|x [ y| =

a

f
1

+ f
2

� a
, (2.1)

where f
1

= |x|, f
2

= |y|, and a = |x \ y|.

Minwise hashing [61] is the LSH for resemblance similarity. The minwise hashing

family applies a random permutation ⇡ : ⌦! ⌦, on the given set x, and stores only

the minimum value after the permutation mapping. Formally MinHash is defined as:

hmin

⇡

(x) = min(⇡(x)). (2.2)

Given sets x and y, it can be shown by elementary probability argument that

Pr
⇡

(hmin

⇡

(x) = hmin

⇡

(y)) =
|x \ y|
|x [ y| = R. (2.3)

2.5.2 Popular LSH 2: Signed Random Projections (SimHash) and Cosine

Similarity

SimHash is another popular LSH for the cosine similarity measure, which originates

from the concept of Signed Random Projections (SRP) [62, 63, 64]. Given a
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vector x, SRP utilizes a random w vector with each component generated from i.i.d.

normal, i.e., w
i

⇠ N(0, 1), and only stores the sign of the projection. Formally

SimHash is given by

hsign

w

(x) = sign(wTx). (2.4)

It was shown in the seminal work [65] that collision under SRP satisfies the following

equation:

Pr
w

(hsign

w

(x) = hsign

w

(y)) = 1� ✓

⇡
, (2.5)

where ✓ = cos�1

⇣
x

T

y

||x||2·||y||2

⌘
. The term x

T

y

||x||2·||y||2 , is the cosine similarity. Since 1� ✓

⇡

is monotonic with respect to cosine similarity S, it is a valid LSH.

2.5.3 Mapping LSH to 1-bit

LSH, such that Minhash, in general, generates an integer value, which is expensive

from the storage perspective. Having a single bit hashing schemes, or binary locality

sensitive bits, has many advantages. It is also not di�cult to obtain 1-bit LSH. The

idea is to apply random universal hash function to the LSH and map it to 1 bit.

As an example, the 1-bit MinHash is computed by applying universal hash function

to MinHash, to rehash it to 1-bit, given by the equation

hmin,1bit

⇡

(x) = h
univ

(hmin

⇡

(x)), (2.6)

where h
univ

is any universal hashing scheme [66] randomly mapping the input to 0

or 1. It can be easily shown that the collision probability under this 1-bit scheme is

given by

Pr
⇡

(hmin,1bit

⇡

(x) = hmin,1bit

⇡

(y)) =
R+ 1

2
, (2.7)

Another convenient (and e�cient) 1-bit rehashing is to simply use the parity, or the

most significant bit, of hmin

⇡

(x) as 1-bit hash [67].
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Chapter 3

P3SM: Practical Privacy-Preserving Stable
Matching

3.1 High Level Architecture

We implement a secure stable matching system based on Yao’s GC protocol [17] which

is an e�cient method for secure function evaluation between two parties. Secure SM

is inherently a multiparty SFE problem where multiple parties provide their inputs.

However, we use a known technique based on XOR-secret-sharing that translates this

problem into two-party SFE.

In the GC protocol, the underlying function has to described as a Boolean circuit.

The input of each party is an input to this circuit. Then two parties, called Garbler

and Evaluator, run the GC protocol and find the results. Implementing the entire

SM as a acyclic Boolean circuit (combinational) is neither practicable nor scalable

and hence no one has tried to implement it so far. In our work, we design a compact

sequential circuit which enables an e�cient implementation of the SM algorithm.

Here, we explain how two proxies (the Garbler and Evaluator) are able to securely

perform the SM for multiple parties using the GC protocol (see [68] for details). For

each input bit I, each party does the following:

1. Generate a random mask I
A

.

2. Compute I
B

= I
A

� I.
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3. Send I
A

to Garbler and I
B

to Evaluator.

The SM circuit is extended by one layer of XOR gates for each input. Each XOR

gate receives I
A

and I
B

as inputs, provided by Garbler and Evaluator respectively,

and computes I = I
A

� I
B

as output. The outputs of these gates are the inputs to

the main SM circuit.

Party with 
Input IParty

Random 
Number 

Generator 

Stable 
Matching 

(SM) Circuit

Hardware 
Synthesis

Topological 
Order 

Sorting

Ordered 
Netlist of the 

Circuit

Creating Garbled 
Circuit

Oblivious 
Transfer (OT) and
Sending Garbled 

Tables

Oblivious 
Transfer (OT) and

Receiving 
Garbled Tables

Evaluating 
Garbled Circuit

Calculating 
Output

Stable Match List

Calculating 
Output

Garbler Evaluator
IA IBOffline Netlist 
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Figure 3.1 : Global flow of our secure SM system.

Figure 3.1 shows the global flow of our system which consists of two parts. First,

the o✏ine pre-processing and then the online execution which preforms the GC proto-

col. In the first part we synthesize the circuit, generate the netlist and sort the gates
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topologically. This ordered netlist is given to the Garbler to generate the garbled

circuit for the online phase. In the online phase, the constant-round GC protocol is

executed: the Evaluator gets all information that she needs to evaluate the garbled

circuit. At the end, both Garbler and Evaluator share the results to find the outputs

and deliver them to all parties.

The SM algorithm is considered to be secure if it outputs a stable match without

revealing any additional information about preference list except what can be inferred

from the output. Our scheme is secure against honest-but-curious adversaries. Our

system realizes secure SM as it takes the encrypted inputs from each party and

securely computes a stable match. Our methodology is secure as it relies on the

security of the GC protocol which has been proven to be secure against honest-

but-curious adversary in [69]; getting inputs from each party with the XOR-sharing

technique is secure because Garbler and Evaluator see only random numbers from

which they cannot infer any information [68]. The output is a correct stable match

since our circuit for SM implements the Gale and Shapley algorithm that was proven

to correctly compute a stable match [56].

3.2 Circuits for Stable Matching

As explained in Section 2.2, the GC protocol for the two-party SFE takes a Boolean

circuit as a function description. In this section, we describe how we generate such cir-

cuits for SM. We describe a combinational circuit for SM in Section 3.2.1. Afterwards

we introduce the first sequential circuit ever implemented for SM in Section 3.2.2. In

Section 3.2.3, we analyze the circuit runtime. Section 3.2.4 describes a novel sub-

linear size circuit for SM that we have designed. Finally, in Section 3.2.5 we analyze

the memory usage and ORAMs’ access cost complexities.
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3.2.1 Combinational Circuit

To the best of our knowledge, there exists no implementation of the combinational

circuit that gets the men’s and women’s preference matrices as an input and outputs

the stable match. The reason might be that it is relatively complicated to design such

a large circuit without proper tool support. In this section, we calculate a lower bound

for the size of this circuit. Considering n to be the number of the pairs in SM, we have

preference matrices of size O(n2 log n) bits, because each of the n individuals ranks

the nmembers of the other group and each entry needs to be represented by log n bits.

Accessing an entry, without using a sub-linear ORAM, requires a multiplexer which

needs O(n2 log n) AND gates. Comparing two entities of length log n requires log n

AND gates. We have to compare n entities for each man, yielding total O(n2 log n)

AND gates. This is just for accessing and comparing two preferences. To implement

the algorithm, it is extraordinarily hard to design a generic circuit. One solution

might be to design a circuit that has R (the number of proposals) layers and each

layer processes one proposal made by a man until we reach the stable match. Knowing

that in the worst case, we need R
max

= n2 � n + 1 proposals, this accounts for the

number of layers of the circuit. Another solution might be for each man to find his

match instantly. This requires that for each of the n women on his list, we find

whether she accepts the proposal by that man or not and this also depends on the

preference list of other men. So in this way, we need n circuits of size O(n) (for each

woman) times n (for each man) to compare the preferences. This results in O(n3)

comparisons on O(n log n) values. In both cases, the lower bound of the circuit size is

O(n4 log n) which is a huge circuit size even for relatively small values of n. Therefore,

the real implementation is not feasible for real-world applications, since there is no

automated tool to generate and synthesis circuit of such size.
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3.2.2 Sequential Circuit

Describing the SM circuit in a sequential way enables us to implement the circuit in

a highly compact format. This compact format allows us to synthesize the circuit

for larger group size and meet the size of real-world applications. This compactness

also provides us with the ability to store the circuit on the platforms with lower

computational and memory capabilities.

In the rest of this section, we describe our sequential circuit for SM. Figure 3.2

shows the block diagram representation of the circuit. The inputs to the circuit are

the preference matrices of men and women. The circuit consists of the following

modules: Algorithm Computation Circuit (ACC), vectorized Preference Compare

Circuit (PCC), and Man Selection Circuit (MSC), and Memory (registers for storing

the state values).

Here, we explain how the entire circuit works. We design the sequential circuit

such that it processes one proposal in one iteration of the sequential circuit. MSC

finds a free man. In Section 3.2.3, we will explain how MSC and Finish Signal work.

Once a free man is selected, he should propose to the most preferred woman that

he has not already proposed to (see Algorithm 1). Therefore, a counter storing the

number of the proposals is required for each man; we call it Proposal Counter (PC).

In order to access the desired women ID, a MUX on the man’s preference list is

required. This needs O(n2 log n) AND gates.

ACC implements the main part of Algorithm 1 as a Boolean circuit. ACC pro-

cesses the proposal: if a woman is free, then the man and she will be engaged and

the status of the assignment will be updated in the memory. If she is not free, ACC

needs to check whether or not she prefers the man over her current match. Therefore,

we need to access the preference vector of the woman using MUX and deliver it to



32

M
U

X
M

U
X

In
pu

t f
ro

m
 M

en
In

pu
t f

ro
m

 W
om

en

Man 
Selection 

Circuit 
(MSC)

Algorithm
Combinational 

Circuit 
(ACC)

Finish
Signal

Preference 
Compare

Combinational 
Circuit (PCC)

Registers
(Memory)PC 

handler

St
ab

le
 M

at
ch

 
Li

st

O
ut

pu
t

Men 
Preference 

Matrix

Women 
Preference 

Matrix

Memory handler

Figure 3.2 : Block diagram architecture of the sequential circuit for implementing

secure SM.

PCC together with the values for the man ID and the women’s current match ID.

PCC linearly scans the preference vector and checks which one of the two men is

more preferable (which one comes first in the preference list). It is important that

PCC does this task in one iteration, otherwise the entire circuit will be unnecessarily

evaluated and the e�ciency will be reduced. As a result, one proposal can be done

in one iteration of the sequential circuit. In Section 3.2.3, we will explain how many

iterations the circuit should be evaluated.

Figure 3.3 illustrates the inside of the PCC. This circuit is designed to minimize

the number of AND gates. It uses two linear layers of XOR gates and three linear

layers of AND gates which at the end are OR-ed and produce the output. The final

logical OR gate is implemented by n�1 two-input AND gates and 3n�3 XOR gates.
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Thus, PCC uses 4n� 1 AND gates. In summary, the total number of AND gates in

the circuit is O(n2 log n) dominated by MUXs for accessing the preference list.
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Figure 3.3 : Preference Compare Circuit (PCC).

3.2.3 Number of Proposals and Circuit Runtime

Gale and Shapley have proved that after at most R
max

= n2 � n + 1 proposals in

Algorithm 1, the algorithm will output a stable match. However in the GC, the

intermediate status of each man’s engagement is encrypted and cannot be accessed in

plain-text. Therefore, the process of finding the next free man becomes challenging.

One näıve implementation can be to iterate over all men and let them to propose

regardless of the engagement status. But if the man was not free, the proposal should

be invalidated. This approach is dramatically ine�cient. The reason is as follows:

since all the information in the circuit is encrypted, there is no way to distinguish a

valid proposal from an invalid one. Thus, we have to evaluate the circuit regardless

of the validity of the proposal. As a result, we need to run the circuit even for more

iterations than the mathematical worst case of the number of proposals (R
max

). This

problem arises both for general SM and limited SM. To overcome this problem, we
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have designed Man Selection Circuit (MSC). This circuit wisely choses the next free

man ahead of time to avoid invalid proposals (unnecessary execution of the circuit).

MSC makes the number of iterations that the circuit should be evaluated exactly

equal to the number of required proposals. In the worst case, this number is equal

to R
max

. However, based on our extensive statistical analysis, we have observed that

the average number of required proposals is linear in terms of set size n. It can be

seen from Figure 3.4 that the average and statistical maximum of number of the

proposals are linear with respect to the set size. More precisely, the average number

is O(n) while the worst case number is O(n2). The error bars show the minimum

and maximum number of proposals for each set size. Hence, we can take advantage

of this linear average by two di↵erent approaches. The first approach is to run the

circuit for a constant number of times. This number can be statistically guaranteed

instead of mathematically guaranteed and it means that we can run the circuit for

some fixed statistically driven number like m+↵⇥�, where m is the average number

of proposals, � is the standard deviation, and ↵ is a constant to be determined by

the probability of proper termination. ↵ is fixed prior to running the protocol and is

known by both Garbler and Evaluator. The second approach is to produce the Finish

Signal by ACC and stop the algorithm as soon as the stable match is reached. We call

this approach Early Termination Technique (ETT). ACC produces the Finish Signal

by checking if all the men (or women) are engaged. The cost of producing this signal

is n � 1 AND gates because it is the result of the logical AND over all the men’s

status; if all of them are matched, then the Finish Signal is true.

In order to verify the termination condition in the middle of the GC protocol, the

parties have to reveal the shared secret associated only to the Finish Signal. Revealing

this secret in an iteration will not leak any information about the rest of the secure
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Figure 3.4 : Number of proposals needed for di↵erent scenarios in the general SM.

Statistical worst case is computed for ↵ = 8). The error bar shows the minimum and

maximum value in the simulation. Experiment is performed 10 000 times for each set

size with randomly generated preference list.

computation except the fact whether or not the computation is finished up to this

iteration. Thus in our implementation, the computation and communication can be

scaled down by a factor of O(n) (see Section 6.1.4 for more details on information

leakage and Section 6.3 for results).

3.2.4 Sub-linear Sequential Circuit

In Section 3.2.2, we proposed a sequential circuit for general and limited SM. The

size of the circuit is O(n2 log n). We also discussed in Section 3.2.3 that the circuit

should run for O(n2) iterations for the worst case scenario and can be reduced using

early termination (ETT) to O(n). Therefor, the overall computation and communi-
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cation complexity of the secure SM is O(n3 log n) using ETT. This overall cost is the

product of the number of iterations and the size of the circuit. For the set size of

the NRMP (n = 32k), the cost is in the order of 250 AND gates which incurs 32PB

communication! The number of iterations (proposals) is already minimized by MSC

and ETT and cannot be reduced further. Thus, the only way is to reduce the circuit

size. To do so, we propose four tweaks for the sequential circuit.

First, we replace the MUXs accessing the memory (e.g., preference list of men and

women) with sub-linear ORAM. It allows us to access the memory of size m with the

cost of less than O(m). We will discuss the choice of ORAMs and their trade-o↵s in

Section 3.2.5.

Second, we need to change the size of PCC from linear to sub-linear. PCC out-

puts a binary indicating if a woman prefers the new proposing man over her already

assigned man. PCC linearly scans the woman’s preference list (a vector of man’s ID)

in order to find which man came first in the list. (Note that the list is sorted from

most desirable to the least.) This incurs O(n) AND gates. To make PCC sub-linear,

we store the inverse of the preference list of each woman. For example if man #5 is

the 3rd one in the preference list, in the inverse list, the value of the 5th position is 3.

Now instead of a linear search, we need two accesses to the inverse list and compare

their values to determine the more desirable man. However, access cost using MUX

is still O(n). But the MUX can be replaced with sub-linear ORAM to make the total

cost sub-linear with respect to n.

Third, ETT needs to access the status of all men in order to determine the Finish

Signal (O(n) AND gates). Accessing the men’s status list using sub-linear ORAM

does not solve the problem since we still need to access men’s status list n times at

each iteration. This makes the overall cost even worse than Linear ORAM. Therefore,
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we have to amortize the cost by running ETT once every � · n iterations, where � is

a constant, making the amortized cost of ETT O(1).

Forth, MSC requires scanning over the status of all men at each iteration to choose

the next free man. Similar to ETT, this incurs O(n) AND gates. Unlike the solution

for ETT, we cannot skip this computation for any iteration. We propose to store the

ID of all free men in a queue. We dequeue a free man and process his proposal. If

his proposal gets rejected, we enqueue him to the back of the queue. Or if in the

process of the proposal, a previously assigned man becomes free, we enqueue this

man to the queue. The queue should be initialized by all men at the beginning of

the SM. Therefore, the capacity of the queue should be exactly n. We implement

this queue using an array of size n and circular indexing. This is the most e�cient

and simplest solution and incurs a constant number of accesses per each enqueue or

dequeue operation. By storing this array in a sub-linear ORAM, the size of MSC will

become sub-linear.

3.2.5 Memory Analysis and Choosing ORAM Scheme

There are several ORAM schemes in the literature [49, 50]. Each of them has di↵erent

initialization cost and access complexity. Depending on the intensity of memory

accesses and size of the memory, each ORAM may outperform the others. Thus, it

is important to find at which memory size, one ORAM scheme starts to outperform

the others. This is called the breakeven point. To the best of our knowledge, Circuit

ORAM [49] has the best asymptotic complexityO(log3n). However, for small memory

sizes, Linear ORAM (MUX) outperforms all sub-linear ORAMs including Circuit

ORAM. The reason is twofold: (i) The cost of initialization for Linear ORAM is

negligible compared to sub-linear ORAMs. (ii) The constant coe�cient for its access
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cost complexity is lower than the one for sub-linear ORAMs.

For medium set size, another sub-linear ORAM, Square-Root ORAM [50], out-

performs both Linear ORAM and Circuit ORAM. The reason is that it has lower

initialization cost compared to Circuit ORAM but has better access cost complexity

of O(
p
n log n) compared to Linear ORAM. As the set size increases, Circuit ORAM

eventually outperforms both Square-Root ORAM and Linear ORAM.

Based on the characteristics and performance of di↵erent ORAM schemes, we

integrated our sequential circuit with the best ORAM scheme. The choice of ORAM

also depends on which variant of secure SM we want to use (General SM or Limited

SM) and whether or not we are interested to use the early termination technique.

Table 3.1 shows the overall asymptotic complexity which includes both initializa-

tion and per-access cost. Note that in order to find the most e�cient one, we need to

perform experiments. In Section 6.1.2, we will show what is the best choice of ORAM

depending on the set size and SM variant based on our experiments.

Table 3.1 : Total complexity for implementing each variant of SM using di↵erent

ORAM schemes, where n is the set size and k is the limit of number of proposals in

limited SM.

ORAM Scheme General SM General SM + ETT Limited SM

Linear ORAM O(n4 log n) O(n3 log n) O(n2 k2 log n)

Square-Root ORAM O(n3 log2 n) O(n2 log2 n) O((n k)1.5 log1.5(n k) log0.5 n)

Circuit ORAM O(n2 log3 n) O(n2 log3 n) O(n k log2(n k) log n)
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3.3 Methodology for Scaling GC

In this section, we use two techniques that allow to scale the GC protocol to a real

world problem size. (1) Scalable circuit generation (Section 3.3.1): which aims to mit-

igate the GC netlist generation scalability problem by exploiting the inherent struc-

tures of various parts in the circuit. (2) Early termination technique (Section 3.3.2):

which significantly reduces the computation by revealing the termination status at

several points in the execution of the protocol.

3.3.1 Scalable Circuit Generation

A number of methods [18, 70] have been proposed in recent years to generate an

e�cient circuit for GC. Unfortunately, none of them provide a scalable solution for

the real-world-size secure SM problem. In order to obtain a practical solution, we

developed optimizations and e�cient circuit designing techniques described in Sec-

tions 2.2.1 and 3.2 which give us a tremendous improvement toward scalable secure

SM. However, the scalability of those solutions is still limited to the capability of

generating a netlist using the underlying synthesis tool. For example, the Synopsys

Design Compiler which is used in [18] is able to synthesize a circuit with at most

⇠ 5⇥ 105 gates⇤ which limits us to scale up to a real-world-size with ⇠ 108 gates. To

bypass this limitation, we divide the circuit into two parts first:

(1) Structural which follows a specific pattern regardless of the problem size, e.g.,

MUX, encoder, and decoder. The optimized circuit for a structural module can

be described based on only its size parameters e.g., number of entities for encoder.

⇤According to our experiments
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The structural module’s description can be achieved independently of the rest of the

circuit.

(2) Non-structural which simply is not structural and does not follow a specific

pattern, e.g., controller and FSM. The netlist for a non-structural module can not

be easily described and it requires a sophisticated tool to optimize and generate. On

the other hand, non-structural parts require a considerably smaller number of gates

compared to the structural parts. For example in our SM problem, the non-structural

modules allocate ⇠ 500 gates compared to ⇠ 108 for structural parts.

In our methodology, we use two di↵erent flows for generating the netlists for the

structural and non-structural parts of the circuit. For structural part, we develop a

tool which synthesizes and generates the netlist for any arbitrary size parameters and

hence can be scaled to a real-world set size. Unlike previous GC circuit generation

methods, our tool is aware of the inherent pattern of structural modules and can

generate the optimized netlist. For the non-structural part, we can use any previous

method for generating a netlist because the size of the non-structural part does not

scale with the size of the problem and hence can be easily synthesized.

At the end, we can merge the resulting netlists from the previous steps together to

make the final netlist. The final netlist is optimized since each submodule is separately

optimized. We can use this netlist as the input to the GC protocol.

3.3.2 Early Termination Technique

It is well known that the execution time of a number of algorithms (e.g., SM and

iterative algorithms with a convergence condition) depends on the input and can not

be determined easily, however, the termination condition can be e�ciently verified
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during the execution. If the computation of these algorithms is done in plain-text,

the termination condition can be checked in every iteration, thus, the execution is

aborted accordingly. Whereas, when the computation is done securely, e.g. in the GC

protocol, all intermediate values are encrypted and can not be determined without

concession of the parties involving in the secure computation. Hence the computa-

tion should continue for the predetermined worst case scenario. This results in an

unnecessary computation after reaching the final result. This useless computation

can be avoided, only if the termination condition can be verified at some points in

the middle of the process. For example in SM, the average number of proposals re-

quired for the stable match is much smaller than the worst case number of proposals

(see Section 6.3). More precisely, the average number is O(n) while the worst case

number is O(n2).

In two-party GC to verify the termination condition in the middle of the process,

the parties reveal the shared secret associated only to the termination signal (wire).

Revealing this secret will not leak any information about the rest of the secure com-

putation except the fact that whether or not the computation is finished.

Thus in SM, the computation and communication can be scaled down by a factor

of O(n) by revealing the termination signal at the end of each proposal (see Sec-

tion 6.1.4 for more detail on information leakage and Section 6.3. In Algorithm 1,

the termination condition can be easily verified by observing the matching status of

all the men. Once all the men are matched, the match will be stable. Thus, the

termination condition is the logical AND over all the men’s status; if all of them are

matched, then the termination signal is true.
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Chapter 4

GenMatch: Secure DNA Compatibility Testing

4.1 Scenario

We explore the scenario where a patient needs an organ transplantation and is look-

ing for compatible donors. We assume that the patient has undergone full genome

sequencing. The HLA data is obtained from pre-processing the genome data. Fully

sequenced genomes are very large files and secure computation on the data as a whole

is both infeasible and unnecessary. Instead, we extract the information required for

compatibility testing through o↵-line processing. Assuming we have a database of

HLA data of donors, we find the best possible match for the patient’s HLA data.

For two parties, Figure 4.1 shows the block diagram of our system. Figure 4.1

shows the block diagram of our system.

4.2 Pre-processing

The HLA data needed for our test can be extracted from the fully sequenced genome.

Samples of fully sequenced genome data are available through the Human Genome

Project to researchers for analysis and application specific usage [28]. This data can

be processed using HLA-genotyper [71], a python based library used for HLA typing.

This is an o✏ine process as it involves no interaction between the two parties and it

is also convenient as it only has to be done once and the obtained data can be stored

and used in the future.
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Figure 4.1 : Block diagram of total end-to-end system including pre-processing (o✏ine stage) and

secure function evaluation (online stage).

4.3 Boolean Circuit

The extracted data from pre-processing contains a pair of haplotypes. One from the

mother and the other from the father. There are 6 pairs of haplotype data, HLA-A,

HLA-B, HLA-C, HLA-DQA, HLA-DQB, and HLA-DRB. The Algorithm 3 describes

the process of comparison of two HLA data [57, 72, 73].

However, this hardware descriptor file itself is not the direct input to GC proto-

col. As Figure 4.2 shows several process stages are needed to make this circuit an

acceptable input. First, the Verilog code of the circuit should be synthesized to give

the netlist file of the circuit. Netlist file describes the circuit only as gates and how

they are connected to each other rather. Second, we need to process this netlist to

sort the gates topologically to prevent GC protocol getting stopped in the middle of

garbling and evaluating process. This is necessary because if the garbler garbles the
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Algorithm 3 Algorithm for computing percentage of HLA compatibility between 2

persons.
Inputs: 6 pairs of HLA data from person 1 (HLA1 [index] [pair]) and 6 pairs of

HLA data from person 2 (HLA2 [index] [pair]).

Outputs: Percentage of compatibility between two samples.

1: total compatibility = 0

2: for n = 1 to 6 do

3: if HLA1[n][1] == HLA2[n][1] then

4: if HLA1[n][2] == HLA2[n][2] then

5: compatibility = 1

6: else

7: compatibility = 0.5

8: end if

9: else if HLA1[n][2] == HLA2[n][1] then

10: if HLA1[n][1] == HLA2[n][2] then

11: compatibility = 1

12: else

13: compatibility = 0.5

14: end if

15: else if HLA1[n][1] == HLA2[n][2] then

16: compatibility = 0.5

17: else if HLA1[n][2] == HLA2[n][2] then

18: compatibility = 0.5

19: else

20: compatibility = 0

21: end if

22: total compatibility = total compatibility+ 1

6

⇥ compatibility

23: end for
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circuit in an order other than topological order, it is possible that he can not continue

garbling because the input to the gate he is garbling is not ready yet. We also need to

describe that to which party (garbler or evaluator) each input wire belongs. Finally,

these information are stored in SCD file.

Ver i l og 
code 

Synopsys 
Design 
Vision

Net l i st .v Topological  
Sor t i ng

Output     
.scd

Figure 4.2 : Di↵erent stages for converting the Boolean Circuit to required input for Yao’s garbled

circuit protocol

We use Verilog to characterize the Boolean circuit required for the GC protocol.

This circuit calculates the percentage of compatibility between two samples of HLA

data and is shown in Figure 4.3. This is a sequential circuit which takes the patient’s

HLA data and also one HLA profile in a database as inputs at each clock cycle.

The circuit compares the compatibility among pairwise HLA profile as described

in Algorithm 3. The final compatibility is the average of all pairwise HLA type

compatibilities. Instead of directly finding the average, we propose an alternative

approach, described in Section 4.4, which results in a more e�cient computation.

The final compatibility is then compared with the previously most compatible profile

(pre-)stored in the memory (D-FFs). If this new HLA profile is more compatible

than the previous one, this new value along with the index of this new profile will

be stored in the memory. To keep track of which index we are comparing at a given

time, we have embedded a counter in this circuit which is incremented at each clock

cycle by one. Since we compare one profile from the database at each clock cycle, we

need to evaluate the circuit for N clock cycles, where N is the number of profiles in
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the database.

Figure 4.3 : Architecture of the sequential circuit used in the GC protocol.

4.4 Circuit Optimizations and Size Model

The optimizations we describe here are di↵erent from the state-of-the-art optimiza-

tions that are used for executing the GC protocol in Section 2.2.1. In Section 2.2.1,

we explain that an XOR gate does not need a garbled table and hence the cost of

computation of an XOR gate is negligible. Therefore, the goal is to minimize the

number of non-XOR gates in the circuit. Here are some techniques we propose:

Translating floating-point operations into integer operations As discussed

in Section 4.2, we need to calculate the compatibility of pairwise HLA data between

the patient and a profile in the database. Possible outcomes for each HLA type

comparison can be 0, 0.5 or 1, we can encode these outcomes into 3 binary values

00
2

, 01
2

and 10
2

. Then only 2 bits are su�cient to represent them. For calculating

the final average, we need to do an integer addition instead of the floating-point

addition and the division can be omitted since it is a division by fixed number for
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all comparisons among di↵erent profiles (division by 6). This will result in a huge

reduction in the circuit size.

Designing special building blocks Since the goal is to reduce the number of non-

XOR gates in the circuit, we need to design each block to get the minimum number

of non-XOR gates possible. To achieve this goal we have designed special comparison

block. This block has only b � 1 non-XOR gates for comparing the binary input of

length b-bit. At each clock cycle, we need to increment the counter by one and this is

fixed for all clock cycles and hence, we have optimized this counter to have the least

number of non-XOR gates.

Adder optimization In order to find the summation of 6 pairwise comparisons

between di↵erent HLA types, we propose a hierarchical structure as shows in Fig-

ure 4.3 instead of instantiating the default addition block. This structure is more

e�cient because it gives us a dynamic bit-length. The bit-length of output for each

adder increases as we add the results of more comparisons. As an example, in the

worst-case-scenario, for the first addition, we only need to add 10
2

and 10
2

which will

result in 2-bit adder and use a carryout bit. As we progress in this structure we need

higher bit-length to represent the result and this will give us the most e�cient way to

do this summation. Also, each adder is specially designed to have the least number

of non-XOR gates.

Perfect match signal We have a 1-bit signal in the circuit which sets to high if we

find a perfect match between patient’s HLA data and one of the profiles in the bank.

Therefore, there is no need to continue the protocol and we can terminate it sooner.

The perfect match happens when all HLA types are same. Since every value during
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the execution of the GC protocol is encrypted, both Garbler and Evaluator need to

reveal their shared secret to achieve the actual value of this signal. While revealing

this bit will inform us as soon as we have found the best match possible, it will not

reveal anything about any HLA data from patient side and from database side.

4.4.1 Circuit Size Model

Here we analyze the size of the circuit and present a quantitative formula for its size.

There are some parts of the circuit that are not dependent on the database size (N)

such as HLA comparison blocks and hierarchical structure of adders. However, some

parts have a number of non-XOR gates proportional to log N , including counter and

maximum value comparison block. Therefore, the final number of non-XOR gates is

a linear function of log N plus a constant factor. Figure 4.4 proves our analysis and

shows the number of non-XOR gates for di↵erent number of database size (N). The

experimental results deviate slightly from theoretical function due to the heuristic

approaches used for synthesizing the circuit. The formula for calculating the number

of non-XOR gates is ↵⇥ log N+�, where ↵ = 18.6 and � = 395. As we discussed, we

need to evaluate this sequential circuit for total number of N clock cycles to compare

the patient’s HLA data with all of the HLA data in the database. Therefore, total

number of garbled tables we need to evaluate, one for each non-XOR gate, is N times

the total number of non-XOR gates in the circuit:

Total # of garbled tables = N ⇥ (↵⇥ log N + �)

Above equation shows that our approach can be easily scaled up to huge database

sizes such as million due to the linearithmic complexity. Note that in the GC protocol,

the computational time and communication are proportional to the total number of

garbled tables.
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Chapter 5

S-LSH: Secure Locality Sensitive Hashing

5.1 LSH and Triangulation Attack

Here we explain why any scheme that allows for estimation of any pairwise distances

is susceptible to triangulation attack. For illustration, we focus in the context of

hashing (or embedding) based approach. Suppose an attacker has the knowledge of

the location of any three random points in original space and their corresponding

hashes (public). Such an information is not hard to obtain, in fact, it can be fake

online profiles. Given these three points and their corresponding hashes, any attacker

can compute the original location of any target point (user’s input) by estimating

its distance with the three pre-chosen points. Figure 5.1 shows a two-dimensional

illustration of our setup. Let the three di↵erent points be A,B, and C, as shown.

The target point is illustrated as q. The estimated distances derived from hash

comparisons are described as d
A

, d
B

, and d
C

.

From point A’s perspective, q can be anywhere on a circle with radius d
A

with A

as the center. Figure 5.1 shows three circles corresponding to the points A, B and

C. If our estimate of distances are accurate, which is true with general LSH because

they can be easily used for estimation [74], then intersection of the three circles is a

very close estimate of the exact location of the q. Even if the distance estimation is

not very accurate, the three circles would intersect at six points and it is still possible

to find the location of the q as explained in supplementary material. In general, if
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the data is D dimensional, an attacker needs D + 1 random points to find the exact

location of the q.

Thus, protocols revealing the distances for any pair of points are not “truly”

secure. Our approach, on the other hand, is secure against this attack because our

hash comparison reveals the distances only if the points, under consideration, are

very close to each other, meaning that the server should know the location of the

q beforehand. It should be noted that we cannot hope to do better, because any

near-neighbor oracle, having reasonable utility, should identify close by points.

q

dA

dB

dC
A

B

C

Figure 5.1 : Triangulation Attack. The user q and the random points A, B, and C.

The d
A

, d
B

, and d
C

are estimated distances from comparing hashes of q and the other

three points.

5.2 Making LSH Secure

Our proposal is a generic framework for making LSH signatures privacy-preserving

and allowing for secure public release. See Section 5.2.4 for the description of our

protocol. We illustrate the main idea using 1-bit MinHash and later we formally

introduce the methodology. The collision probability, for any two given data points
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x and y, under 1-bit MinHash is given by R(x,y)+1

2

. This quantity linearly varies,

between 1 to 0.5 as R(x, y) varies from 1 to 0, with a constant gradient of 1

2

. See

Figure 5.2 (dotted red line). Thus, even when R(x, y) is small, the variation of the

collision probability with distance keeps changing and it gets reflected in the hamming

distance between the public l-bit hash string required for near-neighbor search. This

also allows us to estimate the distances accurately by simply counting the number of

bit-matches out of the publicly released l-bits.

For making the LSH privacy-preserving and still useful for the task of near-

neighbor search, we want to achieve the collision probability curves, given by bold

black line, in Figure 5.2. For this new curve, once the similarity between the pairs

of interest x and y is below the satisfactory level, the collision probability becomes

flat with no gradient. With such collision probability, the hamming distance between

the publicly available l-bit hash codes, for any pair of random points x and y, will
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be always around l/2 (due to 0.5 probability of agreement) not allowing any e�cient

estimation of distances between x and y based on observed l-bits.

At this point, we have realized that we have to transform the collision probability

curve. The main challenge at hand is to find an expression for collision probability

curve which is close to the desired bold blue curve, in Figure 5.2, and at the same

time represents the collision probability of some 1-bit hashing scheme. We found that

the expression given by R(x,y)

k

+1

2

has the required “sweet” property. In particular, we

will construct a new 1-bit private MinHash with collision probability R(x,y)

k

+1

2

for any

positive integer k, instead of R(x,y)+1

2

. The key observation is that since R  1, Rk for

reasonably large k quickly falls to zero asR(x, y) goes away from 1, and so the quantity

R(x,y)

k

+1

2

will be very close to 1

2

for even moderately low similarity. Furthermore, we

can control the decay of the probability curve by choosing the appropriate k. We will

later show that R(x,y)

k

+1

2

follows the desired trend of collision probability, and it is

also secure from information theoretic perspective.

We can generate 1-bit hash functions with collision probability R(x,y)

k

+1

2

by com-

bining k independent MinHashes. Note that, given x and y, the probability of agree-

ment of an independent MinHash value is R(x, y). Therefore, the probability of

agreement of all k independent MinHashes will be R(x, y)k. To generate a 1-bit hash

value from k integers, we will, in addition, need a universal hash function, that will

take a vector of k MinHashes and map it uniformly to 1-bit. The final collision prob-

ability will be precisely R(x,y)

k

+1

2

as required. The overall idea is quite general and

applicable to any LSH. We formalize it in the next section.
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5.2.1 Formalization

We will need a universal hashing scheme, h
univ

: Nk 7! {0, 1}, which maps a vector

of k integers uniformly to 0 or 1. There are many ways to achieve this, a common

candidate is

h
univ

(x
1

, x
2

, ..., x
k

) = (r
k+1

+
kX

i=1

r
i

x
i

) mod p, mod 2,

where r
i

are fixed integer numbers generated randomly.

Given a hash function h uniformly sampled from the locality sensitive family H,

let us denote the probability of agreement (collision) of hash values of x and y under

the sampling of h by P
c

P
collision

⌘ P
c

⌘ PrH(h(x) = h(y)). (5.1)

Our proposed secure 1-bit LSH, h1bit

sec

, for any point x is given by

h1bit

sec

(x) = h
univ

(h
1

(x), h
2

(x), ..., h
k

(x)), (5.2)

where h
i

, i 2 {1, 2, ..., k} are k independent hash functions sampled uniformly from

the LSH family of interest H. It is not di�cult to show the follogwing

Theorem 5.1

For any vectors x and y, under the randomization of h and r
i

we have

P sec

c

= PrH,r

�
h1bit

sec

(x) = h1bit

sec

(y)
�
=

P k

c

+ 1

2
(5.3)

Proof 5.1 It should be noted that h1bit

sec

(x) = h1bit

sec

(y) can happen due to the ran-

dom bit collision with probability 1

2

, otherwise the two are equal if and only if

(h
1

(x), h
2

(x), ..., h
k

(x)) = (h
1

(y), h
2

(y), ..., h
k

(y)) which happens with probability P k

c

,

because each of the h
i

’s is independent and Pr(h
i

(x) = h
i

(y)) = P
c

. Therefore, the

total probability is 1

2

+ 1

2

P k

c

leading to the desired expression.
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We illustrate the usefulness of the above-proposed framework in deriving secure

1-bit hash for two most popular similarity measures: (i) Secure MinHash for Jaccard

similarity and (ii) Secure SimHash for Cosine similarity. Secure hashing schemes for

these similarity measures were not known before.

5.2.2 Secure Minwise Hashing (Secure MinHash)

As an immediate consequence of Theorem 5.1 we obtain secure 1-bit MinHash for

searching with Resemblance similarity,

hmin,1bit

sec

(x) = h
univ

(hmin

⇡1
(x), hmin

⇡2
(x), ..., hmin

⇡

k

(x)), (5.4)

with the following Corollary:

Corollary 1 For MinHash we have:

P sec

c

= Pr
�
hmin,1bit

sec

(x) = hmin,1bit

sec

(y)
�
=

Rk + 1

2
(5.5)

Our protocol requires l independent bits. For this, we simply generate l indepen-

dent hmin,1bit

sec

, by using independent permutations for MinHashes and independent

random numbers for the universal hashing. Therefore, hmin

sec

is the concatenation of l

di↵erent hmin,1bit

sec

. Figure 5.3 (left) shows that the nature of new collision probability

follows the desired trend.

Having secure 1-bit MinHash, we can build secure l-bit MinHash (Secure Min-

Hash) by simply generating l di↵erent 1-bit MinHashes.

hmin

sec

(x) = hmin,1bit (1)

sec

(x) || hmin,1bit (2)

sec

(x) || ... || hmin,1bit (l)

sec

(x) (5.6)

Please note that each 1-bit MinHash in equation 5.4 is derived independently and

hence uses di↵erent permutations for MinHash and di↵erent coe�cient for its univer-

sal hash. It is straightforward to show that the probability of two secure MinHashes
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Figure 5.3 : Left: The probability of collision plotted as function of R (resemblance)

for di↵erent values of k (degree). Right: Mutual Information between two 1-bit

hashes as a function of R (resemblance) for di↵erent values of k.

to be equal can be calculated from the equation 5.5 since each 1-bit MinHash is

independent.

Pr
�
hmin

sec

(x) = hmin

sec

(y)
�
= (

Rk + 1

2
)l (5.7)

Next, we formally show that our bits are secure. In particular, we show that the

mutual information between the two secure MinHashes, hmin

sec

(x) and hmin

sec

(y), decays

sharply to zero as the similarity between x and y, i.e. R goes away from 1.

Information Theoretic Bound

Here, we determine the mutual information between two MinHashes to illustrate the

security property of our approach. Since each bit is driven independently of other

bits, it is easy to show that the total mutual information between two hashes is just

the multiplication by l (total number of bits in one hash) of the mutual information

between ith bit of two MinHashes. For simplicity let us call the ith bit of hmin

sec

(x), u
i
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and ith bit of hmin

sec

(y), u0
i

. We derive the mutual information between these two bits

conditioned on the similarity of x and y (R) as follows:

I(u
i

; u0
i

|R) ⌘
X

u

i

,u

0
i

2{0,1}
P (u

i

, u0
i

|R)log
P (u

i

, u0
i

|R)

P (u
i

|R)P (u0
i

|R)
(5.8)

= P sec

c

log(2P sec

c

) + (1� P sec

c

)log(2(1� P sec

c

))

= log(2(1� P sec

c

)) + P sec

c

log(
P sec

c

1� P sec

c

)

=
1

2
(log(1�R2k) +Rklog(

1 +Rk

1�Rk

))

< Rklog(
1 +Rk

1�Rk

)

Therefore the mutual information between two MinHashes is bounded by the

following formula:

I(hmin

sec

(x);hmin

sec

(y)|R) < l · Rklog(
1 +Rk

1�Rk

) (5.9)

As can be seen from Equation 5.9, the mutual information drops rapidly as the

resemblance goes to zero, which shows the security of our approach. Figure 5.3 (right)

summarizes the exact mutual information (bold lines), with varying k, as the function

of Resemblance along with their upper bounds (dotted lines). It is evident that, for

any two non-neighbor points, x and y, the generated bits behave like random bits

giving no information about their similarity. The choice of k controls the similarity

thresholds that we are interested in.

5.2.3 Secure Signed Random Projections (Secure SimHash)

Analogous to the secure MinHash, we can derive secure SimHash having similar de-

sired properties. From Theorem 5.1 the secure 1-bit SimHash for searching with
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Cosine similarity is given by,

hsign,1bit

sec

(x) = h
univ

(hsign

w1
(x), hsign

w2
(x), ..., hsign

w

k

(x)). (5.10)

For this hashing scheme we have

hsign

sec

(x) = hsign,1bit (1)

sec

(x) || hsign,1bit (2)

sec

(x) || ... || hsign,1bit (l)

sec

(x) (5.11)

with the following Corollary:

Corollary 2 From Theorem 5.1 for SimHash we have:

P sec

c

=
(1� ✓

⇡

)k + 1

2
(5.12)
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Figure 5.4 : Left: Collision probability plotted as function of cos(✓) for di↵erent

values of k (degree of transformation). Right: Mutual Information between two

SimHashes as a function of cos(✓) for di↵erent values of k.

and as a result:

Pr(hsign

sec

(x) = hsign

sec

(y)) = (
(1� ✓

⇡

)k + 1

2
)l (5.13)
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We formally show the mutual information between secure bits hsign

sec

(x) and hsign

sec

(y)

rapidly goes to zero as the Cosine similarity between x and y goes to zero.

Information Theoretic Bound

Similarly, the mutual information bound between the two bits, of secure SimHash,

conditioned on cosine similarity of x and y ( x

T

y

||x||·||y|| = cos(✓)) as:

I(u
i

; u0
i

|cos(✓)) =

1

2
(log(1� (1� ✓

⇡
)2k) + (1� ✓

⇡
)klog(

1 + (1� ✓

⇡

)k

1� (1� ✓

⇡

)k
))

< (1� ✓

⇡
)klog(

1 + (1� ✓

⇡

)k

1� (1� ✓

⇡

)k
) (5.14)

Therefore the mutual information between two SimHashes is bounded by the

following formula:

I(hsign

sec

(x);hsign

sec

(y)|cos(✓)) < l · (1� ✓

⇡
)klog(

1 + (1� ✓

⇡

)k

1� (1� ✓

⇡

)k
) (5.15)

Figure 5.4 summarizes both the collision probability as the function of similarity for

di↵erent k and also shows the mutual information and the upper bounds. Both these

figures show the desired behavior similar to secure MinHash.

5.2.4 Scenario and the Formal Protocol

Our scenario is a traditional near-neighbor search, where every party (or user) is

interested in finding their near-neighbors without revealing any information about

their attributes. We do not assume the existence of any trusted party or server.

Moreover, we want a scalable scheme to work at massive scales with potentially

billions of users.

Our overall framework works as follows:
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1. Public Random Seed: The server announces (or releases) random seeds and

the hash functions (e.g. Secure MinHash), required for computing hash bits,

publicly available to everyone.

2. Secure Hash Computations: Every user computes l secure hash bits of

their own private data and releases those bits publicly to the server. These

hash computations are done using the random seed and the hash functions

provided by the server in the predefined order. We do not want l to be large,

see Section 5.2.5 for recommendations on choosing l.

Finding neighbors of a given user boils down to finding users with significant

matches (more than 50%) of secure hash bits. This can be performed using simple

linear scan. However, a linear scan can be prohibitively expensive for massive number

of users. For this case, we can resort to fast hashing based sub-linear search described

in Section 5.2.4.

Sub-Linear Search

Given a query q and its corresponding l-bit secure profile, our task is to find users with

l-bit profiles close in hamming distance with the query’s profile. This can be e�ciently

done in sub-linear time, because there is a known LSH scheme for hamming distance,

which is based on bit sampling. Theory says that we can perform approximate near-

neighbor search in sub-linear time, specifically in O(n⇢) time, with ⇢ = log p1

log p2
, p

1

=

1� d0
l

and p
2

= 1�c d0
l

. Here, d
0

is the hamming distance threshold of interest and c

is the approximation ratio.

However, LSH algorithm requires the knowledge of recommended similarity (or

1-distance) thresholds d
0

which is generally not available for practical problems [75].
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Fortunately, due to the nature of our secure hashing scheme, we do have this recom-

mended threshold. In particular, we are interested in points with hamming distance

significantly larger than l

2

. Thus, we can choose d
0

= l

2

.

The LSH algorithm for hamming distance requires us to perform the following

pre-processing stage only once before starting the protocol. Since this process is

computed only once, its cost is amortized constant for future queries.

All parties (whom their data are going to be used in the search process) send their

hash of data to the server which creates L di↵erent hash tables as follows. Each hash

table uses b bits as the key. For generating this key, we randomly sample b indices,

from the l bits of the user’s hash. Each user is thus associated with a b-bit key value

in the hash table. For example, if the hash profile of a user is 10010011. If b = 2,

and the randomly sampled two bits turn out to be from positions 3 and 7, then the

key for this user will be 01. Since there are 2b di↵erent possible outcomes, there are

2b possible keys. We repeat this process for all L di↵erent tables by sampling b bits

independently every time. Once the L hash tables are created, the search process

works as follows:

Input: User holds a query x (x can be either D dimensional binary or real number

data). The server has a database of all n di↵erent secure l-bit profiles.

Output: User obtains a list of ID’s of approximate near-neighbors within a pre-

defined distance of her query while server does not get the user’s query (x).

Protocol: User computes and sends the l-bit profile of his query h
sec

(x) to the

server in plain-text (there is no need for encryption). The server uses the presampled

indices to compute the key for the query. This key is used to probe the corresponding

hash tables. The server computes the union of all lists from all L tables (one list

per each table) as the potential candidates. Then server compares all hashes in the
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reported set with the user’s hash and creates the near-neighbors list by adding only

those that have significantly more bit-matches than 1

2

. Finally, the server sends this

list to the user.

5.2.5 Assumptions and Practical Issues

Choice of l and k: Our protocol publicly releases l independent bits and also

the corresponding encoding scheme. We are assuming the compressed sensing lower

bound of requiring, at least, O(s log D
s

) measurements for any reasonable recovery of

the original data vectors. Here s denotes the number of non-zeros of the data vectors.

Therefore, as long as l ⌧ O(s log D
s

), we can be sure due to the compressed sensing

lower bound, that our protocol is secure. For real high-dimensional setting O(s log D
s

)

is a reasonably big number.

The choice of k is dependent on our definition of near-neighbors. Suppose, the

application at hand considers any pair of point x, y with Sim(x, y) < s
0

as non-

neighbors, for some problem-dependent choice of s
0

. Our secure hashing scheme

should not distinguish x from y with any other random point. We can conveniently

do that by choosing k large enough that ensures:

1

2
 Pr(h

sec

(x) = h
sec

(y))  1

2
+ ✏, (5.16)

for all points x and y with Sim(x, y) < s
0

. Noting that Pr(h
sec

(x) = h
sec

(y)) is a

function of similarity, we can obtain the desired expression easily.

For example, with secure MinHash we have this condition satisfied if k � log 2✏

log s0
.

For secure SimHash, we need to choose k � log 2✏

log (1� cos

�1(s0)
⇡

)

.

For more security standards, similar to public keys in RSA, the indices of minhash

can be changed periodically and it does not change the cost of the protocol very much
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because the authorized users can simply communicate the new indices or download

them via a server with identification. Basically, these indices are just a few integer

numbers and the overhead of downloading them regularly is negligible. This approach

will increase the security of our suggested system since the probability of recovering

hash indices from the hashes would decrease significantly.

Fast Hashing: One can observe that our 1-bit secure hash requires k independent

LSH evaluations. This can be expensive. However, with recent success in creating

near constant time fast LSH computation procedure [76, 77] this is not at all a concern.

5.2.6 Some Remarks: Impossibility

The ideal secure LSH scheme would have the collision probability (P
c

) of Figure 5.5

for 1-bit hash. As can be seen, given a threshold (e.g., 0.8 in Figure 5.5), the hash of

two arbitrary points will have the discrete collision probability of either 1

2

or 1. This

scheme is ideal because it follows the two favorable properties: (i) if two points are

similar, they will have the same hash outcome while not revealing any information

about how similar they are. The hash is then used to report them as neighbors. (ii) if

two points are farther than a threshold, their hashes are not di↵erent than two random

bits with a collision probability of 1

2

. Please note that in this case all information is

masked and no attacker can use triangulation attack to find the original input from

the hash value.

Here, we prove that ideal secure LSH cannot exist. For simplicity and without

using any generality we prove this fact using the distance terminology (1 - similar-

ity). Consider three di↵erent points A, B, and C in input space with the following

condition: the distance between A and B be �. To choose C, among all points that

have distance � from B, we choose the one that has distance 2 · � from A. Let �
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Figure 5.5 : The collision probability of a 1-bit hash for traditional LSH and ideal

secure LSH with threshold 0.8.

be a value close but less than the threshold. From the Figure 5.5 we know that the

collision probability for the hash values of A and B should be 1. We denote it by

P
c.AB

. Following the same notation, P
c.BC

= 1. Since the collision probabilities of

B with both A and C are 1, the probability of collision of A and C should also be

1. This is due to the fact that the 1-bit hash value of B should be equal to one’s of

A and C, therefore, the hash value of A and C should always be the same and this

corresponds to the collision probability of one. However, this is a contradiction since

from Figure 5.5 we know that the P
c.AC

= 0 because the distance between A and C is

bigger than the threshold and this completes our proof. This proof is valid for 8� > 0

meaning that the flat region cannot exist for any range of distance (or similarity).
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5.3 Direct Applications

Privacy-Preserving Authentication System: Consider an authentication system

where a user is authorized by the server, if her information match, at least, one of

the profiles in the database. In case this information is a pair of user-name and

password, the exact match is required. For security reasons, the server should not

store the raw user-names and passwords and it should store only the hashes of this

information. User can then send the hash of her information and upon an exact

match, she is authenticated. However, when the authentication information is not

exact (e.g. fingerprints, face images, or other biometrics) the task is to check whether

the user’s information is close enough to at least one of the authorized profiles in

the database. In this situation, it is critical that the information is not revealed to

anyone else since it can cause multiple threats, implying that the process should be

performed in privacy-preserving fashion. However, for practical issues, this process

cannot take more than a few seconds. By using our framework, user can send the hash

of her information to the server and can be authenticated with our privacy-preserving

sub-linear protocol in less than a second.

Privacy-Preserving Recommender System: Recommender systems are

widely used to suggest similar products (e.g. Amazon), movies (e.g. Netflix), and etc

to the users based on their profiles. Since these systems use user’s profiles and his-

tories to make suggestions, repeatedly it is considered as privacy-invasive. However,

state-of-art privacy-preserving solutions cannot scale to datasets as big as real-world

applications. In contrast, we propose a new scheme. In our scheme, user’s data are

stored on her machine. Depending on the profile’s similarity metric, user can use

the corresponding LSH family that preserves that similarity and compute the hash

of her profile. Then server uses this hash and finds the similar profiles by running
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near-neighbor search on database in sub-linear time and report the similar items. For

example, a sample user profile can be a vector of numbers rating all available movies

from 1 to 5. In practice, not all

Privacy-Preserving Nearby Friends: Facebook has added a new feature which

is called “Nearby Friends”. This option allows a user to see their nearby friends if

both user and her friends share their location in real-time. In fact, the location of

all engaging parties is revealed to the Facebook server. Two friends are considered

as nearby if they are closer than a certain distance. While having privacy-preserving

version of this feature is favorable, it is necessary that the computation still be prac-

tical and scalable to a high number of participants. For example, Facebook has more

than a billion users, therefore, having an e�cient sub-linear solution is crucial. Since

our framework only needs a simple hash computation it is well-suited for resource-

constrained devices (e.g. mobile phones; account for more than 78% of Facebook’s

activities). In terms of communication bandwidth, the user only needs to send l bits

where l ⇠ 1000, requiring the user to send less than a kilobyte of data. (also note

that all operations are performed in plain-text as opposed to computational privacy

approaches where all operations are performed in cipher-text.)

Privacy-Preserving All Near-Neighbor Search: In all near-neighbor search

problem, n di↵erent parties want to find out which parties are close to them given

a predefined distance threshold. One solution is that first all pairwise distances be-

tween any two parties be computed and then for each party, the distance to other

parties be compared with the threshold to check whether they are close or not. Any

privacy preserving protocol that relies on pairwise distance computation will incur

O(n2) complexity (because n

2

2

distances should be computed). Existing works in this

domain require the pairwise distance computation, yielding the overall computation
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complexity of O(n2). In contrast our framework has the O(n1+⇢) computation com-

plexity with ⇢ < 1. Please also note that we have much lower big O constant because

we do not use any encryption.

5.4 Integrating with SFE Protocols

Secure Function Evaluation (SFE) protocols can evaluate a function which has multi-

ple inputs from di↵erent parties without revealing any party’s input to others. Exam-

ples are Garbled Circuit (GC) protocol and Fully Homomorphic Encryption (FHE).

While SFE protocols are provably secure protocols that can securely evaluate any

function (without error or approximation), they su↵er from huge computational and

communication overhead. In fact, they need multiple rounds of communication with

high bandwidth usage. Here, we explain how our framework can be used together with

SFE protocols to mitigate their computational overhead and make them practical for

real-world applications.

We can put one or multiple SFE protocols on top of our framework. Since applying

SFE protocols to a database with million entries is far beyond the capacity of state-

of-the-art SFE protocols, our framework can be utilized as a preprocessing step. For

instance, we can perform very low-overhead secure clustering using our framework

and then given thousand or hundred entities in each cluster, we can perform SFE

on the desired cluster. In this way, we can perform any functionality (not just near-

neighbor search) on the inputs while preserving the privacy of users where nothing

is revealed with provable security guarantees. For example, if we are interested to

exactly find the center of clusters of million points, we can securely cluster the data

and then perform SFE to calculate the average of all points in each group without any

approximation. With this approach, we have utilized the e�ciency and scalability of
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our framework while securely evaluating an arbitrary function on a massive dataset.
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Chapter 6

Experimental Evaluations

6.1 P3SM Evaluations

In this section, we summarize and compare the complexity of di↵erent algorithms for

general SM and its limited variant.

6.1.1 Evaluation Setup

We use Synopsys Design Compiler 2010.03-SP4 to generate our sequential circuits.

The timing analysis are done on two similar machines with Intel Core i7-2600 CPU @

3.4GHz with 12GB RAM on an Ubuntu 15 operating system connected using 1 Gbps

Ethernet. In all of the experiments, the GC security parameter is 128-bit and the

security failure probability for ORAM is set to at most 2�80. The experiments that

take more than 105 seconds are estimated based on the computational and communi-

cation complexity. For sub-linear ORAMs (Circuit ORAM and Square-Root ORAM)

we estimated the circuit size of ORAM based on the results in [50]. (This is due to

the fact that the Square-Root ORAM has recently been publicly available and the

source codes are not available yet.)

6.1.2 ORAM Analysis

Figure 6.1 shows the memory cost for the general SM running for worst case scenario.

There are 3 di↵erent zones. For very small set sizes (< 25), the linear ORAM (MUX)
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is the most e�cient solution. In the next region up to set sizes (⇠ 212), the Square-

Root ORAM outperforms linear ORAM. For set sizes larger than (⇠ 212), the Circuit

ORAM outperforms all other solutions. For the NRMP, the set size is roughly 215

and therefore the Circuit ORAM is the most e�cient method. However, it takes 108

seconds (⇠ 3 years) time and seems still not practical.
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Figure 6.1 : Comparison of memory access cost of di↵erent ORAM schemes for general

SM without using ETT.

Figure 6.2 shows the memory cost for the general SM using ETT. In this case

the number of iterations is reduced by a factor of O(n). ETT makes the algorithm

less memory intensive thus initialization cost of ORAM becomes dominant. Since the

initialization cost of Square-Root ORAM is less than Circuit ORAM, it outperforms
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Circuit ORAM for any set size. Here we have only one breakeven point in which

Square-Root starts to outperform Linear ORAM at set size 25. For the NRMP (215

pairs), the Square-Root ORAM is the most e�cient method and it takes 106 seconds

(⇠ 24 days). This is the first time that the NRMP stable matching can be securely

evaluated in less than a month. The previously best solution of [16] reports 47 000

years of computation for SM on a set size 1/4 of NRMP.
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Figure 6.2 : Comparison of memory access cost of di↵erent ORAM schemes for general

SM using early termination technique.

Figure 6.3 shows the memory cost for limited SM where the number of preferences

for each person is limited to k = 20. The breakeven point between Linear ORAM

and Square-Root ORAM is at set size 25. In this scenario, the cost of initialization
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is as important as the cost of accessing the memory. Hence, Square-Root ORAM

outperforms Circuit ORAM for a wide range of set sizes.
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Figure 6.3 : Comparison of memory access cost of di↵erent ORAM schemes for limited

SM with k = 20.

6.1.3 End-to-End Secure Stable Matching

Table 6.1 shows the total end-to-end execution time and communication cost of gen-

eral SM for various set sizes when using three di↵erent ORAM schemes. For each

set size, the best result is shown in bold format. Our scheme can securely compute

a stable match for 8k pairs four orders of magnitude faster than the previously best

known method of [16].
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Table 6.1 : Timing and communication results without using early termination tech-

nique.

Time Comm. Time Comm. Time Comm.

8 9.1 ms 1.22 MB 25.7 ms 3.44 MB 107.1 ms 14.37 MB

128 23.21 min 186.92 GB 5.43 min 43.78 GB 31.68 min 255.18 GB

2k 4.54 y 19.25 PB 26.59 d 308.4 TB 36.95 d 428.54 TB

8k - - 5.62 y 23.79 PB 3 y 12.71 PB

Set Size
Linear ORAM Square-Root ORAM Circuit ORAM

Table 6.2 shows the total end-to-end execution time and communication cost of

general SM with ETT for various set sizes when using three di↵erent ORAM schemes.

For each set size, the best result is shown in bold format. The computation and

communication cost are further decreased, for example for set size 8k by three orders

of magnitude compared to general SM without ETT.

Table 6.2 : Timing and communication results using early termination technique.

Time Comm. Time Comm. Time Comm.

8 5.69 ms 764 KB 15 ms 2.01 MB 100.5 ms 13.48 MB

128 54.4 s 7.3 GB 12.75 s 1.71 GB 2.12 min 17.11 GB

2k 4.05 d 46.99 TB 1.56 h 753.83 GB 13.79 h 6.66 TB

8k 306.53 d 3.55 PB 1.25 d 14.54 TB 11.96 d 138.7 TB

32k - - 23.47 d 272.2 TB 251.65 d 2.91 PB

Set Size
Linear ORAM Square-Root ORAM Circuit ORAM

Table 6.3 shows the total end-to-end execution time and communication cost of

limited SM with k = 20 for various set sizes when using three di↵erent ORAM

schemes. For each set size, the best result is shown in bold format.
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Table 6.3 : Timing and communication results for limited SM where k = 20.

Time Comm. Time Comm. Time Comm.

8 22.76 ms 3.05 MB 51.8 ms 6.95 MB 200 ms 26.84 MB

128 3.62 min 29.2 GB 50.97 s 6.84 GB 5.73 min 46.15 GB

2k 16.21 d 187.98 TB 6.23 h 3.01 TB 20.2 h 9.76 TB

8k 3.35 y 14.21 PB 5.01 d 58.11 TB 13.94 d 161.74 TB

32k - - 93.77 d 1.08 PB 264.89 d 3.07 PB

Set Size
Linear ORAM Square-Root ORAM Circuit ORAM

6.1.4 Discussion

What Would Be Leaked by Early Termination? Although using the Finish

Signal may leak the number of proposals R, there are plenty of di↵erent cases when

this setting could be employed. Such as when each matching authority agrees not to

reveal the number of real proposals because no one has any interest to do so. In this

case there is no desire to reveal the number of proposals. If we add a random initiator

to MSC and the next man selection algorithm, we can achieve the randomness which

will make R nondeterministic. In this case, even for the same inputs, each time the

circuit travels a di↵erent path and as a result, R is di↵erent and does not convey any

useful information. On the other hand, leaking the number of total proposals needed

to reach the SM could convey some information. For example, if the matched partners

be their first choices, then the algorithm will terminate immediately after the first

iteration. This is very di↵erent from the case when each individual is matched with

her last choice, in which case the algorithm will terminate after O(n2) iterations.

Therefore, knowing R can give some information about the quality of the assign-

ment but nothing about the input itself. This problem can be mitigated by running

the protocol for at least the statistical worst case (see Figure 3.4). In order to avoid
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unnecessary iterations and terminated the protocol, R is the least information possi-

ble to leak. In a nutshell, this variant of our protocol is a trade-o↵ between privacy

and e�ciency where we have an unprecedented performance improvement but the

total number of proposals is leaked. Note that the early termination technique is

optional and can be avoided.

6.2 GenMatch Evaluations

Our experimental results are performed using two processes on Intel Core i7-2600

CPU @ 3.4GHz with 12GB RAM on a 64-bit Ubuntu 14 operating system. The

security parameter in our setup (encryption key length) is 128-bit. The circuits are

synthesized by the Synopsis Design Compiler. Table 6.4 shows the results. Since

there is no similar GC-based work with an application performing on a database of

genome data, we could not compare our results with previous works.

 Database 
Size 

 # of 
XORs 

 # of Non-
XORs  

 Total 
Gates 

 Total Garbled
 Tables 

 Communication 
(MBytes) 

 Time (s) 

10             438         400         838         4,000             1.0                    0.07        
100           447         412         859         41,200           10.5                  0.62        

1,000        457         424         881         424,000         108.5                5.79        
10,000      433         459         892         4,590,000      1,175.0             63.20      

100,000    436         474         910         47,400,000    12,134.4           546.09    
1,000,000 439         489         928         489,000,000  125,184.0         5,132.25 

Table 6.4 : Number of XOR and non-XOR gates of circuit and total timing and communication

for di↵erent size of database.
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6.3 S-LSH Evaluations

In this section we provide our experimental results performed on largest MovieLens⇤

data. In this dataset ⇠ 247k users have rated the ⇠ 150k movies on the 1 to 5 integer

scale where 5 means the most desired.

To the best of our knowledge there does not exist any encryption-free privacy-

preserving near-neighbor search framework performing on an arbitrary similarity

metric (e.g. Jaccard similarity and Cosine similarity). This is the first randomized

embeddings framework which prevents LSH from revealing all pairwise similarities.

Hence, there are no comparable baselines. We provide strong evaluations to validate

our claims related to the security and e�ciency of our protocol.

6.3.1 Sanity Check

Figure 6.4 shows the number of bit matches of secure hashes as the similarity varies.

This is the number of bit matches between a hash of a randomly selected profile and

all other secure hash of other user profiles. The hashing scheme here is MinHash

with Jaccard similarity. As can be seen, when the similarity is less than 0.85, the

number of bit matches of given two hashes does not reveal any information about

the underlying profile attributes because it can correspond to any two profiles with

similarity between 0 to 0.85. The hashing parameters are l = 300 and k = 10. The

dotted horizontal red line shows the l

2

(150) bit matches which is also the expected

number of bit matches for any two random strings.

Figure 6.5 shows similar plot for SimHash with l = 210 and k = 10. The horizontal

dotted red line shows the expected average number of bit matches for any two random

⇤http://grouplens.org/datasets/movielens/
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Figure 6.4 : Number of bit matches between a given query point and all other points

in the MovieLens dataset as the function of Jaccard similarity where l = 300 and

k = 10.

strings of length l. We can clearly see that when the similarity of two points are high

enough, they can be easily identified.

6.3.2 Performance Analysis

In this section, we illustrate the e�ciency of our framework. Table 6.5 shows the pre-

cision, recall, and speed-up of our framework for two popular hash schemes, namely

MinHash and SimHash for two di↵erent choices of k. Precision and recalls are cal-
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Figure 6.5 : Number of bit matches between a given query point and all other points

in the MovieLens dataset as the function of cosine similarity where l = 210 and k = 10.

culated based on the result of our secure sub-linear near-neighbor search. N shows

the number of near-neighbors that we are interested to find. Speed up is compared

with the linear scan through all hashes in order to find the top N profiles with the

highest similarity. The parameters L, b, and l are tuned to deliver the best precision

and recall.

Figure 6.6 shows the result for secure SimHash. The n = 50000 points are ran-

domly generated in R4 and hashes are computed with parameters l = 210 and k = 10.

Again the points with high cosine similarity (positive and negative) the number of
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Table 6.5 : Experimental results for our near-neighbor search. k is the degree of

transformation. The last column shows the speed up over linear scan on hashes.

Hashing Scheme k  N Precision Recall Speed up  
5 50 75.1 90.1 9.34

10 20 80.2 84.3 127.93
5 50 72.2 86.6 8.55

10 20 89.3 93.8 10.61

MinHash

SimHash

bit matches of pair of hashes clearly separates them from other points.

Figure 6.7 shows the result for secure SimHash. The n = 10000 points are ran-

domly generated in R3 and hashes are computed with parameters l = 210 and k = 10.

Again the points with high cosine similarity (positive and negative) the number of

bit matches of pair of hashes clearly separates them from other points.
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Figure 6.6 : Number of bit matches between randomly selected point and all other

points in the uniform randomly generated dataset as a function of cosine similarity

where l = 210 and k = 10 n = 50000, D = 4.
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Figure 6.7 : Number of bit matches between randomly selected point and all other

points in the uniform randomly generated dataset as a function of cosine similarity

where l = 210 and k = 10 n = 10000, D = 3.
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Chapter 7

Related Work

In this chapter, we explore state-of-the-art works in each domain of our study. In Sec-

tion 7.1 we bring previous privacy-preserving stable matching protocols. We survey

secure DNA compatibility testings in Section 7.2. Privacy-preserving near-neighbor

search algorithms are covered in Section 7.3.

7.1 Privacy-Preserving Stable Matching Protocols

Golle [13] was the first to develop privacy-preserving SM. He persuasively illustrates

that implementing such an algorithm has a great practical impact. In his framework,

he devises a variant of the classic Gale-Shapley algorithm with some techniques for

concealment. Each party should send the encrypted preference list to some honest-

but-curious matching authorities. During the algorithm men and women are divided

into two disjoint groups, those who are engaged and those who are free. Then, m fake

men are added and are engaged to women at the beginning of the algorithm and this

enables some appealing concealment properties, such as that the number of engaged

men and free men are always constant and this could prevent any information leaking

of intermediate changes of free and engaged men sets. Golle then defines a bid as

an encrypted representation of the preference of one man for a woman in addition

to some book-keeping information. There are free and engaged bids, a bid paired up

with a woman. The Algorithm follows 4 steps for R iterations beginning with initial
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bids to reach a stable match by resolving a conflict between bids at each time. Those

four steps are (i) randomly choosing a free bid and opening it mutually by matching

authorities, (ii) finding a conflict bid since there is always exactly one conflicting

bid, (iii) resolving the conflict, and (iv) mixing bids internally and externally. Golle

uses an additively homomorphic semantically secure threshold public key encryption

scheme like a threshold version [78, 79] of Paillier [80] and re-encryption mix networks

to implement this. Golle argues that the algorithm terminates after n iterations

and reaches a stable match between n men and n women. The complexity then is

dominated by O(n3) modular exponentiations and the corresponding communication

complexity is also O(n2polylog(n)).

Table 7.1 : Di↵erent protocols for performing secure SM and corresponding complex-

ities, where n is the size of each group and ⌫ is the number of matching authorities.

Our protocol is faster by orders of magnitudes as it uses e�cient Symmetric-Key

operations instead of costly Public-Key operations.

Protocol
Computation

Complexity

Communication

Complexity

Round

Complexity

Golle [13] O(n5) Public-Key Operations O(⌫ n5) O(n3polylogn)

Franklin et al. [14] O(n4

p
log n) Public-Key Operations O(⌫ n3) O(n2polylogn)

Franklin et al. [15] O(n4polylogn) Public-Key Operations O(⌫ n2) O(n2polylogn)

Ours without using ORAM O(n4 log n) Symmetric-Key Operations O(n4 log n) O(1)

Ours using ORAM O(n2 log3 n) Symmetric-Key Operations O(n2 log3 n) O(1)

Keller et al. [16] O(n2 log3 n) Symmetric-Key Operations O(n2 log3 n) O(1)

Ours using ORAM and ETT O(n2 log2 n) Symmetric-Key Operations O(n2 log2 n) O(1)

However, Franklin et al. [14] show that Golle’s proposal is not promising and in

the worst case, his algorithm will be executed n2 iterations. This results in a com-
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putation complexity of O(n5) modular exponentiations and O(⌫ n5) communication

complexity, where ⌫ is the number of matching authorities. They also develop an-

other solution for this problem based on Golle’s framework but also add n fake women.

There are some modifications to the original framework. They added Private Infor-

mation Retrieval (PIR) for reading and writing privately in a shared database. PIR

is implemented using the protocol of Naor and Nissim [81] which is based on the

Oblivious Transfer and requires O(polylogn) communication and is used a constant

number of times in each iteration. Franklin et al. use the GC protocol to compare

the preference of women and also to increment the number of times that each man

has proposed. The communication complexity is dominated by re-encryption mixnets

just like Golle’s which results in O(⌫ n3polylogn) communication complexity. Yet,

computation complexity is dominated by accessing the database. In each iteration,

the database access takes O(n2

p
log n) work and as a total the computation com-

plexity is O(n4

p
log n) public key operations. In that work they also optimize the

protocol when there are exactly 2 matching authorities and they achieve a better

performance as listed in Table 7.1. However, this protocol is complicated and no one

has attempted to implement it.

Naor et al. [68] suggest an architecture for privacy-preserving protocols for mech-

anism design and they mention SM as one of the related applications. They argue

that the complexity of implementing their architecture for SM problem depends on a

combinational circuit which implements the SM algorithm. They did not implement

such a system nor designed such a circuit. Naor et al. suggest that the classical

Gale-Shapley algorithm necessitates the usage of indirect addressing of a RAM and

that translation into a circuit is ine�cient.

Franklin et al. [15] develop an e�cient multiparty Look-Up Table (mLUT) pro-
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tocol and suggest that one can design a secure SM system by implementing the

algorithm of [14, Section 5] into a circuit with access to a RAM. Especially in the

multiparty setting, mLUT for array/matrix access reduces the complexity of such a

setting to the situation when we have 2 matching authorities as shown in Table 7.1.

However, this system has only been suggested but has not been implemented yet.

[16] is the only work that has reported implementing secure SM using GC and

oblivious memory. Without presenting implementation details, they reported that in

the worst case, the general SM with 8k pairs can be done in 1.5 · 1012 seconds. The

complexity of related work is reported in Table 7.1.

7.2 Secure DNA Testing Algorithms

Genetic testing and it’s digitization raise some important privacy and ethical concerns.

The authors in [82] summarize the issues and put forth the main challenges for the

research community. They not only talk about technical issues such as e�ciency,

usability, and pitfalls of genetic testing, but also about policies that should be made

into laws when handling genome data. The work in [83] answers some of the questions

in [82] and provides a framework for the secure handling of genome data.

There are di↵erent technical approaches to in silico privacy-preserving genetic

testing. In [84], the authors create android applications for genetic testing methods

such as paternity testing, ancestry testing, and personalized medicine. They are con-

cerned with the e�ciency and usability of the applications and conclude that this is

an area worth exploring. They use hash function based Private Set Intersection Car-

dinality (PSI-CA), Authorized Private Set Intersection (APSI) and additively homo-

morphic encryption of Secure Hamming Distance (SHD) for each of the applications

and implement them on an android based platform. They show that comparing the
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whole genomes for compatibility is both unnecessary and computationally infeasible

for a mobile device. This makes the pre-processing an important and aiding step to

extract the information that is needed for a specific test. This pre-processing stage

helps to carry out the test on a mobile device. They propose P 3MT protocol to test

for HLA-B mutation which is important in determining the sensitivity to a drug used

in HIV treatment. Our work di↵ers from their work in terms of the framework of the

test as well as the application. They work with HLA data but their test is limited to

a particular mutation as an example for personalized medicine in contrast with the

database-based compatibility test described in this thesis.

The work in [23] describes a GC-based approach for measuring the similarity

between two genome sequences by performing secure edit distance computation. This

computation is performed on raw genome data and is not scalable. It utilizes the full

genome which is unnecessary especially when only a small part of the genome data

needs to be tested.

The authors of [85] propose homomorphic encryption based identification, pa-

ternity and ancestry testing exploiting the Short Tandem Repeat (STR) property

exhibited by genetic sequences. Another proposal in [86] uses homomorphic encryp-

tion to perform queries on encrypted database of genome sequences while preserving

the identities of each of the individuals. This is similar to our setting but the ap-

plication involves testing for Single Nucleotide Polymorphisms (SNPs) in a database

for research purposes involving the whole genome sequences without pre-processing.

The authors in [87] describe a similar situation but consider an implementation of a

privacy-preserving forensic DNA database. Each DNA in the database is encrypted

using a part of its DNA sample and can only be decrypted if the person submitting the

query has the appropriate key generated from the suspect’s DNA. While this works
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for a forensic database application, it cannot be extended to other genetic testings

except for those involving identity protection.

The work in [88] concentrates on searching a finite length DNA fragment in another

DNA template protecting the privacy of both parties involved. They designed a

protocol that allows an oblivious evaluation of a finite state machine which has a

linear relation between communication complexity on one side and the number of

states and length of input data on the other side. Similar to some of the previously

mentioned works, they work with raw genome data making it hard to scale and

unnecessarily complex to implement.

In contrast to aforementioned works, we design a scalable database-based secure

DNA compatibility testing utilizing the GC protocol. We adopt TinyGarble platform

[18] to implement our method.

7.3 Privacy-Preserving Near-Neighbor Search Algorithms

All the works addressing privacy-preserving near-neighbor search can be catego-

rized as three inherently di↵erent approaches [89]: 1) Computational Security,

2)Information-Theoretic Security, and 3)Randomized Embeddings. In this section

we compare these approaches and provide brief review of each of these approaches.

7.3.1 Computational Security

Computational security relies on the security of cryptographic tools which are then

based on hardness of some problems in number theory such as factorization of large

numbers or inverting a discrete logarithm. The security of these tools are proven

for computationally bounded adversaries, meaning that the there does not exist any

e�cient algorithm that can break these tools in a reasonable amount of time. Gar-
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bled Circuit and Homomorphic Encryption are most common used protocols in this

domain. While these protocols provide provably secure solution with precise results,

they face critical e�ciency and scalability issues since they are computationally in-

tensive.

The computational overhead comes from the fact that every single bit of data in-

volved in the near-neighbor search process has to be encrypted somehow to guarantee

the security of these schemes. The other disadvantage of these protocols is commu-

nication overhead. They require user to interact multiple times and the process the

data back and forth. Some of these protocols (e.g. GC) requires two non-colluding

servers which if they collude, all of information is compromised. As a result com-

putational security solutions cannot be deployed for real-world applications that can

preserve the privacy of users and scale to modern big-data.

7.3.2 Information-Theoretic Security

Information-theoretic security, unlike computational security, is secure against com-

putationally unbound adversaries. As mentioned in Section 1.3, the near-neighbor

search task can be seen as two disjoint sub-problems, first finding the pairwise dis-

tance between query data and every other data in the database and second finding

the minimum of these distances. While computing the pairwise distances is a rel-

atively easy task in this domain, finding the minimum distance is not and requires

using some cryptographic tools which again makes these solutions.

7.3.3 Privacy-Preserving Randomized Embeddings

Randomized embeddings are very useful tools for reducing the dimensionality of orig-

inal data while preserving the geometry properties of data. These methodologies
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are typically based on Jonson-Lindenstrauss (J-L) [37] or Locality Sensitive Hashing

(LSH) [75]. However, these methods do not preserve the privacy of user by their own.

But they can be used in conjunction with one or two secure protocols to make an over-

all secure solution. For example, [90] uses J-L embedding together with homomorphic

encryption for securely computing l
1

and l
2

distances.

It turns out that the existing LSH scheme for l
2

distances, based on p-stable

distribution, has an interesting property. The collision probability of this scheme

rapidly decays to 1

2

[91] due to the addition of random dither inherent in the hashing

scheme itself. This leads to security against triangulation attack because we cannot

really estimate the distance for very far points [92]. Such a scheme when remapped

to 1-bit naturally produces a secure 1-bit hashing scheme for l
2

distance. However

this addition of random dither makes the hashing scheme inferior to other popular

hashing schemes such as MinHash and SimHash [92]. The addition of dither (noise)

is a popular choice for achieving privacy, however, it is known to reduce utility [91].

Moreover, it does not lead to secure hashing schemes for popular similarity measures,

such as Cosine similarity or Resemblance (Jaccard similarity).

In [93], authors propose a mechanism to search over encrypted data. They utilize

the useful properties of LSH to build their scheme. However, they use encryption pro-

tocols to prevent the information leakages, making the overall system computationally

expensive.
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Chapter 8

Summary

This thesis proposes novel techniques and algorithms for achieving privacy-preserving

computing protocol that can be e�cient and scalable for real-world applications.

Previous work in this domain su↵er from huge overheads and they are of limited

practical usage.

The first part of this thesis introduces several novel techniques for making well-

known Garbled Circuit protocol more e�cient and scalable. To demonstrate the

e↵ectiveness of these techniques, we have done extensive experiments on a bank of

genome with million di↵erent DNA profiles. We introduced the first practical and

scalable realization of a provably secure HLA matching used in organ transplantation

donor compatibility test under the honest-but-curious attack model. Our approach

utilizes circuit optimization and logic synthesis for finding a scalable implementation

of HLA matching in the TinyGarble framework. We demonstrated an end-to-end

implementation of the system. Our results show that the methodology is highly

e�cient, and it takes only a few hours to perform the matching on a database of

a million participants with pre-processed data. These results are scalable, and way

more practical than the state-of-the-art in this field, and they enable a range of

new applications for privacy-preserving genetic testing. We have also studied one of

the most di�cult privacy-preserving tasks called Stable Matching. This is the first

work which makes secure SM feasible for real-world applications such as the National

Residency Matching Program (NRMP) with 32k pairs in a reasonable time. Our



91

approach is four orders of magnitude faster than the previously best-known method.

The state-of-the-art paper reports running time of 1.5·1012 seconds, i.e., almost 47 000

years! for 8 192 pairs of individuals engaging in the matching process, whereas in our

experiment it took only a day to finish.

In the second part of this thesis, we proposed a practical privacy-preserving algo-

rithm for large-scale near-neighbor search. We identified the weakness of LSH based

approach in preserving privacy and provided a novel solution using a “well-tailored”

transformation. The resulting approach hits the sweet spot between e�cient search

and privacy. We believe that our scheme will be adopted in practice. We provide the

formal analysis of our approach and show information theoretic bounds.
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Appendix A

Triangulation Attack

In Section 5.1 we discussed that if any hashing approach preserves the distance for

any pair of points, then an attacker can easily find the original location of any point

q given its hash and hence the scheme is not secure. In this section, we explain that

even if the distance estimation is not accurate the triangulation attack is still possible

to find the location of q. Following the same notation as Section 5.1, Figure A.1 shows

our setup. In practice the distances are not accurate and, therefore, the three circles

will make a triangle at the intersection which is noted as triangle DEF . The median

of DEF is the location of the user. Hence, we only need to find the location of the

points D, E and F . Equations A.4 and A.5 show how to compute the location of

point F (the equations are provided from [94]). Using the same approach, it is easy

to compute the coordinates of E and F and the location of q can be achieved.

If A, B, and C are drawn randomly from space, the above steps will result in

finding distances with more error but an attacker can repeat this process multiple

times and each time selecting these three points closer to estimated user’s location.

Following this process results in a very accurate estimation of user’s location.
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Figure A.1 : Triangle localization. Three selected points are A, B, and C. The

calculated location of q is the median of the triangle DEF .

Our approach is secure against this attack because if the attacker follows the

aforementioned steps, the comparison of the three random hashes and the user’s hash

will give him no information since only very close points will have similar hashes

not any pair of points. (Unless the randomly selected points accidentally lie in the

� distance of the user’s location which is highly unlikely and the probability is the
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( �

d

max

)D where d
max

is the maximum possible distance between any two points in the

space and D is the dimensionality of the space.) The dimensionality D is usually in

order of hundreds or thousands which makes the probability too small, therefore, each

time attacker chooses a random point, with very high probability this point is farther

than the threshold and hence the result of comparing hashes will be almost just noise

without any information in it and, as a result, the triangle localization cannot be

computed.
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Appendix B

Circuit for Stable Match Algorithm

In this appendix, the source code for the sequential circuit described for SM algorithm

(Section 3.2) is provided. All of the proposed techniques are integrated in this circuit.

The circuit is described in Verilog Hardware Description Language.

‘ t ime s ca l e 1ps / 1ps

//////////////////////////////////////////////////////////////////////////////////

// IN THE NAME OF GOD

// Company : Rice Un ive r s i ty

// Engineer : M. S . Riaz i

//

// Create Date : 12 : 19 : 33 02/18/2015

// Design Name : Stab le Matching

// Module Name : mainModule

// Pro j ec t Name : stableMatching

// Target Devices : no dev i ce

// Tool v e r s i on s : 14 .6

// Desc r ip t i on :

//

// Dependencies :

//

// Revis ion :

// Revis ion 0 .01 � F i l e Created

// Addi t iona l Comments :

//

//////////////////////////////////////////////////////////////////////////////////

module mainModule

#(

parameter Kr =10,

parameter Ks =10,

parameter S =10,

parameter R =10

)

(

clk ,

r s t ,

g ,

e ,



96

o

) ;

//������������������������������� Functions

func t i on i n t e g e r log2 ;

input [ 3 1 : 0 ] value ;

reg [ 3 1 : 0 ] temp ;

begin

temp = value � 1 ;

f o r ( log2=0; temp>0; log2=log2+1)

temp = temp>>1;

end

endfunct ion

//������������������������������� Local Parameters

localparam logS = log2 (S ) ;

localparam logR = log2 (R) ;

localparam logKs = log2 (Ks ) ;

localparam logKr = log2 (Kr ) ;

localparam SRounded = 2⇤⇤ logS ;

//������������������������������� I /O

input wire clk , r s t ;

input wire [R⇤Kr⇤ logS�1 + S⇤Ks⇤ logR�1 + 1 : 0 ] e ;

input wire [R⇤Kr⇤ logS�1 + S⇤Ks⇤ logR�1 + 1 : 0 ] g ;

wire [R⇤Kr⇤ logS�1 + S⇤Ks⇤ logR�1 + 1 : 0 ] allInputsXORed ;

output wire [R⇤ logS : 0 ] o ;

wire [R⇤Kr⇤ logS �1:0] rPre f ;

wire [ S⇤Ks⇤ logR �1:0] sPre f ;

wire [R⇤ logS �1:0] matchList ;

wire f i n i s h ;

wire [ S�1:0] sIsMatchWire ; // j u s t f o r t r a n s f e r r i n g in format ion to the testBench

//������������������������������� Local w i re s

wire [ logS �1:0] rPre fMatr ix [R�1 : 0 ] [Kr�1 : 0 ] ;

wire [ logR �1:0] sPrefMatr ix [ S�1 : 0 ] [Ks�1 : 0 ] ;

wire [ Kr�1:0] s1Compare , s2Compare ;

wire [ Kr�1:0] wireXOR1 , wireAND1 , wireAND2 , wireOR1 ;

wire be t t e r ;

wire [ log2 (Ks+1)�1:0] pcS ;

wire [ logS �1:0] s1 ;
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wire [ logS �1:0] s2 ;

wire propose ;

wire [ logR �1:0] r ;

wire [ SRounded�1:0] canPropose ;

wire [ SRounded�1:0] encoderInput ;

wire [ SRounded�1:0] encoderOR1 ;

wire [ logS �1:0] encoderOutput ;

//������������������������������� Local Regs

reg [ log2 (Ks+1)�1:0] pc [ S�1 : 0 ] ; // proposa l counts

reg [ logR �1:0] sInMatch [ S�1 : 0 ] ;

reg [ S�1:0] sIsMatch ;

reg [ S�1:0] sIsRunning ;

reg [R�1:0] rIsMatch ;

reg [ logS �1:0] s ;

reg [ logS �1:0] matchListMatrix [R�1 : 0 ] ;

reg finishAND ;

//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Generate Part

genvar i , j ;

generate / / [ 0 ]

f o r ( i =0; i<R; i=i +1)begin : rPre f a sgn1

f o r ( j =0; j<Kr ; j=j+1) begin : rPre f a sgn2

a s s i gn rPrefMatr ix [ i ] [ j ] = rPre f [ logS⇤Kr⇤ i + logS ⇤( j +1) �1 : logS⇤Kr⇤ i + logS⇤ j ] ;

end

end

endgenerate

generate / / [ 0 ]

f o r ( i =0; i<S ; i=i +1)begin : sPre f a sgn1

f o r ( j =0; j<Ks ; j=j+1) begin : sPre f a sgn2

a s s i gn sPrefMatr ix [ i ] [ j ] = sPre f [ logR⇤Ks⇤ i + logR ⇤( j +1) �1 : logR⇤Ks⇤ i + logR⇤ j ] ;

end

end

endgenerate

generate / / [ 0 ]

f o r ( i =0; i<R; i=i +1)begin : matchList asgn1

a s s i gn matchList [ logS ⇤( i +1) �1 : logS⇤ i ] = matchListMatrix [ i ] ;

end

endgenerate

generate / / [ 1 ] & [ 2 ]

f o r ( i =0; i<Kr ; i=i +1)begin : s1 and s2 Compare

a s s i gn s1Compare [ i ]= ˜ | ( s1 ˆ rPrefMatr ix [ r ] [ i ] ) ; // [ 1 ]

a s s i gn s2Compare [ i ]= ˜ | ( s2 ˆ rPrefMatr ix [ r ] [ i ] ) ; // [ 1 ]

a s s i gn wireXOR1 [ i ] = s1Compare [ i ] ˆ s2Compare [ i ] ; // [ 2 ]

i f ( i==0) begin

a s s i gn wireOR1 [ i ] = wireXOR1 [ i ] ;
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a s s i gn wireAND1 [ i ] = wireOR1 [ i ] ;

end e l s e begin

a s s i gn wireOR1 [ i ] = wireXOR1 [ i ] | wireOR1 [ i �1] ;

a s s i gn wireAND1 [ i ] = ˜wireOR1 [ i �1] & wireXOR1 [ i ] ;

end

a s s i gn wireAND2 [ i ] = wireAND1 [ i ] & s2Compare [ i ] ;

end

endgenerate

a s s i gn be t t e r = | wireAND2 ; // [ 2 ]

a s s i gn s1=matchListMatrix [ r ] ;

a s s i gn pcS=pc [ s ] ;

a s s i gn s2=s ;

a s s i gn f i n i s h=finishAND ;

a s s i gn propose= | pcS & ˜sIsMatch [ s ] ;

a s s i gn r=sPrefMatr ix [ s ] [ Ks�pcS ] ;

a s s i gn sIsMatchWire = sIsMatch ;

a s s i gn allInputsXORed = eˆg ;

a s s i gn rPre f [R⇤Kr⇤ logS �1:0] = allInputsXORed [R⇤Kr⇤ logS�1 : 0 ] ;

a s s i gn sPre f [ S⇤Ks⇤ logR �1:0] = allInputsXORed [R⇤Kr⇤ logS�1 + S⇤Ks⇤ logR�1 + 1 : R⇤Kr⇤ logS�1

+ 1 ] ;

a s s i gn o [R⇤ logS ]= f i n i s h ;

a s s i gn o [R⇤ logS �1:0]=matchList [R⇤ logS �1 : 0 ] ;

generate // choose who to propose next

f o r ( i =0; i<SRounded ; i=i +1) begin : propose asgn

i f ( i<S) begin

a s s i gn canPropose [ i ] = | pc [ i ] & ˜ sIsMatch [ i ] & ˜ sIsRunning [ i ] ;

end e l s e begin

a s s i gn canPropose [ i ] = 0 ;

end

i f ( i==0) begin

a s s i gn encoderOR1 [ i ] = canPropose [ i ] ;

a s s i gn encoderInput [ i ] = encoderOR1 [ i ] ;

end e l s e begin

a s s i gn encoderOR1 [ i ] = encoderOR1 [ i �1] | canPropose [ i ] ;

a s s i gn encoderInput [ i ] = ˜encoderOR1 [ i �1] & canPropose [ i ] ;

end

end

endgenerate

encoder

#(. logS ( logS ) )

ENCODER

( . in ( encoderInput ) ,

. out ( encoderOutput ) ) ;
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//��������������������������������������������������������������������������������������������� ALGORITHM

in t e g e r k ;

always@ ( posedge c l k ) begin

i f ( r s t ) begin

s<=0;

sIsRunning<=1;

f o r (k=0;k<R; k=k+1) begin : a lway s l i n e3

rIsMatch [ k]<=1’b0 ;

matchListMatrix [ k]<=0;

end

f o r (k=0;k<S ; k=k+1) begin : a lway s l i n e

pc [ k]<=Ks ;

sIsMatch [ k]<=1’b0 ;

sInMatch [ k]<=0;

end

end e l s e begin

i f ( propose ) begin // i f s can propose

pc [ s ] <= pc [ s ]�1; // w i l l l o s t one propose

i f ( rIsMatch [ r ]==0) begin

matchListMatrix [ r]<=s ;// a s s i gn them togethe r

sInMatch [ s ] <= r ;

sIsMatch [ s ] <= 1 ’ b1 ;

rIsMatch [ r ] <= 1 ’ b1 ;

end e l s e begin // i f r i s a l r eady matched

i f ( b e t t e r ) begin

matchListMatrix [ r]<=s ;// a s s i gn them togethe r

sInMatch [ s ] <= r ;

sIsMatch [ s ] <= 1 ’ b1 ;

sIsMatch [ s1 ] <= 1 ’ b0 ;

end

end

end

sIsRunning [ s ]<=0;

i f ( encoderInput [ encoderOutput ] ==1 ) begin

sIsRunning [ encoderOutput ]<=1;

s<=encoderOutput ;

end

end

end

//Combinational Part

always@ (⇤ ) begin

finishAND=0;

f o r ( k=0;k<S ; k=k+1) begin
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finishAND=finishAND& ˜ | pc [ k ] ;

end

end

//ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ MACROS

endmodule
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[6] A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth, “The New York city high

school match,” American Economic Review, pp. 364–367, 2005.

[7] M. Ostrovsky, “Stability in supply chain networks,” American Economic Review,

vol. 98, no. 3, pp. 897–923, 2008.

[8] D. Gale and M. Sotomayor, “Ms. Machiavelli and the stable matching problem,”

American Mathematical Monthly, pp. 261–268, 1985.



102

[9] D. Gusfield and R. W. Irving, The stable marriage problem: Structure and algo-

rithms, vol. 54. MIT press Cambridge, 1989.

[10] C.-P. Teo, J. Sethuraman, and W.-P. Tan, “Gale-Shapley stable marriage

problem revisited: Strategic issues and applications,” in Integer Programming

and Combinatorial Optimization (IPCO’99), vol. 1610 of LNCS, pp. 429–438,

Springer, 1999.

[11] A. E. Roth, “The economics of matching: Stability and incentives,” Mathematics

of operations research, vol. 7, no. 4, pp. 617–628, 1982.

[12] C.-P. Teo, J. Sethuraman, and W.-P. Tan, “Gale-Shapley stable marriage prob-

lem revisited: Strategic issues and applications,” Management Science, vol. 47,

no. 9, pp. 1252–1267, 2001.

[13] P. Golle, “A private stable matching algorithm,” in FC’06, vol. 4107 of LNCS,

pp. 65–80, Springer, 2006.

[14] M. Franklin, M. Gondree, and P. Mohassel, “Improved e�ciency for private

stable matching,” in CT-RSA’07, vol. 4377 of LNCS, pp. 163–177, Springer,

2006.

[15] M. Franklin, M. Gondree, and P. Mohassel, “Multi-party indirect indexing and

applications,” in ASIACRYPT’07, vol. 4833 of LNCS, pp. 283–297, Springer,

2007.

[16] M. Keller and P. Scholl, “E�cient, oblivious data structures for MPC,” in ASI-

ACRYPT’14, vol. 8874 of LNCS, pp. 506–525, Springer, 2014.



103

[17] A. Yao, “How to generate and exchange secrets,” in FOCS’86, pp. 162–167,

IEEE, 1986.

[18] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar,

“TinyGarble: Highly compressed and scalable sequential garbled circuits,” in

IEEE S&P’15, pp. 411–428, IEEE, 2015.

[19] P. C. Ng and E. F. Kirkness, “Whole genome sequencing,” in Genetic Variation,

pp. 215–226, Springer, 2010.

[20] Commercialization of full genome sequencing. http://www.genengnews.com/

gen-articles/race-to-cut-whole-genome-sequencing-costs/939/.

[21] B. A. Malin, “An evaluation of the current state of genomic data privacy pro-

tection technology and a roadmap for the future,” JAMIA, pp. 28–34, 2005.

[22] Y. Erlich and A. Narayanan, “Routes for breaching and protecting genetic pri-

vacy,” Nature Reviews Genetics, pp. 409–421, 2014.

[23] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for genomic

computation,” in S&P, pp. 216–230, May 2008.
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