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Abstract tocols that indirectly rely on the position of the partic-
ipating nodes, e.g., security protocols [2]. Due to the

Sensor networks are highly susceptible to errors and demand-initiated self-organizing structure of sensor net-
malicious attacks. A host of nefarious attacks are tar- works, sensors are not apriori aware of their locations.
geted at preventing nodesfrom discovering their correct Constraints on size, cost and power consumption of
positions. In this work, we present a novel framework nodes make the position estimation in sensor networks
for position estimation in presence of malicious attacks challenging. Current state of the art positioning tech-
on distance measurements of sensor networks. Addi- niques typically use distance measurements from a spe-
tionally, we propose a practical randomized algorithm cial set of reference nodes called beacons to estimate
in the framework, which efficiently detects and rejects their position. A sensor node requires distances from
the corrupted measurements. The algorithm searches three or more beacons to compute its coordinate. These
for an agreeable solution starting from randomly sam- computations apply multilateration (triangulation) [3]
pled minimal subsets of data; it subsequently enhances techniques to estimate the unknown position. The sensor
its estimate by augmenting consistent data points to nodes use signal features for instance Received Signal
the best random sample. The performance of the pro- Strength (RSSI) [4] measurements for calculating the
posed algorithm is evaluated and compared to state-of- distance from the beacons.
the-art robust positioning algorithms, both for indepen- The attackers can modify the position information of
dent and colluding attackers. While our method per- beacons either by spoofing or by compromising the bea-
forms the same or better compared with the other al- cons without limit. In response to these threats, we in-
gorithms on independent attacks, it is significantly more troduce a theoretical framework and a randomized al-
robust against collusion attacks, in terms ofboth the po- gorithm in this framework for attack-resistance position
sition estimation error and attack diagnosis and isola- estimation. In our view, the position information modi-
tion. Moreover, the algorithm has a shorter runtime due fications by the attackers are regarded as inconsistencies
to its randomized nature. (anomalies). The node wishing to find its position per-

forms anomaly diagnosis and isolation by using our pro-
posed algorithm. The final position estimate is a func-

1 Introduction tion of the largest anomaly free data set identified by the
algorithm.

Our attack-resilient position estimation framework is
built upon the random sample consensus paradigm of

The goal of this paper is to present a theoretical File an Bhe [andom sample consensus is a
framework for attack-resistant beacon-based position es- paradg forlfitting am do adaae corrupted by
timation. In light of proliferation of sensor networks benign or maictiouswo data; i edt couputer
both in military and civilian capacity, security breaches visn oandchasbeen c ss ain edfo cmoret
are inevitable [1]. Position information of the sensors .., b l

25 years in vision literature. Our main contributions are:
is required by a variety of applications such as envi-
ronmental monitoring and target tracking which directly *Anvlmteaia rmwr o tak
depend on the physical location of the nodes or in pro- rsletpsto siaini rpsd oet

of our approach is that unlike traditional top-down
1-4244-1455-5/07/$25.OO 2007 IEEE optimization methods, we use a minimal subset of



the data to form the initial model and then augment 2 Related Work
it with more data. The new framework does not im-
pose any restrictions on the whole data set such as Position discovery for sensor networks has been the
smoothness or prior distributions. Another key ad- focus of multiple research efforts during the recent
vantage of the proposed mathematical framework is years. Some of the most popular of position estimation
that it does not impose any limitations on the form algorithms which do not use GPS-like infrastructure are
of the objective function used for position discov- presented in [7, 8, 9]. Most of these algorithms make
ery. use of a set of special nodes called beacons which have

* The paper presents a practical randomized algo- knowledge of their own position as well as their distance
rithm for implementing the mathematical attack- from the other nodes in the network.
resilient position estimation framework. Random- Lazos and Poovendran have proposed a range in-
ization had proven to be a powerful algorithmic dependent positioning technique called SeRLoc and a
technique that provides simpler and more efficient high resolution variant of it, HiRLoc [10] that is robust
algorithms than its deterministic counterpart, both against wormhole, Sybil and compromise of beacon at-
in theory (and more importantly) in practice. Ran- tacks. This solution only applies to networks that per-
domized algorithms are widely used throughout form range based positioning with directional antennas
computer science from cryptography and learning and does not apply to networks that perform measure-
to networking. In particular, their unpredictable na- ments based on signal features such as RSSI, ToA or
ture makes them inherently less vulnerable to a ma- TDoA.
licious adversary, see [6] for more details. Li et al. proposed the use of robust outlier detec-

tion statistical models to achieve robust position esti-
* The random sample consensus paradigm is forti- mation [11]. The authors proposed a probabilistic ap-

fled with a binary search and progressive thresh- proximation to the least median of squares (LMS) ap-
old selection. The original paradigm assumes that proach of [12] to circumvent the computationally inten-
an estimate of the number of attackers is available. sive nature of LMS. We shall call this variant Robust
For cases where this estimate is not available, our LMS (RLMS). Liu et al. presented a greedy algorithm
threshold selection can be also based on the dis- to filter out the attackers data on the basis of a consistent
tribution of the errors that we analytically derive. minimum mean square error (MMSE) criterion between
We devise a consistency measure to be used with the received measurements from multiple beacons [13].
our algorithm. We also select the number of runs Our approach removes the anomalies in a shorter run-
for the randomized algorithm that probabilistically time than both the greedy algorithm of [13] and LMS
guarantees a high quality solution. with a better accuracy. For independent attackers, the

* A thorough comparison of the proposed algorithm performance of all three algorithms is comparable with
with the best known robust positioning algorithms our algorithm having a slight edge. However, when the
is presented. The comparison is carefully done with attackers collude to make stronger attacks, the new ap-
respect to the number of outliers, amplitude of er- proach clearly beats both the greedy algorithm of [13]
rors, as well as altering the input parameters to our and LMS. In the context of sensor networks, randomized
algorithm. We have considered both the case where consensus has been applied to distributed object tracking
the attackers act independently as well as the case [14] and time-synchronization [15].
of colluding attackers. We illustrate that in all sce-
narios, our proposed algorithm has the best perfor- 3 Problem Statement
mance in presence of collusion attacks.

The remainder of the paper is organized as follows: Position estimation methods typically use measure-
The related work is presented in Section 2. In Section ments from a set of reference nodes (beacons) to com-
3 we describe the attack model and the mathematical pute the coordinates of a sensor in the network. Because
framework for position estimation. We explain our pro- of limited accuracy of distance estimation techniques,
posed algorithm for attack-resistant position discovery e.g. Time Difference of Arrival (TDoA), the measure-
in Section 4. Performance of the proposed method ments of the beacons are often noisy. Robust position es-
with regards to independent and collusion attacks, ob- timation algorithms employ a mathematical framework
tamned from computer simulations, are presented in Sec- to estimate the coordinates of the sensor of interest from
tion 5. In the same section we give a thorough com- the erroneous measurements while optimizing an overall
parison of our algorithm and the state-of-the-art robust error criterion. We shall call this form of position esti-
position discovery methods. mation benign position estimation as the errors (noise)



in measurements are product of inaccuracies of the sys- 3.2 Position Estimation in Presence of
tem rather than deliberate tampering. Attacks

However, in presence of malicious attacks, the false
measurements from the compromised beacons can mis- In presence of attackers (outliers), the robust posi-
lead the sensor with unknown coordinates. We shall tioning methods seek to construct good estimates of the
view the malicious measurements injected to the system unknown. A good estimates is the one that is consistent
by attackers as outliers. The solution of the benign po- with benign measurements while it differs from the cor-
sition estimation is in general largely affected by mali- rupted measurements according to a given criteria. In
cious attacks that corrupt the sample set. our proposed framework, this criteria is a consistency

In absence of cryptographic authentication, a mali- metric 6. The metric d is selected by the user and it is
cious attacker can inject misinformation from the same driven by nature of the attack, i.e., the statistical proper-
beacon multiple times. Secure broadcast in sensor net- ties of the attack.
works is a whole other topic of research [16]. In this The position estimation problem in presence of mali-
work, we assume that the sensors are equipped with cious attackers is formally stated as follows:
proper cryptographic authentication capability such that Instance. A node so with unknown coordi-
no attacker can broadcast multiple times from the same nates (o0, Yo); a set L of position information tuples
beacon. Even though, use of cryptographic authentica- { (xn Yn, dn) } corresponding to beacon nodes {Sn}
tion can limit the number of times an attacker broadcasts where (Xn, Yn) are the coordinates of the n-th beacon
malicious information, it does not guarantee the integrity Sn and dn is the measured distances from Sn to so for
of the data. We allow multiple independent or colluding n = 1, ... N; a consistency metric d (Sn, so); a consis-
attackers (beacons) that can transmit corrupted position tency threshold t.
information without any limit. Problem. Find an estimate for the coordinates of

so denoted as so = (O, Qo), such that it is at least 6-
3.1 Attack Model consistent with t points in the set L.

A measurement (Xn, Yn) is 6-consistent with the es-
timate so if and only if 5(sn, so) is within a given con-

In our attack model, the attackers can modify the po-
sition measurements of a beacon without any restric- fidence interval CI. Note that, we shall call the set of

tions. This can be achieved when either the attacker 6-consistent points with the estimate Ao (±O, Q0), con-

modifies the packets sent by the beacon (spoofing) or sensus setsof s..
captures abeacon an sends ou packagescontainin The parameter t iS the size of the consensus set. Incaptures a beacon and sends out packages containing Seto.3 we prsn.w prahe oeemnn

wrong information. For the purpose of this paper, we
do not d nthe threshold t. In our implementation of the positiondo notdistiguishbetwen the wo caes. Hwever it 1 estimation algorithm of Section 4, we choose the metric

assumed that the network is cryptographically protected as the Elgidean dSeta in general, the metricc
agaist rotoolttaks sch s womhoe [] an Syil d as the Euclidean distance. In general, the metric can

ag7ainst protocol attacksesuchasnwormhole [2]oand Sybl be selected based on the nature of the problem at hand.
[ndtea samen sattcer cotpcorpth moret Some other appropriate metrics for position estimationone measurement sample. More precisely, the measure-
ments from a malicious beacon are entered only once in can be Lp norms of error or the median.
the overall data set available at the sensor that performs
positioning. The largest percentage of outliers that an 4 Attack-Resistant Randomized Position
statistical outlier rejection method can stand is called the estimation Algorithm
breakpoint of the system. When the attackers act inde-
pendently, good outlier detection mechanisms can even Unlike the previous approaches to attack-resistent po-
exceed a 50% breakpoint. sition estimation [12, 11, 13] which use as much data as
We study a more nefarious form of attack posed by possible to estimate the unknown coordinates, our ap-

coalitions of attackers coordinating their efforts. When proach starts by picking a small (but sufficient) subset
attackers collude they shift the break point of the sta- of the data and subsequently augments it with consis-
tistical method below 50%, because there is no way the tent data. The proposed framework randomly selects
system can detect more consistency between the uncor- the initial subset and employs a randomized algorithm
rupted samples when there are at least as many cor- to determine the set of consistent measurements and its
rupted ones. In our experimental results of Section 5, pseudocode is formally stated in Algorithm 1.
we show that our proposed method has the best perfor- A minimum of 3 distance measurements are needed
mance among all the algorithms in presence of colluding for finding the coordinate of a node in two dimensions.
attackers. In light of the new algorithm's minimalist methodology,



Algorithm 1. Randomized Consistent osition estimation 4.1 Choice of Total Number of Itera-
Input: set L, 6-consistency interval CI, threshold t, tions

maximum number of iterations imax*

1. Initialize i=1; It is expected that the number of iterations imax of
2. While (i < imax) { Algorithm 1 depends on the percentage of the outliers.
3. Randomly draw a subset Si of size 3 from L; Intuitively, the algorithm must keep picking random
4. Use Si to estimate the positions0;
5. Calculate K, the number of 6-consistent points with subsets of data set L for at least expected number of tri-

respect to the estimate so in L\Si; als E[i] to find a good subset of size 3. Let Na denote
6. If (K > t) { the number of the outliers in the data set L and let q be
7. Form new estimate so from K consistent points; the probability that a randomly drawn data point is con-
8. Terminate the program;}
9. Increment i; } sistent with the model. The expected number of trials
10. Terminate program either by announcing failure or F[i] 1

output the largest consistent estimate; EN=q3
One way of computing tmax is to exceed El[i] by say

two standard deviations. It is shown [5] that the standard
deviation of FE[i] is approximately equal to FE[i]. There-
fore, we can choose imax 33E[i]. Another approach
for choosing imax is to ensure that the probability of

the approach first estimates the position of the unknown missing a good subset is below a threshold r1. This im-
node so from some randomly selected subset of 3 nodes, plies that the total number of iterations imax must sat-
Si (Steps 3-4). To find this position, we use the MMSE isfy: (1 3)i r, or equivalently,
approximation algorithm described by Savvides et al.
[8]. Next, the algorithm verifies if this estimate s0 is lIn r1
consistent with enough data points, or equivalently if Zmax ln(l - q3) (1)
the size of the consensus set, (parameter K), is large
enough, i.e it is larger than the given threshold t (Steps Let I denote the set of inliers. If p 1 - Na is the

N

tency is computed with respect to the measure 6. Two percentage of inliers, then q Hj= N-j
methods for determining the threshold t which deter- for large data set, q - p3 and FE[i] = p-9. Substituting
mines the size of consensus set, are presented in Section for q in (1), gives the number of iterations imax in terms
4.3. of the percentage of the outliers in the data set L, imax

ln 7
ln(1-p9)-

Ideally, one would like to test all possible subsets of Note that, if an estimate of the number of the attack-
size 3, i.e. (N) and choose the one with largest consis- ers Na is available, then (1) gives the maximum number
tency set. However, when the data set L is large, this of subsets Algorithm 1 must try before quitting to search
exhaustive approach is too expensive. Instead, we at- for outlier free subsets of size 3. Section 4.4 presents
tempt a total of 'max times where, the quantity imax is an approach for determining number of iterations imax
the predetermined total number of the trials. In Section when no estimate of the number of outliers is available.
4.1 we demonstrate how to choose imax such that the
algorithm can find a consensus set with high probability. 4.2 Determining 6-Consistency Interval

Once a consistency set has been identified, the algo- Our assumption is that non-malicious (benign) dis-
rithm uses all points in the consensus set to form the tance measurement errors are i.i.d Gaussian random
final estimate of so and it terminates (Steps 7-8). In our variables distributed according to Al (0, or2). The Gaus-
experiments, we use a MMSE procedure for computing sian model for measurement errors may not capture all
both the initial estimate so from the subset Si and for practical cases, but it is a good starting point for our
the final estimate derived from the consensus set. theoretical analysis. More general cases of the dis-

tance measurement error distributions are considered in
If the algorithm performs all the imax iterations and [18]. The consistency metric d calculates the distance

does not find a consensus set of at least size t, it either between the real position of so (1o, Yo) with respect
declares a failure or it outputs the MMSE estimate ob- to the position reference (xxIIYn), i.e. 5(S,, sI) =
tamned from the largest consensus set that has been found dn- IQro - x)2 + (Yo _-n)
(Step 10). In the remainder of this Section, we will ex- The assumption of Normal distribution for the errors
plain the procedure for selection of the inputs to Algo- is based on s0's real position (xo, yo). We apply the
rithm 1. same distribution to approximate the distribution of d



which measures the error in estimated position coordi- square error A'SE is Chi-square (XK) with K degrees
nates s0=(:o, Q0). For example, under the assumption of of freedom (DF). The probability distribution of A2SE
Normality, the 95% confidence interval (CI) that a given is based on s0's real positions (xo, yo); this distribution
6' is drawn from the Normal distribution JV(0, or2), iS is used to approximate the cases where we have an es-
[-1.96 or, 1.96 or]. In other words, given 6' a realiza- timate (Jo, Q0) for s0's position. Note that, under the
tion of the random variable ;n, the confidence interval assumption of Uniform distribution of errors, Liu et al.
CI determines wether 6' is drawn from the same dis- [13] have previously used the central limit theorem to
tribution as ;n, with more than 95% probability. We approximate the distribution of A2SE as a Gaussian.
refer to the confidence interval as the 6-consistency in- Our approach is different and it improves their results
terval CI which is an input to the Position Estimation in at least two ways: First, we believe that the assump-
Algorithm 1. Note that, the error variance or2 is usually tion of Gaussian distribution of errors is more realistic
dependent on the distance measurement technique (e.g., than the Uniform distribution; it is much more likely
RSSI, TDoA) and the environment where the sensors are than smaller values of error occur more frequently than
deployed. Therefore, the error variance can be estimated the larger ones. Second, as the landmark results by
via a set of offline measurements. Pearson and Fisher [19] have indicated, the chi-square

and F- distribution are the exact models for smaller val-
4.3 Consensus with Respect to t ues of N rather than the Gaussian distribution. Since

A2SE XK , then as K tends to infinity, the distri-
The randomized paradigm presented in Algorithm 1 bution of A\SE tends to normality but the tendency is

assumes that t, the estimate of the size of the consensus very slow [20]. To determine the threshold, we employ
set is given. If the number of attackers (Na) are known the same method as [13], except that we use XK instead
a priori, one could set the size of the consensus set equal of the Gaussian distribution.
to N - Na. However, in many practical scenarios one
would need to estimate t. Our first method for estimating 4.4 Dynamic determination of the num-
t is to employ the threshold selection strategy proposed ber of outliers Na
by Liu et al. [13]. The major difference is that unlike
[13], we do not rely on the approximate distribution of Another method for determining the threshold t is to
the error metric and we derive its exact distribution, perform a search on the number of attackers Na Based
We use mean square error (MSE) of the distance mea- on the value of Na, we can compute the maximum num-

surements as our error metric. The selection of MSE ber of iterations imax, and the threshold t. We perform
metric is driven by its asymptotic optimality in presence a binary search on the value of Na between 0 and N to
the Gaussian noise, and its pervasive usage in position determine the best Na such that the randomized consis-
estimation literature in WSNs [13, 8]. MSE also facili- tent position estimation procedure produces the largest
tate sound formal analysis and creation of effective algo- cens set. erymtimeonearsdthe vle oa

riths. he osiionestmatin rcedre n Agorthm
consensus set. Every time one alters the value of Na

rithms. The position estimation procedure in Algorithm in the binary search procedure, it computes a new value
1. is also minimizing the MSE of so with respect to the for imax via the Equation (1) and a new t. The runtime
beacons that participate in the position estimation pro- of the randomized position estimation algorithm will be
cedure. MSE of the estimated position so is denoted as only increased by a log(Na) value that is a very small
MSE number compared to N and is essentially a constant for

N (d )2 all practical implementation purposes.

n=N 5 Experimental Evaluations

To ensure that the final consensus set includes only
the consistent points within a statistical error interval, In all of our simulations, a total of N beacons were
we compute the Q-th quantile of the inverse probabil- uniformly randomly distributed in a 10m x 10m square
ity of Ai\SE for K points. This quantile corresponds area. The square is centered at the origin. We assume
to a T, such that Prob(A2SE < T) = Q. We derive that the real coordinate (Xo Yo) of the node s0 (the tar-
the distribution of A2SE to find the value of T. Note get node for position estimation) is at the origin. The
that, since the quantile distribution function is mono- distance measurement noise between each beacon and
tonic (non-decreasing), there is a monotonic transfor- s0 is Gaussian with variance uJ 0.2. Note that, even
mation between t and T. Under the assumption that the though we use the Gaussian distribution to adaptively
measurement errors are distributed i.i.d Gaussian with compute the consistency threshold in Subsection 4.3, the
J\V(O, u2) forn= 1,.. ,K, the distribution of the mean procedure presented in Algorithm 1 in independent of



the noise distribution and for a certain value of parame- (the minimum required inliers for position estimation),
ter t, the algorithm is applicable to any distribution. Our one can estimate a consistent final position with an error.
choice of Gaussian in simulation is only driven by the The final error is lessened by increasing the number of
wide usage of this model. inliers up to seven, but beyond that the estimation error
We study the trade-off between noisy and incon- stays constant [18]. Because of space considerations, we

sistent measurement by fixing the noise variance and do not report FP values here, since we often have more
changing the amplitude of the attacks. Typically, the beacons than the minimum of three, and thus, it does
noise variance depends on the signal feature used in dis- not have a significant effect on the estimated position's
tance estimation, deployment environment and sensor error.
specification. Therefore, once the components and pro-
tocols of a network are configured, the value of the or NN%_ o - Sol |FN()
is expected to remain unchanged. The confidence in- 10% 0.06 0 A, FN(%)
terval (see Subsection 3.2) of all the runs of our algo- 20% 0.07 1.1 20% 2

30% 0.07 2.430 2
rithm is chosen to be CI= 90%. We also performed 440% 0.11 34 40% 0.6

experiments over the CI of the model for different in- 50% 0.13 3.7 50% 0.2
60% 0

tervals of confidence, at 80%, 85%, 90%, and 95% and (a) (b)
decided that CI=90% (0.9) was the best, since it would
accept the noisy (but benign) distance estimate, while it Table 1. Position estimation error ( so-0o-),
is tight enough to diagnose the attackers. Note that, to average FN vs. percentage of attackers,
minimize the randomness effects, each presented result N4 %(left table). Average FN vs. amplitude
is smoothed over a 1000 runs of the corresponding algo- of attack Aa (right table).
rithm.

When the attackers act independently, Na points are
randomly selected among the N beacons in box. The In Table 1, we show two sub-tables. The number of
amplitude of the attack (Aa) is the percentage increase nodes is fixed to 15 here. Sub-table (a) is presenting the
(decrease) in the noisy distance; for example, a mali- position estimation error, and average percentage ofFN
cious beacon at distance di would report its distance to versus various percentage of attackers ('Na %), when the
be di(1 ± Aa). In case of the colluding attackers, again amplitude of the attack is fixed at Aa 30%. Sub-table
we randomly pick total of Na beacons from the box and (b), shows FN when the malicious beacon i increases
subsequently perturb their measured distances such that (decreases) its distance di by (Aa) percent. In this ex-
they shift the node so from the origin to a false position periment, N = 15, and Na = 5 (i.e., Na =33%).
(xi, yr). In both regimes, we corrupt the samples in L The results of Sub-table (a) shows that both the ampli-
with an i.i.d. zero mean Gaussian noise with power r2. tude of the estimation error and FN increase as the num-

ber of the attackers grow. Note that, when the amplitude
5.0.1 Performance of the New Algorithm of the attacks increases, the performance of the algo-

rithm improves. This is due to the fact that larger outliers
We shall first study the performance of the new approach are easier to distinguish from noise. For instance, for
for independent attackers and then compare it with the outliers that are 60% larger or smaller than the benign
case where the attackers collude. measurements, the algorithm diagnoses and isolates all
(a) Independent Attacks. In our first set of experiments, the attackers.
we alter percentage of attackers NNa %, and amplitude of Next, we study the performance of the new algorithm
the attack Aa, for a fixed N. We study the percentage vs. number of beacons N and percentage of attackers
offalse negatives (FN) and the error in the position es- Na %. The results are presented in Figure 1, where Plot
timate so - so as a function of Na % and Aa. A false (a) illustrates the percentage of FNs on the z-axis and
negative occurs when the algorithm fails to diagnose and Plot (b) presents the absolute error in estimated posi-
isolate an attacker. Given that the algorithm is designed tion. As we can see in Plot (a), the percentage of FNs
for identifying the attackers, FN is the relevant figure is almost exponentially growing with increasing the per-
of merit for evaluating the algorithm. The final error in centage of attackers for a small number of nodes. This is
the estimated position with respect to the real position is because the number of benign beacons reaches the min-
used as a measure of success for the position estimation. imum of three, and there are no redundancies in the sys-
We have also studied the percentage of false posi- tem to check the validity of an estimate of three nodes

tives (FPs), which was low for all cases. In the case in presence of noise. A similar effect can be traced in
of independent attackers, even with a large number of the absolute error value depicted in Plot (b), where the
FPs, as long as the number of inliers is higher than three errors are increasingly growing for low number of nodes



(a) FN (b) Estimation error (a) Estimation error (b)FN

Figure 1. (a) Percentage of FNs (z-axis), Figure 3. (a) Position estimation error vs.
and (b) Position estimation error (z-axis) number of attackers, Na, and (b) FN vs.
vs. percentage of independent attackers number of attackers, Na.
and number of nodes (y-axis). Section 4 relies on the fact that the benign measure-

and high percentage of attackers. As can be seen on both ments, even the noisy ones, are consistent with the other
plots, increasing the number of beacons beyond a certain measurements. When the attackers act separately, the
number (around 10), ensures that there is a low percent- outliers are statistically independent. Therefore, as long
age of FNs as well as a low absolute position estimation as they do not overwhelmingly (more than 70%) domi-
error for up to about 25% attacking beacons. nate the measurement set, Algorithm 1 succeeds in find-

Figure 2 depicts the boxplot of the error in the es- ing a good estimate. However, when the attackers col-
timated position (sO -sol) for various amplitudes of lude, we expect that the system can not tolerate more
independent attacks Aa, N =15, and Na =5 (33%). than 50% malicious beacons. Our simulation result in-
Each box in the boxplot presents the 25% percentile and deed prove this.
the 75% of the error distribution. The line within the In the remainder of the experiments in this section,
box shows the position of the median. As we can see unless otherwise stated, the number of nodes is N=15,
here, the bound on error becomes tighter as we increase the amplitude of independent attacks is Aa =30%
Aa, while the median is decreasing and then stabilizing and the displacement of colluding attacks is (xi, Yf)=
around Aa =40%. Again, for both large or small am- (1, 0). Recall that (xo, yo)=(O,O) and the area is lOx 10.
plitude of outliers, the algorithm succeeds in estimating Figure 3 (a) compares the performance of our algo-
the coordinate of the unknown node up to an error mar- rithm in terms of position error estimate los-so for col-
gin due to the noisy measurements. luding and independent attackers. Figure 3 (b) depicts

performance of the algorithm in terms of FN, in pres-

Final EstimationErrorvs. Attack Amplitude ~ ~~~C.11.mgA

O - ~~~~~~~~~~enceof colluding and independent attacks. It shows that
O ~~~~~~~~~~~~whenalmost half of the attackers (seven) collude, the al-

B ur _ _ l l l l l l _ | ,gorithm misses 50% of the colluders, while for the same

20% ~~~~ ~~~~~~~~ 40 40 60 760%5

numbereoinepndn attackers, NlyaumallofrAaction

(a)litudeoftetimation err)5.0.2 Comparison with Other Attack-Resistent Al-
gorithms

Figure 2. Final estimation error vs. attack
amplitude, Aa- We compare the performance of the new algorithm with

three state-of-the-art position estimation methods: LMS
We have also evaluated the performance of the new algorithm of Rousseeuw and Leroy [12], RLMS algo-

algorithm in cases where the number of attackers Na is rithm of [11] and Greedy MMSE algorithm of [13].
not available. The binary search procedure described in Herein, we refer to the new randomized position esti-
Subsection 4.4 is used in this case. The binary search mation algorithm as RANLD. The first method, LMS,
procedure does not have a big effect on the false nega- solves the position estimation problem by minimizing
tives and the percentage of FNs essentially remains the an least median of squares (LMS) error metric over all
same. However, the binary search often incurs a lot the nodes. It is indeed an application of the general
of FPs, since it tends to remove the benign measure- paradigm of least median of squares optimization to sen-
ments with a large noise. The position estimation er- sor network position estimation. The second method,
ror is slightly improved, since only the more consistent RLMS, is a probabilistic approximation of first method
measurements are used in determining the final position. [11]. The third method, Greedy MMSE, is a greedy al-
(b) Collusion Attacks. The attack resilient paradigm of gorithm that minimizes the MSE error metric subject



to a consistency threshold T'. Instead of exhaustively Num of Independent Attacks Colluding Attacks
searching all combinations of the variables for the best Attackers Greedy LMS RANLD Greedy LMS RANLD
estimate, the authors propose using a stepwise backward 3 1.3 1.0 El. 32.6 26.4 27.5

4 2.6 1.9 22 36.0 29.0 304
deletion algorithlm, a greedy algorithmmthat atleach stage, 5 2.8 2.8 2.5 42.3 43.8 418
deletes the largest outlier. This method works well when 6 3.6 5.8 3.4 55.7 72.0 46.8th~~~~~~~~~~~~~~~~~ 3. 5. 3A t557 721.0 4&8+ +1k

there are only a few independent attackers, but fails as 7 4.0 7.6 316 61.9 77.2 523
the number of attackers increase or the attackers collude.
We analyze the performance of the various methods Table 2. FNs (in percentage) of the three

over a range of different parameters, including number methods vs. number of attackers, for both
of nodes, number of attackers, amplitude of attacks, and independent and colluding attacks.
displacement of colluding attacks. Given that the goal of
attack-resilient position estimation is to find the coordi- the percentage of FNs for the three algorithms, Greedy
nates of an unknown node while diagnosing and remov- MMSE, LMS, and RANLD, under the assumption of in-
ing the attackers, the position estimation error and FN dependent attacks. The last three columns illustrate the
are the most relevant criteria for comparison purposes, percentage of FNs for the three algorithms under the
both for independent and collusion attacks. assumption of colluding attacks. For illustration pur-

poses, the columns illustrating RANLD algorithm are
Error vs. Number of independent Attackers shaded in grey. As can be seen from the table, for inde-

RL pendent attackers, the percentage of FNs is comparable
LII-IGreedyl ..for Greedy MMSE and RANLD, where RANLD incurs
F- RANA.

slightly less number of FNs. The FNs performance of
cn ¢ LMS increasingly deteriorates with increasing number
ui Oof independent attackers.

(b) Collusion Attacks. As can be seen from the last three
__________________________ . columns of Table 2, the percentage of FNs for colluding

1 2 3 4 5 6 7 attacks rapidly increases for all three algorithms, with
Number of Independent Attackers RANLD having the smallest increase rate, when com-

pared to LMS and the Greedy MMSE. While the per-
Fignurber4Positiondepestimationterror r

- SOcentage of FNs of the LMS algorithm is comparable to
RANLD for smaller percentage of attackers, this value

(a) Independent Attacks. Figure 4 depicts the posi- rapidly increases for more than 6 (40%) attackers. The

tion estimation error (~O - so) versus the number of Greedy MMSE has a worse FNs performance compared
independent attackers. As long as the percentage of with LMS for smaller number of attackers, but the per-

centage of FNs of Greedy MMSE grows slower than thatthe attackers does not exceed 33%, i.e. Na < 5 for of LMS.
N= 15, the performance of the Greedy MMSE is compa-
rable to RANLD. For higher percentage of attackers, the Location Error vs. Number of Colluding Attackers
Greedy MMSE algorithm is not as robust as RANLD.

C

The LMS position estimation algorithm almost always °
has a higher error than the new method, but it has a high -
break point and does not break for the number of out- o Gd
liers less than 50%. The performance of RLMS is good ZiiThM |, ,,
for small number of attackers or in the absence of coali- ° _
tion attacks, but deteriorates rapidly with increasing Na. l_______,_
We believe that we might not have a good implemen- 3.0 3.5 4.0 4.5 5.0 5.5 6.0
tation of this algorithm, due to the fact that the authors Numberof Colluding Attackers

do not specify how they select the critical value a [11].
We tried a' =2.5 as was suggested by [21] but the results Figure 5. Position error estimate Iso - s
were not satisfactory. Also, we tried to optimize for a vs. number of Na colluding attackers.
experimentally, but we could not find a-y that worked
well across all experiments. Thus, we excluded RLMS Figure 5, compares the position estimation error for
from the analysis of collusion attacks. the three algorithms: RANLD, Greedy MMSE and LMS

Table 2, illustrates the percentage of FNs for various versus number of colluding attacker Na. Comparing
number of attackers (Na). The first column shows the Figure 4, where the attackers act independently, with
number of attackers. The next three columns illustrate Figure 5, we can see that all algorithms suffer from col-



Location Error vs. False Displacement

ACM International Conference on Mobile Computing
and Networking (MobiCom), 2000, pp. 32-43.

C'GreeyLiiI [8] A. Savvides, C. Han, and M. Strivastava, "Dynamic fine-
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False Displacement on Computer Communications (INFOCOM), 2003, pp.
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Figure 6. Position error estimate so - so [10] L. Lazos and R. Poovendran, "Hirloc: High resolution
vs. collusion attack displacements. localization for wireless sensornetworks," IEEE Journal

on Selected Areas in Communications (JSAC), Special
Issue on Network Security, vol. 24, no. 2, pp. 233- 246,

lusion. For both independent and colluding attackers, April 2006.
the Greedy MMSE demonstrates less tolerance against [11] Z. Li, W. Trappe, Y. Zhang, and B. Nath, "Robust sta-
an increase in the number of the attackers, while LMS tistical methods for securing wireless localization in sen-
and RANLD are more robust. Note that, RANLD has a sor networks." in Proceedings of The International Sym-
lower error in estimating the final position. This might posium on Information Processing in Sensor Networks
be due to the fact that RANLD uses MMSE estimation (IPSN), 2005, pp. 91-98.
which is a more efficient estimate than median in its final [12] P. Rousseeuw and A. Leroy, Robust Regression & Outlier
position estimation. Detection. New York, NY: John Wiley & Sons, 1987.

Finally, Figure 6 plots the position estimation error [13] D. Liu, P. Ning, and W. Du, "Attack-resistant location es-
for different values of false displacements that are in- timation in sensor networks," in Proceedings ofInterna-
jected to the system by colluders. In this experiment, tional Symposium on Information Processing in Sensor
the number of colluders was set to four. All three al- Networks (IPSN), 2005, pp. 99- 106.
gorithms seem to perform more or less similarly with [14] T. Roosta, M. Meingast, and S. Sastry, "Distributed rep-
respect to changes in magnitude of the displacement. utation system for tracking applications in sensor net-

works," in International Workshop on Advances in Sen-
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