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ABSTRACT
We have developed a generic integer linear programming(ILP)-
based engineering change(EC) methodology. The EC method-
ology has three components: enabling, fast, and preserving.
Enabling EC provides a user with the means to specify the
amount of flexibility and how this flexibility should be dis-
tributed throughout the solution so that one can guarantee
that a specific set of EC demands can be satisfied while pre-
serving the quality of the initially obtained solution. Fast
EC conducts changes in a fraction of the time needed to
solve the problem while preserving or in some cases improv-
ing the quality of the initial solution. Preserving EC main-
tains either user specified components of the solution or as
much as possible of the initial solution while still guarantee-
ing an optimal solution to the altered problem instance. We
applied the generic methodology to Boolean Satisfiability
(SAT) problem. The effectiveness of all proposed approaches
and algorithms is demonstrated on standard benchmarks.

Categories and Subject Descriptors
B.6 [Logic Design]: General; B.6.3 [Design Aids ]: Soft-
ware Engineering; B.7 [Integrated circuits]: [VLSI (very
large scale integration)]

General Terms
Automatic synthesis, optimization

Keywords
Engineering change, satisfiability(SAT), integer linear pro-
gramming, synthesis

1. INTRODUCTION
Design changes are a standard part of the design process

today. EC is crucial to the design process due to the large
number of design changes and common requests for new fea-
tures. By allowing the original design to easily accommodate
EC, one facilitates the incorporation of these changes with
minimal design time overhead. At the same time, many
optimization problems can be formulated as ILPs and LPs.
High speed ILP and LP solvers are readily available.
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We have developed a new EC approach. The technique is
ILP-based and has three components: enabling EC, fast EC,
and preserving EC. The essential idea is to formulate EC re-
quirements either as new constraints or as a new part of the
objective function, so that ILP solvers can be used to pro-
duce new designs with the requested features. We introduce
the key ideas behind the three ILP-based EC techniques us-
ing the Boolean Satisfiability (SAT) problem.

The essential idea behind enabling EC is to produce a
solution such that the addition of new constraints can be
handled locally. We illustrate this point using the following
SAT example. Our instance of SAT is denoted by F and
is given using the standard CNF format. We denote the
clauses by fi, where, for example, f1 = (v1+v′

3+v′
5). For F ,

there are at least two different solutions, that we denote by
S and E.

F = (v1+v′
3+v′

5)(v2 +v′
3+v′

5)(v2+v4+v5)(v′
3+v′

4)
S = {v1 = 0,v2 = 1,v3 = 1,v4 = 0,v5 = 0}
E = {v1 = 1,v2 = 1,v3 = 0,v4 = 1,v5 = 0}

The key observation is that solution E provides a much
better starting point for EC than solution S. Assume that
design changes are equivalent to eliminating a single vari-
able. If we eliminate variable v1, or v3, then solution S is
still correct. However, if we eliminate v2, then clauses f2

and f3 are not satisfied. In addition, if we eliminate v4,
then clause f4 is not satisfied or if we eliminate v5, then
clause f1 is not satisfied.

Solution E always has the correct solution, regardless of
which variable is being eliminated. If we eliminate one of
v1, v2, v4, or v5, all clauses are still satisfied. An interesting
case is when v3 is being eliminated. In this case, clause f4

is not anymore satisfied. But, if we change the assignment
of variable v4 from 1 to 0, this clause will again be satisfied
without making any other clauses unsatisfied.

Our goal in this paper is to show how to produce solutions
such as E, where we can handle changes in specification, by
using only local restructuring of the solution. Essentially, we
impose additional constraints on an instance so that it has
the requested tolerance against specified types of changes.

To introduce fast EC, consider the SAT formula F in CNF
format and the satisfying truth assignment, S.

F = (v1+v2+v3)(v1+v′
2+v′

3+v4)(v1+v3+v6)(v1+v4+v5)
(v′

1+v3+v4) (v2+v′
3+v5)(v2+v′

6)(v′
2+v5)(v3+v′

4+v5)
(v′

3+v5)
S = {v1 = 1,v2 = 1,v3 = 0,v4 = 0,v5 = 1,v6 = 0}

If, as an EC, we add the clauses f11=(v′
5+v6) and f12 =

(v1+v′
3+v4), we must find a new satisfying truth assign-

ment, S′, because the original assignment does not satisfy
f11. In order to fast solve the new instance we would like to
minimize the size of the new formula, F ′, to be solved.

We construct F ′ from two types of clauses, the unsat-
isfied added clauses and clauses that are affected by these
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unsatisfied clauses. We first identify all variables that are
contained in the unsatisfied clauses, we will call these vari-
ables, bi. We examine all clauses that contain variables bi,
and add the clause to F ′ only if there is no alternate vari-
able not in bi that satisfies the clause. In our example, we
examine f4, f5, f6, f7, f8, f9 and f10 as possible clauses to
add to F ′. We only add f7 and f8, for they are not satisfied
by any other variables.

F ′ = (v′
5+v6)(v2+v′

6)(v′
2+v5)

We see that both clauses f7 and f8 contain v2. As a result
of adding these clauses to F ′, we must now consider all of
the clauses that contain v2 as possible clauses to be added
to F ′. In this case, we look at f1, f2 and f6. All of these
clauses are satisfied by variables other that v2, v5, v6, and
therefore we do not add any of the clauses to F ′.

We can now solve F ′ over the variables v2, v5, v6. The size
of our instance is decreased in size from ten clauses to three
(even with the EC). Therefore, the additional overhead for
solving the modified instance would be minimal.

Often, a single synthesis step is followed by a number of
consecutive synthesis steps. Therefore, if we want to avoid
numerous changes to all steps, we have to preserve as much
as possible of the initial solution at the higher levels of ab-
straction.

The goal is to resolve a modified instance in such a way
that we minimize the number of changes to the original so-
lution. For example, assume that we have the following SAT
instance, F , and satisfying truth assignment, S.

F = (v1+v2+v4)(v1+v4+v′
5)(v′

1+v′
3+v4)

(v2+v3+v5)(v′
2+v4+v5)(v3+v′

4+v5)
S = {v1 = 1,v2 = 1,v3 = 0,v4 = 0,v5 = 1}

If we add the clauses (v′
2+v3+v4)(v1+v′

2+v′
5) the formula

F becomes unsatisfied. We now must resolve the instance.
There are multiple satisfying assignments for F , for instance
consider the following two assignments.

S1 = {v1 = 0,v2 = 1,v3 = 1,v4 = 1,v5 = 0}
S2 = {v1 = 1,v2 = 0,v3 = 0,v4 = 0,v5 = 1}

If we select the S2, we preserve four out of the five assign-
ments, and therefore make the minimal amount of design
changes. However, if we select the S1, only one of the five
variables assignments is preserved, and as a result the design
would need to be almost completely redesigned.

2. RELATED WORK
In the last two decades, combinatorial optimization in

general, and integer and linear programming in particular,
have attracted a great deal of attention. Numerous high
quality books appeared including [10, 12]. Quality text-
books on integer programming include [11, 14]. ILP has
been widely used in CAD for a great variety of optimization
tasks, ranging from physical CAD [8] to behavioral synthe-
sis[2].

It appears that one of the first efforts for EC was per-
formed at Hitachi. Shinsha et al. [13] described an incre-
mental logic synthesis technique for supporting changes in
the physical design stage. They demonstrated the effective-
ness of the approach on the Hitachi M68XH design. Later,
many efforts were made at the logic synthesis level [4, 7].

In a sense, our work is closest to the work by Kirovski
et al [5]. They defined the engineering change problem as
constraint manipulation where the graph is restructured in
such a way that it supports EC. However, there are nu-
merous differences and novelties. First, for the first time
we introduce the notion of preserving EC and the quanti-
fied notion of enabling EC. More importantly, the technique
in [5] is restricted to graph coloring and scheduling, does

not guarantee optimality, and does not opt for successive
application to new requests. Most importantly, their tech-
nique can only handle some specific changes in specification,
whereas the new technique is completely general.

Boolean Satisfiability is among the most popular generic
NP-complete problems with numerous applications both in
CAD and other application domains. Excellent surveys on
SAT include [3, 9].

3. PRELIMINARIES
In order to make the paper self-sufficient, we survey rel-

evant background material about ILP methodology and its
use, the terminologies that we use throughout the paper,
along with the formal definition of engineering change.

There are several techniques how one can solve ILP or LP.
For LP, the most widely used is the SIMPLEX approach that
has an exponential runtime in the worst case. However, on
an overwhelming number of practical instances, SIMPLEX
is not just of polynomial complexity, but also very fast. Dur-
ing the last decade, a number of practical and powerful in-
terior point algorithms have been successfully implemented.
These algorithms have guaranteed polynomial runtimes.

ILP deals with problems where a function is to be max-
imized or minimized and the variables are constrained by
inequality and equality constraints and/or integral restric-
tions. The objective function as well as the inequality or
equality constraints are linear.

max{cx + hy : Ax + Gy ≤ b, x =∈ Zn
+, y ∈ �p

+} (1)

We define the mixed integer programming problem (MIP)
as 1, where Zn

+ is the set of non-negative integral n-dimensional
vectors, �p

+ is the set of non-negative integral p-dimensional
vectors, and x = {x1, · · · , xn} and y = {y1, · · · , yp} are the
variables and unknowns of the problem.

We assume that all numbers are rational. For our pur-
poses, we use a special case of the MIP where all variables
are integer values. The integer linear programming (ILP) is
defined as:

max{cx : Ax ≤ b, x =∈ Zn
+} (2)

More specifically, we restrict the integer values of x to be
0 or 1. This is called 0-1 ILP where x is redefined to be
x ∈ Bn where Bn is a set of n-dimensional binary vector.

For the sake of completeness and due to the fact that
most often ILP are usually solved using relaxation to the
LP problem, we conclude this section by stating the LP
problem.

max{hy : Gy ≤ b, y ∈ �p
+} (3)

A very important and often used special case of MIP is
one where all variables are 0-1 variables that means that
each variable represents a binary decision. Specifically, it is
common to model a variety of problems using the dichotomy
formulation for variables with respect to a specific event.

x =

{
1, if the event occurs
0, otherwise.

We define ILP using the following form.

Y = MAX(cx) (4)

Ax ≤ b (5)

We define x = {x1, · · · , xn} and p = {p1, · · · , pn} as 0-1
variables. We denote the original or previous assignments of
the instance by P=(p1,p2, ..., pn) and the new assignments,
after EC, by X=(x1,x2, ..., xn).

Boolean Satisfiability is a NP-complete problem that is
often used in CAD tasks. The problem can be formulated
as follows[1].
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Satisfiability
Instance: A set U of variables and a collection C of
clauses over U .
Question: Is there a satisfying truth assignment for C?

We formulate the SAT problem in the form of an ILP by
using the ILP formulation of the set cover problem as an
intermediate step. The set cover problem can be formally
defined as follows:

Set Cover
Instance: Collection C of subsets of a finite set S,
positive K ≤| C |.
Question: Does C contain a cover for S of size K or less,
i.e., a subset C′ of C with | C′ | ≤ K such that every
element of S belongs to at least one member of C′?

The ILP formulation for the set cover problem can be
specified in the following way.

xi =

{
1, if subset Ci is selected
0, otherwise.

Aij =

{
1, if element Sj is covered by subset Ci

0, otherwise.

We use the ILP formulation (4) and (5), where we define
c as a negative identity vector and b as a positive identity
vector. The objective function for the set cover problem is
to minimize the number of subsets used to cover the set S.
The constraints are that each element in S must be covered
by at least one subset.

We now formulate the SAT problem using the set cover
ILP formulation. We define each element in the finite set
S as a single clause in the SAT formula. The collection
of subsets C are the variables in both complemented and
uncomplemented forms independently. Each subset Ci con-
tains all clauses as its elements, i.e. elements of S, in which
the variable i appears in. Therefore, we have twice as many
subsets as there are variables in the instance, one subset to
represent the complemented and one to represent the un-
complemented version of the variable. Because no variable
can be assigned to both the uncomplemented form and com-
plemented form at the same time, we add a constraint (6),
one for each variable, where n is the number of variables in
the SAT problem. We define the objective function and the
other constraints in the same way as the set cover problem.

xi + xi+n ≤ 1 (6)

To illustrate the formulation, consider the following SAT
instance, F , with three variables and three clauses.

F = (v′
1 + v2)(v2 + v3)(v1 + v′

3)

In this case, we define x = {x1, · · · , x6}, where x1,· · · ,x3

represent uncomplemented versions of the variables, and
x4,· · · ,x6 represent the complemented versions of the vari-
ables. We define the elements of S and the subsets C below.
The translation to ILP form is now straightforward.

S1=(x4, x2), S2=(x2, x3), S3=(x1, x6)
C1={S3}, C2={S1, S2}, C3={S2},C4={S1}, C5={∅ },

C6={S3}

4. GENERIC ILP-BASED ENGINEERING
CHANGE

In the modern design processes, there is often a need to
handle small specification alterations and therefore to re-
design or update the hardware and/or software implementa-
tions(EC). Until now, the EC methodologies and algorithms
have been restricted to a particular task. In addition, EC

Original
Specification

New SpecificationModify Instance

New Features &
Preservation Specification

Enable ECSolver / Heuristic

Solver / Heuristic

Preserving ECFast EC

Non-EC Solution EC Solution Updated EC Solution

Solver

Figure 1: Generic ILP-Based EC Flow.

has been ad-hoc in nature is the sense that a few, if any,
guarantees about its optimality could be provided. Our goal
is to provide the first systematic, provably optimal, generic
EC approach that can be easily applied to a variety of design
and compilation tasks. The key enabling step of this effort
is the formulation of EC requirements as ILP constraints.
An important observation is that even when an optimiza-
tion/synthesis problem is defined in ILP form, one can use
not just an ILP solver, but also an arbitrary algorithm, such
as simulated annealing or a heuristic, to solve it.

There are two ways how we can address EC requirements.
One is to design for EC, where we embed flexibility into
the solution to make it amenable for future changes or im-
provements. The other aspect is to apply EC after we have
a valid and highly optimized solution. The goal here is to
minimally alter the initial solution in order to obtain a solu-
tion to the altered specification. This task can be performed
in at least two different setups: one where the goal is to pre-
serve as much as possible from the original design (so the
results of the consequent design steps are preserved maxi-
mally) and the other, where the speed of redesign is of prime
importance.

Both types of EC require thoughtful considerations. For
the first task, one should efficiently predict the parts of the
design that would undergo alterations and updates and find
mechanisms to make them flexible. For the second, the goal
is to figure out how to specify a small and easy to solve in-
stance of ILP (in the case of fast EC), or how to specify that
the new solution to the new specification should preserve as
much of the original as possible, or conserve the requested
parts (in the case of preserving EC).

We now informally introduce the new EC approach. We
conduct enabling EC in two different generic ways. The first
one is to specify additional constraints that guarantee that
the solution will have flexibility as requested by the user.
The second approach is that we add a new component, in
terms of constraints, to the objective function. Now the
objective function has two weighted components, the orig-
inal part for the quality of solution and the new part for
flexibility.

For fast EC, we follow the following procedure. We first
isolate constraints that are impacted by the change. Using
these constraints and new constraints, we specify a new in-
stance of ILP. Finally, we combine the preserved parts of
the initial solution and a partial new solution to create a
complete new solution. For preserving EC, we define an
ILP where either constraints or the objective function have
components that guarantee preservation of either specified
components of the previous solution, or as much as possible
of the previous solution.

We conclude this section by presenting the generic ILP-
based EC flow. The flow for a generic problem with EC can
be seen in Figure 1. We begin with the original specifica-
tion of the problem. We have two options. We can solve the
instance with a standard ILP solver or the heuristic iter-
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ative improvement-based ILP solver presented in [6], or we
can apply enabling EC to the original problem specification.
The result of the solver/heuristic on the original instance is
denoted as the non-EC solution. Another option is to use
an EC enabling procedure to produce the EC solution. Ei-
ther the non-EC solution or the EC solution can be used
in conjunction with the original problem specification and
the new features and preservation specification to generate
a new problem specification.

The new problem specification is a modified instance of
the original problem specification that includes the original
solution (EC or non-EC) and, if desired, the preservation
specification. The EC or non-EC solutions are the starting
solution for solving the new problem specification. We can
resolve the new problem in two ways: fast EC or preserving
EC. With fast EC, the new problem specification is simpli-
fied in such a way that the new ILP is much easier to solve.
For preserving EC, we follow the preservation specification.
Next, we find the solutions using a standard ILP solver. In
this case, we do not use the heuristic ILP solver because
the ILP solver will provide an optimal solution in a reason-
able amount of time (the new specification is non-trivially
smaller than the original instance).

5. ENABLING EC
In this section, we describe how to enable EC for the SAT

problem by reformulating the ILP in such a way that we can
adapt to changes in the problem.

For example, a variation of the SAT problem would be to
remove new variables or clauses. When we remove variables
from the problem, we modify the number of subsets, x, and
therefore the number of columns, or subsets, in matrix A is
changed. On the other hand, if we add clauses, the number
of rows, or number of elements in S, in matrix A changes.
Note that, in a sense adding clauses is a more general case
than removing variables.

If we remove clauses or add variables to the problem we
will not need to resolve the problem, because we are loosen-
ing the constraints on the problem. If we remove a variable
or add clauses, we constrain the problem even more and the
original solution is not necessarily adequate. By enabling
EC we allow for the removal of variables or the addition of
clauses such that their effects can be localized, and a min-
imum number of clauses and variables that are in direct
relationship to them are changed.

One way to enable EC is to make sure that at least two
variables per clause are satisfied. We call these clauses k-
Satisfied, where k is the number of literals in the clause that
evaluate to true. This can be very expensive or impossible
in the general case. Therefore, we make a modification to
the enabling condition. We say that we want to maximize
the number of clauses that are at least 2-satisfiable. For all
clauses that are 1-satisfiable there must be other literals in
the clause that can switch their assignments to make the
clause satisfied.

The ILP formulation for enabling EC is best introduced
and explained using a small example. Consider again the
SAT formula, F introduced above, along with its satisfying
truth assignment. We label the clauses, c1, c2, and c3 re-
spectively. The ILP formulation is the same as presented in
Section 3, except that we impose additional constraints in
the following way.

For each clause we form a number of constraints. The first
constraint is that each clause must be at least 2-Satisfiable
(denoted by the first summation), or have at least one vari-
able that can flip its assignment in such a way that it does
not make the problem unsatisfiable (the second summation).
Note that Zi variables must evaluate to false in the consid-
ered clause in order to be included in the constraint.

∑
i

(xi) +
∑

i

(Zi) ≥ 2 (7)

Recall that the constraint from (5) guarantees that at least
one variable in each clause must be satisfied. A set of con-
straints is created for each inverse occurrence of each literal
of the instance.

In our example, we begin with v1 in c1. We say that it is
permitted for variable v1 to be eliminated from c1 if either
v2 or v3 can switch its assignment to satisfy the clause. We
write equations for each occurrence of the complement of
v1; in our example it is v′

1 or x5 in ILP form. Note that v′
1

appears only in c3.
We define two auxiliary variables, Qi and Z. Zi represents

the variable that receives support from all variables in clause
ci. Qi is used to ensure that all variables, Zi, have non-
negative values. Zij represents the support for variable xi in
clause cj . Finally, we introduce variable Zijk which indicates
whether variable xi receives support from clause cj through
variable xk when xk flips its value.

The first two constraints specify that either v′
1 must satisfy

the clause or one of the other literals in the clause must. We
enforce this by creating a constraint that specifies that the
complements of v2 and v3 must be greater than Zijk in the
case that test variables are needed to satisfy the first two
constraints. The fifth equation states that either one of the
variables or none of them must be able to flip their value.
If it is none of the variables, then Q1 must be 1. Q1 then is
used in the next equation to specify that the value of variable
Z53 must be zero. If this is the case, then Z5 must be zero,
and none of the variables can flip their value. From (7) we
can see then at least two variables in c1 must evaluate to
true in order to satisfy the constraint. If either v′

2 or v4 or
both can flip their values then Z536 or/and Z534 will be 1.
As a result then Z53 will be greater than zero, that results
in equation (7) being satisfied.

x5 + Z536 ≤ 1

x5 + Z534 ≤ 1

x6 ≥ Z536

x4 ≥ Z534

Z536 + Z534 + Q ≥ 1

Z536 + Z534 + Q − 1 ≥ Z53

Z5 ≤ Z53

By adding these constraints, we have now enforced that
each clause must be either 2-Satisfied or has flexibility in
terms of an alternate variable that can flip its assignment to
support the unsatisfied clause, in case of an EC.

6. FAST SOLVING EC
While doing fast EC, there are two cases to consider for

changing the constraints to the SAT problem. The first case
is when variables are added or clauses are deleted. The other
is when we add clauses or delete variables. The first case is
trivial to handle in the sense that if a variable is added, it
can automatically be assigned a DC value. The problem was
originally satisfied and therefore the addition of a variable
has no effect on the solution. The same is for the deletion
of clauses. When clauses are deleted, the idea is to increase
the enabling of the problem such that the next EC can be
easily and properly handled.

We can increase the EC flexibility of the problem in two
ways. First, we try and recover as many DC variables from
the initial solution as possible. The second way is to recon-
struct the solution in such a way that more clauses are of
2-satisfiability or higher.

If we add more clauses or remove variables, modifications
must be made in order to quickly resolve the problem. We
have developed the following approach, presented in Figure
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2, that performs the minimization of the problem, in terms
of the number of clauses and variables, in order to fast solve
the instance.

Input: F ′ a modified SAT Formula.
p the original satisfying truth assignment to F .

Output: A simplified SAT instance with the minimum
number of clauses and variables.

Algorithm:
Check the Original Solution(F ′, p);

If p satisfies F ′ then quit;
Mark All Unsatisfied Clauses from F ′;

Add all variables which appear in the marked clauses
to list, V;

While (V increases in size) {
Check All Clauses that have variables from V

If the clause is not satisfied by a variable not in V
mark clause;
add any new variables to V; }

Create new ILP, F ′′, with V and marked Clauses;
Solve F ′′;
Combine p and new solution p′;

Figure 2: Pseudo code for simplifying a SAT in-
stance in order to be fast solved.

The intuition is the following. We solve the instance with
all clauses that are not satisfied and the clauses that they
could affect. If a clause is solved by other variables that need
not be modified, we do not include them into consideration
in the new SAT formula F ′. If EC was enabled on the
instance, then many clauses will not be included due to the
fact that many of them will be 2-Satisfied or more. In this
case, a minimal number of variables and clauses will have to
be resolved.

7. PRESERVING EC
This section presents the ILP-based SAT formulation for

preserving EC. We can preserve in two different ways. The
first is to preserve the maximum amount possible, and the
second is to preserve user specified parts of the solutions.
This approach focuses on the quality of a solution rather
than the overhead.

We only need to consider the case when variables are re-
moved or clauses are added. In this case, we are removing
constraints from the instance and therefore the problem is
a simplified version of the original problem that the initial
solution will satisfy.

When variables are removed or clauses are added we need
to redefine the ILP such that the new solution, n, preserves
as much as possible of the original solution, p. The key is
that we formulate the ILP in such away that we are maxi-
mizing the number of assignments that stay the same as well
as finding a satisfying truth assignment for the modified in-
stance. We do this by adding additional constraints to the
ILP or by modifying the objective function to give benefit
to variable assignments which are preserved. The ILP for
preserving EC is defined as follows.

xi =

{
1, if subset Ci is selected
0, otherwise.

Ni =

{
1, if subset Ci is selected
0, otherwise.

Aij =

{
1, if element Sj is covered by subset Ci

0, otherwise.

The objective function is now defined as follows, where c
is an identity vector. In this case, we are maximizing the

number of variables which have the same assignment as the
original assignment, p. We keep the same constraints (5)
and (6), where b is an identity vector. We add the following
constraint that evaluates whether or not the new variable
assignment for Ni is the same as the assignment as pi.

Y = MAX(cZ)

Zi = pixi + pn+ixn+i

8. EXPERIMENTAL RESULTS
We use standard DIMACS SAT benchmarks to test our

EC methodology. We use CPLEX as our main ILP solver.
Both CPLEX and the heuristic ILP solver were ran on a 1
GHz Pentium III computer.

The results for applying EC to DIMACS SAT instances
are shown in Table 1. The first three columns indicate the
name of the instance, the number of variables and the num-
ber of clauses in the instance, respectively. The next column
presents the runtime for the original instance. The fifth
column represents the runtime values when specified con-
straints are imposed. The last column shows the runtime
when the objective function is augmented with EC require-
ments. Both of these columns represent the normalized run-
time against the original runtime. The average and median
for the specified constraints are 0.69 and 2.62 respectively
and for objective function EC are 0.75 and 2.34 respectively.
As we can see, the overhead is not significant. In all the tests,
we used k = 2, that means that each clause is directly either
2-Satisfied or is satisfied by the support of other variables in
the clause being able to flip their assignment without jeop-
ardizing the satisfiability of other clauses. The second set of
results, the five examples shown on the bottom of the table,
are solved heuristically using the heuristic ILP solver [6].

For fast solving, we ran ten trials. For each of the trials,
we eliminated three variables and added ten clauses. The
results are shown in Table 2.

The first three columns represent the DIMACS instance
information. The third column indicates the original run-
time for solving the instance. The following two columns
list the average number of variables and clauses in the fast
EC instance. The last column represents the runtime of the
fast EC instance. On average, for the smaller examples, we
needed 23.25 variables and 99.6 clauses, and on average re-
duced the runtime to 0.0068 of the original runtime. For
the larger examples at the bottom of the table, we initially
solved them using our heuristic ILP solver. Once an initial
solution was generated, we then used an off-the-shelf solver
to obtain a new optimal solution to the original instance.

To evaluate our preserving EC, we randomly added and
deleted five variables and randomly added and deleted five
clauses, making sure that we did not make the instance non-
satisfiable. We compared the percentage of preserved vari-
able assignment for two cases: when new instance were just
again evaluated with no consideration for preserving the ini-
tial assignment as when preserving EC approach is used. We
present the results in Table 3. We begin the table with the
DIMACS instance information, name, number of variables
and number of clauses in the instance. The fourth column
indicates the percentage of the original solution after com-
plete recalculation with no EC goals. The percentage of
the original solution preserved when evaluating the instance
with preserving EC is shown in the last column. The last
two rows present the average and median values. It is clear
that preserving EC preserve significantly higher percentage
of the initial assignment. As was done for fast solving, the
larger instances presented at the bottom of the table were
originally ran using the heuristic ILP solver to generate the
initial solution. An off-the-shelf solver was used to optimally
solve the instance with preserving EC.

In addition to validating the new ILP-based engineering
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change approach on SAT benchmarks, we conducted com-
prehensive experimentation on the graph coloring problem.
The results can be found in [6].

9. CONCLUSION
We introduced a generic ILP-based EC methodology. We

demonstrated the three components, enabling EC, fast EC,
and preserving EC on a CAD related problems, SAT. The
EC techniques are applicable to many other CAD and op-
timization problems. We demonstrated the effectiveness
of the methodology on standard DIMACS benchmark in-
stances.
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Instance # # Orig. EC (SC) EC (OF)
Vars Clauses Runtime N.R. N.R.

par8-1-c 64 254 21.14 0.90 2.12
ii8a1 66 186 0.14 0.82 1.37
par8-3-c 75 298 57.9 0.81 1.78
jnh201 100 800 527.83 0.77 2.28
jnh1 100 850 1476.59 0.73 2.40
ii8a2 180 800 3023.94 0.67 3.01
ii8b2 576 4088 20089.8 0.45 4.42
f600 600 2550 18989.8 0.37 3.56

average - - 5523.393 0.69 2.62
median - - 1002.21 0.75 2.34

par32-5-c 1339 5350 5.2 0.77 1.93
ii16a1 1650 19368 12.6 0.82 2.41
par32-5 3176 10325 22.4 0.94 3.87
g250.15 3750 233965 74.8 0.98 4.37
g250.29 7250 454622 96.9 0.92 3.98

average - - 42.38 0.88 3.31
median - - 32.39 0.90 3.59

Table 1: Experimental Results for Enabling EC on
SAT.

Instance # # Orig. Ave. # New
Vars Clauses Runtime Vars/Clauses Runtime

par8-1-c 64 254 201.14 11.2/40.8 0.036
ii8a1 66 186 0.14 10.8/27.3 0.005
par8-3-c 75 298 57.9 16.0/38.5 0.007
jnh201 100 800 527.83 21.0/98.9 0.002
jnh1 100 850 1476.59 17.7/67.3 0.001
ii8a2 180 800 3023.94 25.7/165.7 0.002
ii8b2 576 4088 20089.8 56.4/191.4 0.001
f600 600 2550 18989.8 27.2/167.0 0.001

average - - 5523.393 23.25/99.61 0.007
median - - 1002.21 19.35/83.1 0.002

par32-5-c 1339 5350 5.2 52.6/387.2 261.2
ii16a1 1650 19368 12.6 68.1/401.6 76.2
par32-5 3176 10325 22.4 70.9/476.2 102.9
g250.15 3750 233965 74.8 74.3/639.1 202.7
g250.29 7250 454622 96.9 102.5/876.4 952.1

average - - 42.38 73.68/1416.1 319.02
median - - 32.39 72.29/757.75 202.7

Table 2: Experimental Results for fast EC on SAT.

Instance # # % Solution % Solution
Vars Clauses Original with EC

par8-1-c 64 254 72.2 98.2
ii8a1 66 186 71.6 99.3
par8-3-c 75 298 68.2 94.7
jnh201 100 800 63.6 93.7
jnh1 100 850 72.8 98.2
ii8a2 180 800 82.7 99.4
ii8b2 576 4088 83.0 99.7
f600 600 2550 76.6 98.6
par32-5-c 1339 5350 62.4 92.8
ii16a1 1650 19368 73.5 99.3
par32-5 3176 10325 71.6 94.1
g250.15 3750 233965 68.7 97.8
g250.29 7250 454622 84.1 94.7

average - - 73.19 96.96
median - - 72.75 98

Table 3: Experimental Results for preserving EC on
SAT.
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