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Abstract— We have developed Markov chain-based techniques
for infield modeling the missing and faulty data for the widely
used MICA2 sensor motes. These models help designers of sensor
nodes and sensor networks to gain insights into the behavior of
any particular sensor platform. The models also enable users of
sensor networks to collect high integrity data from the deployed
networks in a more efficient and reliable way. The new approach
for development and validation of faults and missing data has
two phases. In the first phase, we conduct exploratory analysis
of data traces collected from the deployed sensor networks. In
the second phase, we use the density estimation-based procedure
to derive semi Markov models that best capture the patterns and
statistics of missing and faulty data in the analyzed sensor data
streams. We have applied the fault detection and missing data
modeling procedure on light, temperature and humidity sensors
on MICA2 motes in sensor networks deployed in office space and
natural habitats. The technical highlight of the research presented
in this paper include: (i) exploratory data analysis and studying
the properties of the sensor data streams, (ii) adoption of a new
class of semi Markov-chain models for capturing and predicting
missing and faulty data in actual data trace streams.

I. INTRODUCTION

The state-of-the-art sensor nodes and sensor networks are
being built using inexpensive and ultra low power components,
communication and operation protocols. A mote is a wireless
node with computing and sensing capabilities and is the most
commonly used node in sensor network applications [13].
Since sensor networks are often deployed unattended and
in harsh environmental conditions, faulty measurements and
missing data are unavoidable. For example, our analysis from
sensor data traces collected at Intel Berkeley research lab
[14] over a 3 week interval shows that almost 40% of the
data was missing and about 8% of the data were faulty.
Similar characteristics have been found in other collected
measurements in sensor networks with MICA2 motes built
by the Crossbow Technology [13]. Figure 1, shows a picture
of a typical MICA2 sensor mote.

The key assumption for infield fault modeling for sensors
is that in a sensor network settings where there are correlated
measurements of a stimulus, the majority of sensors exposed
to the stimulus are non-faulty. In general, if we can control
the stimuli input to a sensing device, we can model and
characterize its response and its fault models. However, during

infield testing of sensors, we have to use fault models that
do not assume the concept of controllable stimuli. Another
difficulty in establishing the infield sensor fault models is
the inherent uncertainty in sensor readings. Almost all of the
sensor measurements are noisy. Therefore, temporary presence
of small measurement errors is inevitable. We often have to
accept a measurement with a relatively small error as a correct
measurement.

Our approach to infield fault identification is data-driven and
follows two principles: (i) predictability and (ii) consistency.
We define predictability in the following way: consider a
sensor network consisting of sensor set S = {s1, s2, s3, ...sN}.
We say that sensor sY is predictable if one can calculate the
values and measurements at sensor sY , using the measure-
ments of one or more sensors from the set S\sY . Consistency
principle captures the assumption that at a given moment in
time, the majority of sensors in a sensor network are observing
the physical phenomena correctly (i.e. without faults). We also
assume that deployment of the nodes in sensor networks is
such that, under the assumptions of no faults, for each node
we have at least one node from which we can predict its value
accurately. Using predictability and consistency principles,
we specify a faulty measurement as a measurement that is
not predictable from any other sensors in the infield sensor
network settings within a maximal target error bound of εt.

Fig. 1. Picture of a MICA2 mote. The MICA2 mote contains: (1) An
Atmel ATmega128L low-power microcontroller, (2) A multi-Channel Radio
Transceiver supporting 433, 868/916, or 310 MHz, and (3) A 51-pin expansion
connector supports Analog Inputs, Digital I/O, I2C, SPI, and UART interfaces.
The mote can have a variety of sensor types including light, temperature, and
humidity sensors [13].



We have developed a family of Markov chain-based models
for accurate capturing of time variability of the collected data.
The Markov property is essentially a conditional independence
of the future evolution on the past. Markov chains have the
Markov property and consist of a set of time dependent
random variables. The time dependent random variables are
the states of the Markov chain and can assume values in a
finite (or countably infinite) discrete set. The discrete set of
the states is also referred to as the state space. More formally,
we use a Markov process that is characterized as follows:

The state qt at time t is one of a finite number of states
in the range {s1, ..., sM}. Assuming that the process runs
only from time 0 to time N and that the initial and final
states are known, the state sequence could be presented by
a finite vector Q = (q0, ..., qN ). If P (qt = si|q0 = sj0, q1 =
sj1, ..., qt−1 = sj(t−1)) denotes the probability of the state qt

at time t conditioned on all states up to t − 1. The process
is called a first order Markov chain, since the probability of
being in state qt at time t given all the states up to the time
t− 1 depends only on the previous state qt−1. The first order
Markov process is more formally described in Equation 1.

P (qt = si|q0 = sj0, q1 = sj1, ..., qt−1 = sj(t−1)) (1)

= P (qt = si|qt−1 = sj(t−1))

In the n-th order Markov process, the probability of being
in state qt at time t given all the states up to the time t − 1
depends on the previous states up to the state qt−n:

P (qt = si|q0 = sj0, q1 = sj1, ..., qt−1 = sj(t−1)) (2)

= P (qt = si|qt−n = sj(t−n), ..., qt−1 = sj(t−1))

We observe that even a simple Markov Chain models (e.g.
a first order Markov chain) provides a significantly more
accurate prediction of patterns for missing and faulty data than
the current practice. It is possible to develop a Markov chain
model that captures not only frequency, but also the lagged
autocorrelation of the actual streams that contains correct,
missing and faulty data. We have adopted a class of Markov
chain models called semi-Markov chain models that ensure
the correct lagged autocorrelation statistical properties, while
keeping size of the models very compact. The accuracy of the
models is improved by employing resubstitution and nonpara-
metric smoothing for derivation of the density functions.

Applications of such semi Markov-chain models enabled us
to develop better protocols for collecting data in the presence
of faulty and missing samples. As an example, we show that by
judicious use of redundant sampling and data retransmission,
we are able to increase the percentage of collected data from
less than 43% to more than 96% with only a 40% increase in
power consumption.

The remainder of the paper is organized in the following
way. First, we briefly survey the related literature in Markov-
chain modeling and model-based fault and missing data re-
covery in sensor networks. Next, we present exploratory data
analysis of correct, missing and faulty readings in sensor

data streams. Our exploratory data analysis suggest that semi-
Markov chain models are strong candidates for compact cap-
turing of the relevant statistical properties of such streams.
After that, we describe the details of the semi-Markov chain
models. Due to the space limitations, we do not present the
results for experimentation and evaluation of the semi-Markov
chain modeling techniques. At last, we briefly state a number
of future research directions and conclude the paper.

II. RELATED WORK

Although Markov processes have been introduced about a
century ago, their flexibility and wide range of applications is
still deriving a variety of new extensions and applications [9],
[5]. Bharucha-Reid provides a good overview of the discrete
Markov processes [1].

The concepts of fault detection and identification are being
widely studied in complex automatic control systems. Iser-
mann and Balle [3] prepared a summary for a number of fault-
detection and diagnosis methods and have shown strong trends
towards applying the model-based fault-detection. Also, a
number of discrete models have been proposed for characteriz-
ing the faults [8]. Examples of such models include fault trees
[6] and structural graphs [12]. Lunze [7] presented the Markov
properties of a state measurement sequence. Lunze has also
presented a timed discrete-event abstraction for continuous-
variable systems [8].

There are a number of conceptual, statistical, and opti-
mization differences between the previous missing and faulty
data modeling methods and the semi-Markov chain models
presented in this paper. First, we use nonparametric data-driven
statistical modeling methods to develop probability density
functions utilized in semi-Markov models. Second, all of our
developed density functions are validated using the techniques
for statistical validation of random numbers with uniform
distribution [4]. Finally, the consistent following of non-
parametric data-driven paradigms during model development
of validation facilitates incorporation of designer insights into
the fault models in such a way to both increase the model
accuracy as well as to make the models more amenable for
consequent use in optimization procedures [4].

In this paper, we only describe modeling of the faulty and
missing data. A related topic is replacing the missing data,
based on the statistical patterns in the data streams. There
are a variety of methods proposed for his task, including the
expectation maximization (EM) algorithm [2] and the multiple
imputation (MI) algorithm [10].

III. EXPLORATORY DATA ANALYSIS

We performed several exploratory data analysis methods
for the three states of interest in sensor data collection: (a)
correct measurements, (b) missing measurements, and (c)
faulty measurements. These states form the state-space for our
Markov chain models. In Figure 2, the histograms show the
number of consecutive measurements in the same state on a
temperature sensor for the three states (a), (b) and (c). From
these histograms, we learned that the number of consecutive
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Fig. 2. Histograms for the number of consecutive correct measurements (left), the number of consecutive missing measurements (middle), and the number
of consecutive faulty measurements (right) for the temperature sensors.

measurements in the same state is often more than one, and
can easily go up to 10, especially for correct and faulty states.
The missing state is more transient and often lasts less than
5 readings. In Figure 3, we take this analysis one step further
by illustrating the factor level plot of the second states, vs.
the probabilistic plot of the first states. The results are shown
for light, temperature and humidity sensors on 3 different
motes. We clearly see the low probability of having a correct
measurement after a faulty one, showing a sustainable trend in
faulty measurements. According to our experiments, the results
are consistent for correct, missing, and faulty measurements
across three different sensors and across different motes.

The accuracy of Markov chain models increases as we
increase the number of previous data samples that are used
to predict the probability of the current sample. However, as
can be seen in Equation 2, adding more previous samples
dramatically increases the size of our models. As we show
on the example in Figure 2, often sequences of consecu-
tive correct, or consecutive missing, or consecutive faulty
recordings are rather long. We would like to have methods
that capture autocorrelations between current data sample and
lagged (previous) data samples without dramatic increase in
the size of our model. In order to overcome the size limitations
of the ordinary Markov chain models, we have developed
a special class of semi Markov chain models. Semi-Markov
models ensure that lagged autocorrelation statistical properties
are properly captured without a significant overhead on size
and complexity of the models.

IV. SPECIAL SEMI-MARKOV CHAIN MODELS

For the sake of clarity and due to space limitations, we
will describe only the simplest and the most compact class of
semi-Markov chain model for data streams with missing or
faulty data. In this case, we consider only two states for the
data: (1) correct, and (2) faulty. Note that, once the procedure
for detection of faulty data is available, we can similarly treat
missing and faulty data assuming that the missing points were
faulty. The corresponding semi-Markov chain model will also
have two states. The first state is indicated by zero and denotes
the correct recordings. The second state is denoted by 1 and
corresponds to missing or faulty data. As shown in Figure 4
(left diagram), the semi-Markov chain models for this case
has only two deterministic transitions. The key property of
the semi-Markov chain model is that it spends in each state

as many time sampling periods as indicated by smoothed
probability density functions.

The procedure for derivation of the new class of semi-
Markov chain model is very simple. We first build histograms
that estimate the nonparametric probability density function
(PDF) of the consecutive correct and consecutive faulty mea-
surements. Examples of such histograms were shown in Figure
4. Consequently, we apply kernel smoothing techniques [11]
to improve statistical robustness of the estimated density
functions. Probability of transition between the two states now
depends on the probability of staying in the same state. The
probability of staying in the same state is already quantified
by the probability density function.

Note that, if we want to have a model that independently
captures correct, missing, and faulty data instead of using the
PDFs, we use the conditional probability for the transition
from one state to another. The accuracy of the semi-Markov
chain models can be easily further improved by expanding
the set of conditional probabilities over multiple sequences
of consecutive readings where the different sequences have
identical density functions and transition behaviors.

One of the most important issues in extracting and using
semi-Markov models is to determine the length of times spent
in each state. The measured samples are usually available at
periodic time moments (in our case every 30 seconds). The
sampling period does not necessarily have any correlations
with the switching times between faulty and correct states.
Until now, our presentation was assuming that the switching
times are equivalent to the original sampling period. In order
to resolve this limitation, we have developed the following
procedure for calculating the switching time for the models.

First, we derive a semi-Markov model assuming that the
model’s switching time denoted as τsmc is equal to the original
sampling period denoted as τs. After that, we devise all of our
available samples in two disjoint sets: odd and even sample
sets. For each of the sets, we derive a semi-Markov model.
The semi-Markov models are denoted as smc2,o and smc2,e,
for the odd and even sets respectively. The procedure of
arranging the samples into sets can be further generalized to
deduce semi-Markov models smcp,q , where the subsampling
is conducted with a rate p and we only consider samples that
have an index K with the property that K is equal to q(mod)p.

Next, we study the properties of the subsampled models to
deduce the best switching times for a given error range δ. As
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Fig. 3. Factor level plots for the probability of different states for the second measurement, given the probability of the first state of the measurement shown
on the x-axis. The plots show the light sensor (left), temperature sensor (middle), motes.
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Fig. 4. Density transition between correct and incorrect (missing or faulty) measurements (left). The density function for the number of consecutive correct
measurements (middle), and the number of consecutive incorrect measurements (right) for the temperature sensors.

we decrease number of samples, we obtain PDF’s that have
less precision than the original PDF derived using all samples.
We accept the semi-Markov model with a PDF within the
δ error range of the original PDF, such that it has the least
number of samples. We also generalize the switching times to
cases where the sampling rate is not periodic. For the sake of
brevity and due to space limitations, the procedures are only
presented in the journal version of this paper. Note that, the
PDF’s obtained in our measurements are such that one can
assume any switching time and still use the obtained PDF’s
for the analysis and simulation purposes.

V. LIMITATIONS, FUTURE WORK AND CONCLUSION

There are several limitations for the presented semi-Markov
chain models for faulty and missing data that will be the target
of our future work. There are two major limitations: First, there
is a need to evaluate the procedure for developing sensor fault
models for sensors deployed in different environments and to
deduce which readings are faulty due to the limitations of
the sensors, and which are faulty due to the impact of the
instrumented environment. Second, we currently consider a
single data stream at a single sensor for development of models
for missing and faulty data. The usefulness of the developed
models will improve by creating models that capture the
correlations between faults at different sensors and different
nodes distributed in the environment.

In summary, we have developed semi-Markov chain models
for identification of faulty readings in sensor networks. The
core of the paper is dedicated to a new class of semi-Markov
chain models for capturing frequency and timing properties
of false and missing data in real-life data streams. We have

demonstrated that the models are statistically sound and can
significantly contribute to the development of operational
protocols for sensor networks.
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